Use este identificador para citar ou linkar para este item:
https://repositorio.ufpe.br/handle/123456789/64520
Compartilhe esta página
Título: | Metodologia para detecção de noticias falsas usando rotulo de vies politico |
Autor(es): | LISBOA, Lucas Albuquerque |
Palavras-chave: | Noticias falsas; Avaliação de classificadores; Processamento de linguagem natural; Vies politico |
Data do documento: | 29-Out-2024 |
Editor: | Universidade Federal de Pernambuco |
Abstract: | A proliferação de notícias falsas se tornou um dos grandes dilemas da atualidade. Com a pro- pagação em massa de material desinformativo em contextos eleitorais, o debate acerca de como o viés político impacta na produção e disseminação de fake news tem crescido. Por conta da grande quantidade de postagens e textos veiculados nos meios digitais, soluções de classifi- cação automatizadas têm ganhado destaque. Grande parte das abordagens estabelecidas na literatura realizam o processamento e análise apenas do texto das notícias, ou de outras peças de mídia como imagens ou vídeos, desconsiderando que, em diversos contextos, a desinfor- mação é associada a questões políticas de modo a induzir indivíduos a determinada opinião. Tendo em vista que o viés influencia nos processos de captação, redação e edição da notícia, há, então, uma escolha de palavras direcionada pelo viés por parte dos redatores das notícias falsas. Nesse sentido, este estudo visa avaliar como a incorporação do viés político em modelos de classificação pode contribuir na detecção de notícias falsas. Para isso, foi adotada uma me- todologia para incutir o rótulo de viés aos textos correspondentes, a partir da concatenação das bases de notícias com a base de rótulos de viés extraídos de portais. Desse modo, foram com- parados três cenários: um cenário em que apenas o texto é avaliado, um cenário em que apenas o rótulo do viés é avaliado e um cenário em que o texto é concatenado com o rótulo do viés. Em cada um dos cenários, foram utilizados sete algoritmos de aprendizagem de máquina e três extratores de características em três bases de fake news distintas. Constatou-se uma melhora significativa às abordagens tradicionais, com aumento de até 29,28% na acurácia e de 50,72% no F1-Score dos modelos a partir da rotulação, com a proposta tendo apresentado os melhores índices na maioria dos experimentos avaliados, indicando que o viés político pode ser um fator importante no processo de classificação de notícias falsas. Os resultados também apontam para o classificador Support Vector Machine (SVM) e para o extrator de características LLAMA 2 como aqueles que obtiveram melhor desempenho, além da proposta se mostrar eficiente tanto para o texto, quanto para o título da notícia. |
URI: | https://repositorio.ufpe.br/handle/123456789/64520 |
Aparece nas coleções: | Dissertações de Mestrado - Ciência da Computação |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
DISSERTAÇÃO Lucas Albuquerque Lisboa.pdf | 3,01 MB | Adobe PDF | ![]() Visualizar/Abrir |
Este arquivo é protegido por direitos autorais |
Este item está licenciada sob uma Licença Creative Commons