Skip navigation
Use este identificador para citar ou linkar para este item: https://repositorio.ufpe.br/handle/123456789/62954

Compartilhe esta página

Registro completo de metadados
Campo DCValorIdioma
dc.contributor.advisorALMEIDA FILHO, Adiel Teixeira de-
dc.contributor.authorSILVA, Julio Cezar Soares-
dc.date.accessioned2025-05-09T16:05:05Z-
dc.date.available2025-05-09T16:05:05Z-
dc.date.issued2024-12-03-
dc.identifier.citationSILVA, Julio Cezar Soares. Data-driven multiobjective algorithms: applications in portfolio optimization. 2024. Tese (Doutorado em Ciência da Computação) - Universidade Federal de Pernambuco, Recife, 2024.pt_BR
dc.identifier.urihttps://repositorio.ufpe.br/handle/123456789/62954-
dc.description.abstractPractical portfolio optimization models have been bringing challenges that computa- tional intelligence tools are helping to solve. A class of portfolio optimization problems that have been attracting computational intelligence applications is index tracking. The index tracking problem aims to build a portfolio that replicates the performance of a market index with a subset of assets. Recent applications of deep learning in index tracking have limited application in real environments since the proposed frameworks are not flexible to include more practical constraints and objectives. A novel application of Generative Adversarial Network (GAN) which guarantees model extension flexibility is presented. The efficiency of the GAN was evaluated considering the difficulties imposed by the combinatorial nature of the index tracking problem. We also proposed and evaluated two new metaheuristics for the index tracking model with multiple scenarios. The results showed that solving the model using GAN’s market simulations produces more stable portfolios when compared to portfolios optimized with real data. Also, the models trained in a specific rebalancing strategy could perform well in other rebalancing strategies. This work also brings discussions about problems related to the application of GANs in this context. Obtaining the optimal Pareto front in a feasible time can be impractical in multiobjective portfolio optimization with practical constraints. Another unsolved problem is the extraction of preference information to find the most preferable nondominated solution. Thus, it is interesting to consider Evolutionary Multi-criterion approaches (EMO) to find good fronts within a time constraint guided by preference information. We propose a way to learn a rough approximation of the investor’s preference model to guide the EMO search for the single most preferable portfolio and to perform preference-driven portfolio updates. This model can be obtained using Interactive Multiobjective Optimization using Dominance-based Rough Sets Approach (IMO-DRSA), which is able to guide evolutionary algorithms using a rule-based model that is refined in each interaction with the investor. The problem is that there is no evidence on how to reduce the number of representative portfolios to minimize Decision-Maker (DM) cognitive effort during the interaction, taking the satisfaction of preferences in future distributions of portfolio components returns into account. The results showed that the proposed simulated IMO-DRSA can study the impact of different variables and approaches to reduce the cognitive effort in the performance of the EMO approach to achieve and maintain good preference satisfaction over time.pt_BR
dc.language.isoengpt_BR
dc.publisherUniversidade Federal de Pernambucopt_BR
dc.rightsopenAccesspt_BR
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/-
dc.subjectGenerative adversarial networkpt_BR
dc.subjectInteractive multiobjective optimizationpt_BR
dc.subjectEvolutionary Algorithmpt_BR
dc.subjectDominance-based rough set approachpt_BR
dc.subjectPortfolio Optimizationpt_BR
dc.subjectIndex Trackingpt_BR
dc.titleData-driven multiobjective algorithms : applications in portfolio optimizationpt_BR
dc.typedoctoralThesispt_BR
dc.contributor.authorLatteshttp://lattes.cnpq.br/7242501137545943pt_BR
dc.publisher.initialsUFPEpt_BR
dc.publisher.countryBrasilpt_BR
dc.degree.leveldoutoradopt_BR
dc.contributor.advisorLatteshttp://lattes.cnpq.br/9944976090960730pt_BR
dc.publisher.programPrograma de Pos Graduacao em Ciencia da Computacaopt_BR
dc.description.abstractxModelos práticos de otimização de portfólio vêm trazendo desafios que as ferramentas de inteligência computacional estão ajudando a resolver. Uma classe de problemas de otimização de portfólio que vem atraindo aplicações de inteligência computacional é index tracking. O problema de index tracking visa construir uma carteira que replica o desempenho de um índice de mercado com um subconjunto de ativos. Aplicações recentes de aprendizado profundo em index trackings têm aplicação limitada em ambientes reais, uma vez que os frameworks propostos não são flexíveis para incluir restrições e objetivos mais práticos. Uma nova aplicação de GAN que garante flexibilidade de extensão do modelo é apresentada. A eficiência da GAN foi avaliada considerando as dificuldades trazidas pela natureza combinatória do problema de index tracking. Duas novas metaheurísticas foram avaliadas para o modelo de index tracking com múltiplos cenários. Os resultados mostraram que resolver o modelo usando as simulações de mercado do GAN produz portfólios mais estáveis quando comparados aos portfólios otimizados com dados reais. Além disso, os modelos treinados em uma estratégia de rebalanceamento específica podem ter um bom desempenho em outras estratégias de rebalanceamento. Este trabalho também traz discussões sobre problemas relacionados à aplicação de GANs neste contexto. A obtenção da frente de Pareto ótima em um tempo viável pode ser impraticável na otimização de portfólio multiobjetivo com restrições práticas. Outro problema não resolvido é a extração de informações de preferência para encontrar a solução não dominada mais preferível. Assim, é interessante considerar abordagens multicritério evolucionárias EMO para encontrar boas frentes dentro de uma restrição de tempo guiada por informações de preferência. Propomos uma maneira de aprender uma aproximação grosseira do modelo de preferência do investidor para orientar a busca de EMO pelo portfólio mais preferencial e realizar atualizações de portfólio orientadas por preferências. Este modelo pode ser obtido por meio da Otimização Multiobjetivo Interativa usando a IMO-DRSA, que é capaz de guiar algoritmos evolutivos usando um modelo baseado em regras que é refinado a cada interação com o investidor. O problema é que não há evidências de como reduzir o número de portfólios representativos para minimizar o esforço cognitivo do DM durante a interação, levando em consideração a satisfação das preferências em distribuições futuras dos retornos dos componentes do portfólio. Os resultados mostraram que o IMO-DRSA simulado proposto pode estudar o impacto de diferentes variáveis e abordagens para reduzir o esforço cognitivo no desempenho da abordagem EMO para alcançar e manter uma boa satisfação de preferência ao longo do tempo.pt_BR
Aparece nas coleções:Teses de Doutorado - Ciência da Computação

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
TESE Julio Cezar Soares Silva.pdf16,51 MBAdobe PDFThumbnail
Visualizar/Abrir


Este arquivo é protegido por direitos autorais



Este item está licenciada sob uma Licença Creative Commons Creative Commons