Skip navigation
Please use this identifier to cite or link to this item: https://repositorio.ufpe.br/handle/123456789/64403

Share on

Full metadata record
DC FieldValueLanguage
dc.contributor.advisorCRUZ, Felipe Wergete-
dc.contributor.authorSOUSA, Mirelle de Moura-
dc.date.accessioned2025-07-14T17:21:25Z-
dc.date.available2025-07-14T17:21:25Z-
dc.date.issued2024-02-19-
dc.identifier.citationSOUSA, Mirelle de Moura. Magneto-Micropolar Equations: Decay Characterization of Solutions for the Homogeneous Case 2D and the Inviscid and Non-Resistive Limit Problem for the Nonhomogeneous Case 3D. 2024. Tese (Doutorado em Matemática) – Universidade Federal de Pernambuco, Recife, 2024.pt_BR
dc.identifier.urihttps://repositorio.ufpe.br/handle/123456789/64403-
dc.description.abstractEstudamos o fluxo magneto-micropolar tanto no caso de densidade constante (problema homogêneo), quanto no caso de densidade variável (problema não homogêneo). De fato, inicialmente caracterizamos as taxas de decaimento das soluções para o sistema magneto- micropolar homogêneo 2D em termos do caráter de decaimento dos dados iniciais. Além disso, obtivemos uma taxa de decaimento mais rápida para a velocidade micro-rotacional e estudamos o comportamento das soluções para tempo grande comparando-as com as soluções da parte linear. Por fim, no caso 3D, estabelecemos a convergência uniforme da solução do problema viscoso e resistivo com densidade variável para a solução do problema não viscoso e não resistivo, quando as viscosidades e a resistividade tendem a zero.pt_BR
dc.description.sponsorshipCNPqpt_BR
dc.description.sponsorshipCAPESpt_BR
dc.language.isoengpt_BR
dc.publisherUniversidade Federal de Pernambucopt_BR
dc.rightsopenAccesspt_BR
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/pt_BR
dc.subjectDecay ratespt_BR
dc.subjectAsymptotic behaviorpt_BR
dc.subjectMagneto-micropolar fluidspt_BR
dc.subjectInviscid and nonresistive limitpt_BR
dc.subjectNonhomogeneous magneto-micropolar flowpt_BR
dc.titleMagneto-Micropolar Equations: Decay Characterization of Solutions for the Homogeneous Case 2D and the Inviscid and Non-Resistive Limit Problem for the Nonhomogeneous Case 3Dpt_BR
dc.typedoctoralThesispt_BR
dc.contributor.authorLatteshttp://lattes.cnpq.br/0292080810621885pt_BR
dc.publisher.initialsUFPEpt_BR
dc.publisher.countryBrasilpt_BR
dc.degree.leveldoutoradopt_BR
dc.contributor.advisorLatteshttp://lattes.cnpq.br/8921970020058025pt_BR
dc.publisher.programPrograma de Pos Graduacao em Matematicapt_BR
dc.description.abstractxWe studied the magneto-micropolar flow in both the case of constant density (homoge- neous problem) and variable density (nonhomogeneous problem). In fact, we initially charac- terized the decay rates of solutions for the 2D homogeneous magneto-micropolar system in terms of the decay character of the initial data. Furthermore, we obtained a faster decay rate for the microrotational velocity and studied the behavior of the solutions for large time by comparing them with solutions from the linear part. Finally, in the 3D case, we established the uniform convergence of the solution for the viscous and resistive problem with variable density to the solution of the inviscid and non-resistive problem when viscosities and resistivity tend to zero.pt_BR
Appears in Collections:Teses de Doutorado - Matemática

Files in This Item:
File Description SizeFormat 
TESE Mirelle de Moura Sousa.pdf757.94 kBAdobe PDFThumbnail
View/Open


This item is protected by original copyright



This item is licensed under a Creative Commons License Creative Commons