Por favor, use este identificador para citar o enlazar este ítem:
https://repositorio.ufpe.br/handle/123456789/63242
Comparte esta pagina
Título : | Regressão quantílica para modelos na família de distribuições G-exponencializada reparametrizada e suas aplicações |
Autor : | SANTOS, Benedito Vicente dos |
Palabras clave : | Análise de diagnóstico; Distribuição Baseline; Distribuição G-exponencializada reparametrizada; Quantil; Regressão quantílica; Simulação de Monte Carlo |
Fecha de publicación : | 27-feb-2025 |
Editorial : | Universidade Federal de Pernambuco |
Citación : | SANTOS, Benedito Vicente Dos. Regressão quantílica para modelos na família de distribuições G-exponencializada reparametrizada e suas aplicações. 2025. Tese (Doutorado em Estatística) – Universidade Federal de Pernambuco, Recife, 2025. |
Resumen : | Neste trabalho, propomos uma nova família de distribuições denominada família de distribuições G-exponencializada reparametrizada. Esta família reparametrizada tem uma vantagem em comparação com a distribuição G-exponencializada. Ela é indexada por um parâmetro ητ , e permite uma interpretação desse parâmetro em termos do τ -ésimo quantil da distribuição. Sendo assim, a família de distribuições G-exponencializada reparametri- zada é importante quando o interesse é modelar os quantis da distribuição. Além disso, apresentamos vários novos modelos probabilísticos baseados na família de distribuições G-exponencializada reparametrizada. Para exemplificar como são obtidos os submodelos da família de distribuições G-exponencializada reparametrizada foi utilizado o modelo Weibull reparametrizado como baseline, resultando no modelo Weibull exponencializado reparame- trizado (WER). Através de simulações de Monte Carlo realizadas utilizando a linguagem R foi avaliado numericamente o desempenho dos estimadores de máxima verossimilhança e seus respectivos intervalos de confiança assintóticos. Para ilustrar, aplicou-se a família de distribuições proposta a um conjunto de dados reais. Também, propomos modelos de regressão quantílica de modo geral para modelos pertencentes à família de distribuições G-exponencializada reparametrizada. Foi introduzido o novo modelo de regressão quantílica WER e algumas propriedades matemáticas desse modelo. Adicionalmente, foi utilizado o método de máxima verossimilhança para estimar os parâmetros dos modelos propostos. Foi realizado um estudo de simulação de Monte Carlo para avaliar o desempenho e as propriedades dos estimadores de máxima verossimilhança dos parâmetros que indexam o modelo de regressão quantílica WER. Além disso, propomos alguns resíduos e técnicas de análise de diagnóstico, com o objetivo de detectar observações potencialmente influentes e examinar o ajuste do modelo ao conjunto de dados. Por fim, para exemplificar, foram aplicados os novos modelos de regressão quantílica a um conjunto de dados reais na área de economia. |
URI : | https://repositorio.ufpe.br/handle/123456789/63242 |
Aparece en las colecciones: | Teses de Doutorado - Estatística |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
TESE Benedito Vicente dos Santos.pdf | 1,51 MB | Adobe PDF | ![]() Visualizar/Abrir |
Este ítem está protegido por copyright original |
Este item está licenciada sob uma Licença Creative Commons