Please use this identifier to cite or link to this item:
https://repositorio.ufpe.br/handle/123456789/63602
Share on
Title: | Um sistema inteligente baseado em eletroencefalografia para apoio ao diagnóstico do transtorno do espectro autista |
Authors: | SILVA, Maria Euclécia Albuquerque da |
Keywords: | Transtorno do espectro autista; Aprendizado de máquina; Eletroencefalografia |
Issue Date: | 28-Mar-2025 |
Publisher: | Universidade Federal de Pernambuco |
Citation: | SILVA, Maria Euclécia Albuquerque da. Um sistema inteligente baseado em eletroencefalografia para apoio ao diagnóstico do transtorno do espectro autista. 2025. Dissertação (Mestrado em Engenharia Biomédica) - Universidade Federal de Pernambuco, Recife, 2025. |
Abstract: | O trabalho aborda o uso de um sistema inteligente baseado em eletroencefalografia (EEG) para apoiar o diagnóstico do Transtorno do Espectro Autista (TEA). O TEA apresenta desafios no diagnóstico devido à variabilidade de sintomas e à ausência de biomarcadores objetivos, sendo o EEG uma alternativa promissora por identificar padrões de atividade cerebral associados ao transtorno. A metodologia incluiu a análise de um conjunto de dados com 56 indivíduos (28 com TEA e 28 controles neurotípicos), utilizando técnicas de aprendizado de máquina, como Redes Bayesianas, Naive Bayes e SVMs. Os sinais de EEG foram pré-processados e 34 atributos foram extraídos para análise. Os dados foram obtidos de base pública vinculada à Universidade de Sheffield, descrita por Dickinson et al. (2022). A análise contou com validação cruzada e repetição de experimentos para garantir robustez estatística. Os melhores resultados foram alcançados com o modelo SVM com kernel RBF (gama = 0,5), atingindo 98,22% de acurácia com 9 eletrodos. O estudo destaca o potencial do uso combinado de EEG e aprendizado de máquina para melhorar a precisão e a rapidez do diagnóstico clínico do TEA. Como desdobramentos, a pesquisa sugere o desenvolvimento de modelos mais generalizáveis, a ampliação da base de dados e a aplicação de sistemas inteligentes na prática clínica com vistas a diagnósticos precoces e intervenções personalizadas. |
URI: | https://repositorio.ufpe.br/handle/123456789/63602 |
Appears in Collections: | Dissertações de Mestrado - Engenharia Biomédica |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
DISSERTAÇÃO Maria Euclécia Albuquerque da Silva.pdf | 2,29 MB | Adobe PDF | ![]() View/Open |
This item is protected by original copyright |
This item is licensed under a Creative Commons License