
Julio Cezar Soares Silva

Data-driven multiobjective algorithms: applications in portfolio optimization

Universidade Federal de Pernambuco
posgraduacao@cin.ufpe.br

http://cin.ufpe.br/~posgraduacao

Recife
2024

mailto:posgraduacao@cin.ufpe.br
http://cin.ufpe.br/~posgraduacao


Julio Cezar Soares Silva

Data-driven multiobjective algorithms: applications in portfolio optimization

Trabalho apresentado ao Programa de Pós-
graduação em Ciência da Computação do Centro
de Informática da Universidade Federal de Per-
nambuco como requisito parcial para obtenção do
grau de Doutor em Ciência da Computação.

Área de Concentração: Inteligência Computa-
cional
Orientador: Adiel Teixeira de Almeida Filho

Recife
2024



Silva, Julio Cezar Soares.
   Data-driven multiobjective algorithms: applications in
portfolio optimization / Julio Cezar Soares Silva. - Recife,
2024.
   182f.: il.

   Tese (Doutorado) - Universidade Federal de Pernambuco, Centro
de Informática, Programa de Pós-Graduação em Ciência da
Computação, 2024.
   Orientação: Adiel Teixeira de Almeida Filho.
   Inclui referências e apêndices.

   1. Generative adversarial network; 2. Interactive
multiobjective optimization; 3. Evolutionary Algorithm; 4.
Dominance-based rough set approach; 5. Portfolio Optimization;
6. Index Tracking. I. Almeida Filho, Adiel Teixeira de. II.
Título.

UFPE-Biblioteca Central

.Catalogação de Publicação na Fonte. UFPE - Biblioteca Central



Tese de Doutorado apresentada por Julio Cezar Soares Silva à Pós-Graduação em
Ciência da Computação do Centro de Informática da Universidade Federal de Pernambuco,
sob o título “Data-driven multiobjective algorithms: applications in portfolio
optimization” Orientador: Adiel Teixeira de Almeida Filho e Aprovado pela
Banca Examinadora formada pelos professores

Leandro dos Santos Maciel
Faculdade de Economia, Administração e Contabilidade / USP

Francisco de Assis Tenorio de Carvalho
Centro de Informática / UFPE

Adriano Lorena Inacio de Oliveira
Centro de Informática / UFPE

Sérgio Ricardo de Melo Queiroz
Centro de Informática / UFPE

Tiago Pascoal Filomena
Escola de Administração / UFRGS

Prof. Orientador: Adiel Teixeira de Almeida Filho
Centro de Informática / UFPE

Visto e permitida a impressão.
Recife, 03 de Dezembro de 2024.

Prof. Leopoldo Motta Teixeira
Coordenador da Pós-Graduação em Ciência da Computação do
Centro de Informática da Universidade Federal de Pernambuco.



Dedico este trabalho à minha família



ACKNOWLEDGEMENTS

Agradeço à minha esposa Izabel, aos meus pais Eleno e Josy e à toda minha família pelo
apoio incondicional.

Agradeço ao meu orientador Adiel Teixeira de Almeida Filho pelo suporte, oportu-
nidades, conselhos e momentos de descontração proporcionados.

Agradeço ao Centro de Informática da UFPE que disponibilizou uma ótima infraestru-
tura e também aos professores pelo conhecimento fornecido ao longo deste período.

Agradeço ao Grupo de Pesquisa em Gerenciamento de Riscos, Estudos de Engenharia
Financeira e Otimização (GREEFO) pelas diversas contribuições em trabalhos e momentos
de aprendizado, em especial Diogo, Naiara, Fábio e Thiago.

Agradeço aos meus colegas do laboratório de pesquisa pelos momentos de descontração,
suporte e discussão sobre diversos temas, em especial Gustavo, Eraylson, Flávio, Leandro,
Gunnar, Mucio e Walter.

Agradeço a Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
que financiou este estudo parcialmente.



ABSTRACT

Practical portfolio optimization models have been bringing challenges that computa-
tional intelligence tools are helping to solve. A class of portfolio optimization problems that
have been attracting computational intelligence applications is index tracking. The index
tracking problem aims to build a portfolio that replicates the performance of a market
index with a subset of assets. Recent applications of deep learning in index tracking have
limited application in real environments since the proposed frameworks are not flexible
to include more practical constraints and objectives. A novel application of Generative
Adversarial Network (GAN) which guarantees model extension flexibility is presented.
The efficiency of the GAN was evaluated considering the difficulties imposed by the
combinatorial nature of the index tracking problem. We also proposed and evaluated
two new metaheuristics for the index tracking model with multiple scenarios. The results
showed that solving the model using GAN’s market simulations produces more stable
portfolios when compared to portfolios optimized with real data. Also, the models trained
in a specific rebalancing strategy could perform well in other rebalancing strategies. This
work also brings discussions about problems related to the application of GANs in this
context. Obtaining the optimal Pareto front in a feasible time can be impractical in
multiobjective portfolio optimization with practical constraints. Another unsolved problem
is the extraction of preference information to find the most preferable nondominated
solution. Thus, it is interesting to consider Evolutionary Multi-criterion approaches (EMO)
to find good fronts within a time constraint guided by preference information. We propose
a way to learn a rough approximation of the investor’s preference model to guide the EMO
search for the single most preferable portfolio and to perform preference-driven portfolio
updates. This model can be obtained using Interactive Multiobjective Optimization using
Dominance-based Rough Sets Approach (IMO-DRSA), which is able to guide evolutionary
algorithms using a rule-based model that is refined in each interaction with the investor.
The problem is that there is no evidence on how to reduce the number of representative
portfolios to minimize Decision-Maker (DM) cognitive effort during the interaction, taking
the satisfaction of preferences in future distributions of portfolio components returns into
account. The results showed that the proposed simulated IMO-DRSA can study the impact
of different variables and approaches to reduce the cognitive effort in the performance of
the EMO approach to achieve and maintain good preference satisfaction over time.

Keywords: Generative adversarial network. Interactive multiobjective optimization. Evo-
lutionary algorithm. Dominance-based rough set approach. Portfolio optimization. Index
tracking.



RESUMO

Modelos práticos de otimização de portfólio vêm trazendo desafios que as ferramentas
de inteligência computacional estão ajudando a resolver. Uma classe de problemas de
otimização de portfólio que vem atraindo aplicações de inteligência computacional é
index tracking. O problema de index tracking visa construir uma carteira que replica
o desempenho de um índice de mercado com um subconjunto de ativos. Aplicações
recentes de aprendizado profundo em index trackings têm aplicação limitada em ambientes
reais, uma vez que os frameworks propostos não são flexíveis para incluir restrições
e objetivos mais práticos. Uma nova aplicação de GAN que garante flexibilidade de
extensão do modelo é apresentada. A eficiência da GAN foi avaliada considerando as
dificuldades trazidas pela natureza combinatória do problema de index tracking. Duas
novas metaheurísticas foram avaliadas para o modelo de index tracking com múltiplos
cenários. Os resultados mostraram que resolver o modelo usando as simulações de mercado
do GAN produz portfólios mais estáveis quando comparados aos portfólios otimizados
com dados reais. Além disso, os modelos treinados em uma estratégia de rebalanceamento
específica podem ter um bom desempenho em outras estratégias de rebalanceamento. Este
trabalho também traz discussões sobre problemas relacionados à aplicação de GANs neste
contexto. A obtenção da frente de Pareto ótima em um tempo viável pode ser impraticável
na otimização de portfólio multiobjetivo com restrições práticas. Outro problema não
resolvido é a extração de informações de preferência para encontrar a solução não dominada
mais preferível. Assim, é interessante considerar abordagens multicritério evolucionárias
EMO para encontrar boas frentes dentro de uma restrição de tempo guiada por informações
de preferência. Propomos uma maneira de aprender uma aproximação grosseira do modelo
de preferência do investidor para orientar a busca de EMO pelo portfólio mais preferencial
e realizar atualizações de portfólio orientadas por preferências. Este modelo pode ser
obtido por meio da Otimização Multiobjetivo Interativa usando a IMO-DRSA, que é capaz
de guiar algoritmos evolutivos usando um modelo baseado em regras que é refinado a
cada interação com o investidor. O problema é que não há evidências de como reduzir o
número de portfólios representativos para minimizar o esforço cognitivo do DM durante a
interação, levando em consideração a satisfação das preferências em distribuições futuras
dos retornos dos componentes do portfólio. Os resultados mostraram que o IMO-DRSA
simulado proposto pode estudar o impacto de diferentes variáveis e abordagens para reduzir
o esforço cognitivo no desempenho da abordagem EMO para alcançar e manter uma boa
satisfação de preferência ao longo do tempo.

Palavras-chaves: Rede adversária generativa. Otimização multiobjetivo interativa. Algo-
ritmo evolucionário. Abordagem de Rough sets baseada em dominância. Otimização de
portfólio. Index tracking.
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1 INTRODUCTION

Along with many practical extensions to the portfolio selection problem (KOLM; TUETUEN-

CUE; FABOZZI, 2014; KALAYCI; ERTENLICE; AKBAY, 2019; ALMEIDA-FILHO; SILVA; FER-

REIRA, 2021), past works verified that Markowitz’s 1952 framework (MARKOWITZ, 1952)
had some limitations (FAMA, 1970; FABOZZI et al., 2007; KOLM; TUETUENCUE; FABOZZI,
2014):

• Simplified Assumptions:

– Normal Distribution of Returns: The model assumes that asset returns
follow a normal distribution. However, in practice, returns may exhibit skewness
and kurtosis, leading to underestimation of tail risks.

– Constant Parameters: The model assumes that expected returns, volatilities,
and correlations between assets are constant over time. This assumption is
questionable as financial markets are dynamic and subject to abrupt changes.

• Difficulty in Parameter Estimation:

– Historical Data: The model relies on historical data to estimate parameters,
but the past may not be a good predictor of the future, especially during periods
of high volatility.

– Estimation Error: Small errors in parameter estimates can lead to large
differences in model results, making portfolio optimization a complex task.

• Ignores Non-Financial Factors:

– Investor Preferences: The model does not account for individual investor
preferences, such as risk aversion, investment horizon, and legal and regulatory
constraints.

First, it is very difficult to predict future returns one or more days before the portfolio’s
rebalancing day, which impact the consistency and robustness of results produced using
this model (FAMA, 1970). Also, the sensitivity of the optimal weight allocation relative to
the perturbation of the model inputs brings apprehension concerning the application of
the classical MVO in real data (KOLM; TUETUENCUE; FABOZZI, 2014).

In this way, the development of intelligent systems for predicting stock prices (ASADI,
2019; ARAUJO et al., 2019) and more robust estimation techniques, such as shrinkage
and Bayesian estimators, and the direct incorporation of uncertainty in the optimization
model (FABOZZI et al., 2007), have been proposed to mitigate the construction of counter-
intuitive portfolios that produce unnecessary transaction costs over time. Also, other risk
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measures and investment strategies were proposed for obtaining consistent returns for
more conservative investors in the long run, such as tracking error in passive management
(BEASLEY, 2013; BEASLEY; MEADE; CHANG, 2003; GAIVORONSKI; KRYLOV; WIJST, 2005).

Passive fund management emerged from the efficient market hypothesis of Fama (1970),
where the best strategy an investor can perform is to follow the market movements,
otherwise, his/her portfolio will perform worse than the market. A fund manager can
choose between different strategies, which will define how actively or passively he/she
will manage the portfolio given the available information. An active strategy consists
of trying to outperform the market by picking the winner stocks (ACOSTA-GONZALEZ;

ARMAS-HERRERA; FERNANDEZ-RODRIGUEZ, 2015; ROLL, 1992). Passive management is
an alternative for conservative investors since it is less risky and usually brings returns
close to the benchmark index that is being tracked by the model (RUIZ-TORRUBIANO;

SUAREZ, 2009; FABOZZI et al., 2007).
As the size of the stock index grows, full replication implies high transaction costs,

therefore harming portfolio returns (FABOZZI et al., 2007; SANT’ANNA et al., 2019; SANT’ANA;

CALDEIRA; FILOMENA, 2020). The negative impact on the accumulated returns can be
minimized by performing a partial allocation or choosing a subset of the index components.
Thus, it is possible to control the portfolio size, by including a cardinality constraint in
this type of model (MUTUNGE; HAUGLAND, 2018; WANG; XU; DAI, 2018; SANT’ANNA et

al., 2017). Some works involving index tracking research are more concentrated on finding
good quality solutions for a given instance of the problem in a practical time.

Although many studies commonly adopt a single performance metric in index tracking
optimization, such as tracking error, recent research have been applying computational
intelligence techniques for solving portfolio optimization models with multiple objectives
(ALMEIDA-FILHO; SILVA; FERREIRA, 2021; FILIPPI; GUASTAROBA; SPERANZA, 2016; SALVA-

TORE; MATARAZZO; SŁOWIŃSKI, 2013; SILVA; FILHO, 2021b; FERREIRA et al., 2018). This
is possible by using the mathematical programming framework to develop a multiobjective
model and applying a multiobjective optimization algorithm to compute pareto-optimal
fronts.

The search for the most preferable solution for a DM in the pareto-optimal frontier
can be guided by incorporating preference information in multiobjective evolutionary
algorithms (AUGERI; GRECO; NICOLOSI, 2019; KADZIńSKI; TOMCZYK; SłOWIńSKI, 2020).
Purshouse et al. (2014) refers to three types of multiple criteria decision making (MCDM)
and EMO approaches to incorporate DM’s preference information: a priori, interactive
and a posteriori. In a priori methods, the preference of the DM is extracted before the
optimization process. In the case of a posteriori methods, the preferences are incorporated
after the optimization process. In the interactive approach, the algorithm can find the
most preferable solution considering the preference information extracted from the DM
during the optimization process (Purshouse et al., 2014; AUGERI; GRECO; NICOLOSI, 2019;
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KADZIńSKI; TOMCZYK; SłOWIńSKI, 2020).

1.1 MOTIVATION

Although the machine learning and statistical tools developed recently have potential
in tracking benchmarks, they have limitations concerning the capacity of extending
the portfolio optimization model. Some advantages of the mathematical programming
modelling are that it can handle a diversity of real-world objective functions formulations
and constraints through single or multiple objective optimization. For example, different
types of constraints can be included, such as cardinality, risk exposure, classes of assets,
lot size, liquidity, and many others (KALAYCI; ERTENLICE; AKBAY, 2019; LIAGKOURAS;

METAXIOTIS, 2018; FERREIRA et al., 2018; SILVA et al., 2021; SILVA; FILHO, 2021b; de Lima

Silva; FERREIRA; de Almeida-Filho, 2020; SILVA et al., 2018; ZHAO et al., 2021), which were
proposed so that institutional or individual investors could obtain a reduction of costs and
adjustment of portfolios to market regulations.

Also, with mathematical programming, it is possible to incorporate uncertainty di-
rectly in the model using robust optimization (FERNANDES et al., 2016) or scenario-based
optimization (DEB; ZHU; KULKARNI, 2018; MELLO; BAYRAKSAN, 2014), thus making the
weights more insensitive to future perturbations of the model parameters, which increases
the performance of the portfolio in the out-of-sample period.

Mariani et al. (MARIANI et al., 2019) built and evaluated PAGAN, a GAN for the
financial portfolio construction problem, incorporating the uncertainty by using simulations
from PAGAN in the mean-variance problem based on the mathematical programming
framework. Some of the challenges that aim to use GANs for portfolio optimization is their
training process instability and the development of approaches to incorporate simulations
in the optimization problem.

The mathematical programming approach offers more flexibility to extend the model
and consider multiple criteria in the analysis, which can add more control over future
portfolio behaviour (LI; BAO; ZHANG, 2014; LI; BAO, 2014), cost minimization (CHIAM;

TAN; MAMUN, 2013; GARCíA; GUIJARRO; MOYA, 2011), and investor’s inclination to risk
and criteria related to ESG (BRUNI et al., 2015; BILBAO-TEROL; ARENAS-PARRA; CAñAL-

FERNáNDEZ, 2012). The main problem is how to find the most preferable portfolio according
to the investor’s preferences. Some authors propose to rank solutions by performance
metrics (LI; BAO, 2014; LI; BAO; ZHANG, 2014), or to prioritize criteria based on the
current market state (FILIPPI; GUASTAROBA; SPERANZA, 2016), or models to handle
imprecise preference and expectation parameters (BRUNI et al., 2015; BILBAO-TEROL;

ARENAS-PARRA; CAñAL-FERNáNDEZ, 2012; WU; TSAI, 2014). At present, it is not possible
to obtain a transparent model to understand the portfolio’s features most desired by a
specific type of investor. Also, there are no approaches considering the decision to update
the portfolio based on the learned preferences.
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When incorporating the preferences in an interactive manner, the DM progressively
understands the problem and adjusts his/her preference information given a computational
time budget (LI et al., 2020). Some key challenges of the interactive approach are concerned
with limiting the cognitive effort, how frequently a DM should interact (Purshouse et al., 2014;
Yu; Jin; Olhofer, 2019; KADZIńSKI; TOMCZYK; SłOWIńSKI, 2020), and learning preferences
from a small data set (LI et al., 2020). The complexity involved in the multicriteria portfolio
optimization formulations, and computational intractability when considering real-world
constraints, make the design and study of interactive multiobjective optimization algorithms
applied to this problem a research area with innovative potential (KALAYCI; ERTENLICE;

AKBAY, 2019; ALMEIDA-FILHO; SILVA; FERREIRA, 2021).
IMO-DRSA uses rules to represent DM’s preferences and guide the evolutionary

algorithm search (GRECO; MATARAZZO; SŁOWIŃSKI, 2008). Some of the main advantages
of this method in the portfolio selection context are that it does not require the investor
to express uncertain parameters, and it uses "If... Then..." rules to represent investor
preferences, which are transparent and easy to understand (SALVATORE; MATARAZZO;

SŁOWIŃSKI, 2013). IMO-DRSA only requires that a representative set of non-dominated
solutions of the population is presented to the DM in a data table in each interaction.

There are issues that remain unsolved in the application of IMO-DRSA in portfolio
optimization. The first is the cognitive effort reduction. Works that solve practical multiob-
jective portfolio optimization with population-based evolutionary algorithms use hundreds
of individuals in the population (ANAGNOSTOPOULOS; MAMANIS, 2010; ANAGNOSTOPOU-

LOS; MAMANIS, 2011; MISHRA; PANDA; MAJHI, 2014; BABAZADEH; ESFAHANIPOUR, 2019;
Ferreira et al., 2018), and there is no clue on how to reduce the number of non-dominated
portfolios before presenting the data table, such that the DM preferences are satisfied in
the out-of-sample investment period. Also it is necessary to develop an investigation on
the performance of the evolutionary algorithm in building good portfolios for different
investors and maintaining their goodness according to different factors, such as the number
of interactions and the data table presentation method.

1.2 RESEARCH QUESTIONS AND HYPOTHESES

RQ1: How can GAN-generated market scenarios improve the robustness of portfolios
compared to those constructed using historical data? H: Incorporating uncertainty
through GAN simulations produces more stable and adaptive portfolios compared
to relying solely on historical market data.

RQ2: Are there benefits to using multiobjective metaheuristics in the index tracking model
when addressing multiple market scenarios generated by GANs? H: Incorporating the
tracking performance of a portfolio in each market scenario as an objective improves
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the overall mean tracking error across all scenarios, enhancing the robustness of the
portfolio.

RQ3: Given that a GAN was trained on a specific rebalancing strategy, is it possible to
apply it to other rebalancing strategies without retraining? H: The use of GANs
for scenario generation, combined with metaheuristics for optimization, improves
portfolio performance in out-of-sample periods by reducing sensitivity to model pa-
rameter uncertainty, allowing for some degree of flexibility across different rebalancing
strategies without the need for retraining.

RQ4: Can the generators learn to produce better market simulations over the training
epochs? H: The performance of the optimization method is expected to improve as
the generators refine their market simulations throughout the training epochs.

RQ5: How does the application of IMO-DRSA influence portfolio optimization in terms of
cognitive effort? H: The application of IMO-DRSA, paired with rule-based filtering
of Pareto frontiers, reduces cognitive effort by presenting a smaller, more relevant
set of portfolios that better align with investor preferences during the optimization
process.

RQ6: How do the number of interactions influence the satisfaction of the investor? H: In-
creasing the number of iterations and applying effective frontier filtering significantly
improve portfolio quality by refining trade-offs between objectives.

RQ7: How do different methods of presenting data tables influence portfolio optimization,
considering that different data presentation methods generate distinct constraints?
H: Various data presentation methods lead to different constraints within the
search space, which can either positively or negatively affect the performance of the
optimization method.

RQ8: How does investor-specific preferences influence the performance of portfolio opti-
mization methods? H: The rules generated by IMO-DRSA during the optimization
process can impact the optimization method due to preference constraints of the
investor type.

RQ9: How do frontier filters influence portfolio optimization methods? H: Well-designed
frontier filters strike a balance between maintaining portfolio diversity and satisfying
investor preferences, ensuring a stable and effective optimization process throughout
investor interactions.

RQ10: How do preference-based update mechanisms impact the adaptability of portfolios
over time? H: Preference-based updates enable portfolios to dynamically adjust to
evolving market conditions while aligning with the specific needs and objectives of
the investor.
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1.3 OBJECTIVES

1.3.1 General objective

The objective of this work was to propose computational intelligence approaches to deal
with recent portfolio optimization formulations that consider practical constraints and
investor’s objectives.

1.3.2 Specific objectives

• Evaluate if it was possible to build good tracking portfolios through market simu-
lations produced by GANs since they can learn to produce future market trends,
given the current market state.

• Study ways to incorporate uncertainty in an index tracking model based on the
mathematical programming framework to produce more robust and practical portfo-
lios.

• Develop metaheuristics to solve the multiple scenario index tracking problem.

• Investigate ways to handle GAN models when the cardinality constraint is considered
in the portfolio optimization problem.

• Study sources of errors that may produce bad portfolios when using GANs in index
tracking.

• Propose a simulated IMO-DRSA to evaluate the robustness of solutions produced
from different interaction configurations.

• Propose and evaluate ways to reduce cognitive effort in simulated IMO-DRSA.

• Propose and evaluate ways to present portfolios to investors.

• Evaluate the effect on the investor satisfaction and on the multi-objective optimization
algorithm performance, depending on how and with whom the interaction was
performed.

1.4 RELEVANCE OF THE RESEARCH PROBLEM

This work expands the analysis performed by Mariani et al. (2019), evaluating it in the
index tracking context, considering a simple modification of the GAN proposed by the
authors, where we adopt returns instead of prices as the generator’s network inputs and
outputs. One of the main contributions of this thesis is the comparison of models that
use synthetic data generated by GANs against models that use historical data to solve a
dynamic index tracking problem using real data from the Brazillian market. In the results,
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we observed that this contribution opens doors to the application of index tracking based
on mathematical programming models with more practical constraints and other types of
tracking objectives since the GAN-based index tracking can provide solutions less sensitive
to the deviations of the index in the out-of-sample period.

Another contribution is the development and evaluation of two new metaheuristics,
SDM-SAAGA-GAN and SDM-SBDGA-GAN, that incorporate uncertainty in the portfolio
optimization problem through simulations performed by the PAGAN model, where it was
possible to conclude that the scenario-based dominance metaheuristic performed better
than the sample-average metaheuristic. We also consider evaluating the GAN performance
for cases for which it was not trained. It was possible to observe that when we reduce the
portfolio’s rebalancing frequency for which the GAN was trained, it can still maintain a
good performance. Thus, it may not be necessary to train new models for the evaluation
of some rebalancing strategies.

Also, given the lack of methods to assess the performance of the GAN in this context,
other complications emerge due to the combinatorial nature of this problem when cardi-
nality constraints are included. Our approach to handling this type of constraint, which
was not considered in the problem that the original PAGAN paper proposed to solve
(MARIANI et al., 2019), poses another contribution. The proposed approach simply selects
the best PAGAN model, in terms of tracking error, within a subset of training epochs.
Thus, we propose to use the best results produced by a PAGAN model in a given training
epoch to increase the chances of producing models that generate synthetic data capable of
producing robust portfolios that perform better than those that were constructed using
historical data. Finally, we present some sources of errors that may emerge and produce
bad portfolios when using PAGAN and discuss potential solutions for this problem.

Concerning the interactive optimization area, this study proposes a simulation approach
to investigate methods that reduce the number of representative solutions that compose the
data table and to deal with distributions of returns over time, as suggested by Salvatore,
Matarazzo & Słowiński (2013). The effects of representative solutions in the out-of-sample
period were considered because the longer the period that rules are satisfied, the less is
the rebalance frequency, which reduces costs associated with portfolio adjustment to the
investor’s preferences. The simulation approach can also be used to understand how the
level of interactivity and investor profile can impact rule satisfaction over time.

Another contribution was a preference learning approach for single and multi-period
multiobjective index tracking strategies. A way to exploit the learned rule-based models to
perform preference-driven portfolio update strategies was proposed and evaluated. Frontier
filters that adapt to the constraints generated from different conditional criteria used in
the data table presented for the investor were proposed. New ways to present portfolios
to the investors were developed and analyzed considering the DRSA based on stochastic
dominance with normality assumptions (GRECO; MATARAZZO; SŁOWIŃSKI, 2008). An
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analysis on how the in-sample and out-of-sample performance of an evolutionary algorithm
is affected using different frontier filters, data table generation methods, types of investors,
and interaction levels was performed.

The innovations and implications of this research for both the field of finance and the
development of optimization algorithms are further detailed below.

1.4.1 Contributions to finance

• The thesis presents an innovative application of GANs for the index tracking problem,
which aims to replicate the performance of a market index using a subset of assets.
GANs are used to simulate different market scenarios, allowing the trained models to
offer more robust portfolios, even when compared to real market data. This approach
is crucial, as market data is often volatile and unpredictable.

• The application of GANs allows greater flexibility in including practical constraints
and objectives that are often encountered in real financial environments. This
addresses a significant limitation of traditional deep learning approaches, which often
are not adaptable to practical and specific conditions of financial markets.

• An important challenge addressed by the thesis is the reduction of the DM (investor’s)
cognitive effort during the interaction with the optimization model. A simulation
approach was proposed to support the reduction of representative portfolios presented
to the decision-maker, maintaining preference satisfaction and improving the decision-
making process’s efficiency.

• The thesis proposes a way to learn an approximation of the investor’s preference
model, which can help understand which portfolio attributes are more important to
a given investor.

1.4.2 Contributions to optimization algorithms

• The thesis proposes two new metaheuristics to solve index tracking problems in
multiple scenarios, addressing the combinatorial complexity and the need for robust
solutions. These metaheuristics were evaluated in different rebalancing strategies.

• This work demonstrates different ways for optimization algorithms to utilize simula-
tions generated by GANs or other generative artificial intelligence.

• A significant contribution is the application of the Interactive Multiobjective Op-
timization using IMO-DRSA. This approach allows the incorporation of investor
preferences into the optimization process, guiding the metaheuristic to find the most
preferable solution.
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• The thesis investigates the impact of different variables and approaches on the
satisfaction of investor preferences over time. This analysis is essential to understand
how various factors influence the performance of optimization algorithms and investor
satisfaction and improving the decision-making process’s efficiency.

1.5 ORGANIZATION OF THE THESIS

Figure 1 presents this thesis structure. As shown in Figure 1, Chapters 3, 4, and 5 are
interconnected through their shared focus on optimizing financial models using multiob-
jective algorithms. Chapter 3 employs GANs to generate synthetic market data, which
is then used by an algorithm that treats tracking error performance in simulations as
distinct objectives. Chapter 4 introduces a simulated multiobjective approach for portfolio
selection within mean-variance optimization, incorporating various interaction models
and investor preferences. Chapter 5 builds upon this framework by applying it to index
tracking, where multiobjective algorithms guide preference-based portfolio rebalancing,
considering different interaction configurations.

Chapter 2: : Presents theoretic concepts which the author considered necessary as basic
knowledge to start developing this work. This chapter begins with a brief presentation of
classical and Wasserstein GANs, and convolutional layers. Then, multiobjective modelling,
optimization and the NSGA-II algorithm are described. Finally, fundamental concepts of
DRSA and interactive multiobjective optimization with DRSA are presented.

Chapter 3:: Chapter 3 brings a novel application of GANs for index tracking. The
efficiency of the GAN was evaluated considering the difficulties imposed by the inclusion
of cardinality constraints, which makes the index tracking problem NP-hard. The GANs
were evaluated based on the performance of portfolios produced by them and compare
to the performance of portfolios produced using real historical data. We also proposed
and evaluated two new metaheuristics for the index tracking model with simulated market
scenarios and evaluated them using real data from the Brazilian market.

Chapter 4:: In Chapter 4, a simulated IMO-DRSA was proposed to analyze and
compare methods that select a small and robust sample of representative solutions to
compose data tables. This approach was evaluated using two types of simulated investors
in a cardinality-constrained mean-variance optimization problem.

Chapter 5:: An extended analysis of the simulated IMO-DRSA approach is presented
in Chapter 5, considering its application in the index tracking context. The analysis
involved experiments to understand how the IMO-DRSA could guide the EMO approach
to achieve and maintain good preference satisfaction over time by presenting a small
number of portfolios to the investor during interactions. This analysis considered different
frontier filters and data table presentation methods. The ability of IMO-DRSA to detect
important criteria for the investors was investigated and a preference-based rebalancing
strategy was proposed.
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Figure 1 – Thesis structure.

Chapter 6:: In the last chapter, the conclusions and research developments during
the doctorate program were presented.

The main characteristic of this thesis is the use of multiobjective algorithms to optimize
different types of models, wether they are stochastic models that consume synthetic data
from GANs or multiobjective models tha need algorithms that are guided by investor’s
preferences.
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2 THEORETICAL FOUNDATION

2.1 GENERATIVE ADVERSARIAL NEURAL NETWORKS

A GAN is a type of neural network architecture inspired by Game Theory concepts,
proposed by Goodfellow et al. (2014). A zero-sum game is played by two neural networks
competing against each other during the training process. The generator network receives
noise and outputs fake data with the same characteristics as real data. The discriminator
network takes real data and fake data from the generator as input and tries to distinguish
which input data is real and which is fake. Thus, along the training process, one network tries
to outperform the other by minimizing the performance of the adversary and maximizing
its performance. When the training has finished, we expect that the generator is capable
of generating new data that is not distinguishable from real data.

The GAN is presented in Figure 2. Formally, the game between the generator 𝐺 and
the discriminator 𝐷 is the minimax objective:

min
𝜃

max
𝑤

E
𝑥∼P𝑟

[𝑙𝑜𝑔(𝐷𝑤(𝑥))] + E
𝑥′∼P𝜃

[𝑙𝑜𝑔(1−𝐷𝑤(𝑥′))] (2.1)

where 𝜃 and 𝑤 are the parameters for 𝐺 and 𝐷, respectively, P𝑟 is the real data distribution,
P𝜃 is the generative model distribution, 𝑥′ = 𝐺𝜃(𝑧), and the Generator’s input noise is
given by 𝑧 ∼ 𝑝(𝑧). The input noise 𝑧 can be sampled from a simple noise distribution, i.e.
uniform or Gaussian distributions. Originally, the iterative process alternated 𝑘 optimizing
steps for 𝐷 and one optimizing step for 𝐺 to avoid overfitting 𝐷 in the early training
steps.

Figure 2 – Generative Adversarial Network
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2.1.0.1 WGAN

The Jensen-Shannon divergence measures the distance between two probability distri-
butions. The JS divergence between two probability distributions 𝑝 and 𝑞 is defined in
equation 2.2.

𝐽𝑆(𝑝||𝑞) = 𝐾𝐿(𝑝||𝑝𝑚) +𝐾𝐿(𝑞||𝑝𝑚) (2.2)

where 𝑝𝑚 = 𝑝+𝑞
2 is the "average" distribution, and 𝐾𝐿(𝑝||𝑞) =

∫︀
𝑥 𝑝(𝑥)𝑙𝑜𝑔 𝑝(𝑥)

𝑞(𝑥)𝑑𝑥 is the
Kullback-Leibler divergence. The minimization of KL divergence is a classic loss function
to generative models, requiring only sample data and no assumptions about P𝑟, and
it is equivalent to maximizing likelihood (ARJOVSKY; CHINTALA; BOTTOU, 2017). It is
interesting to note that the results obtained when minimizing 𝐾𝐿(P𝑟||P𝜃) are different from
those obtained when minimizing 𝐾𝐿(P𝜃||P𝑟) since the KL divergence is not symmetrical
(ARJOVSKY; BOTTOU, 2017).

The classic min-max loss function of GANs has been shown to minimize the JS
divergence when we minimize 2.1 in function of 𝜃 when the discriminator is optimal, as
shown in equation 2.3 𝐷 (ARJOVSKY; BOTTOU, 2017). This loss function is a symmetric
middle ground between optimizing 𝐾𝐿(P𝑟||P𝜃) and 𝐾𝐿(P𝜃||P𝑟).

𝐿(𝐷*, 𝜃) = 2𝐽𝑆(P𝑟||P𝜃)− 2𝑙𝑜𝑔2 (2.3)

Although this would lead us to train 𝐷 near to optimality and then optimize 𝜃 to
better approximate the JS divergence, other problems emerge with this approach, such as
vanishing gradients. When the discriminator is trained up to optimality, the JS divergence
is locally saturated and the generator’s gradients rapidly vanish along the training process
(ARJOVSKY; BOTTOU, 2017). Another common failure of GANs, named mode collapse,
occurs when the generator can fool the discriminator by learning a small region with very
low variety during training, producing always the same outputs. The vanishing gradients
and mode collapse problems can be minimized when using Wasserstein distance as the loss
function (ARJOVSKY; CHINTALA; BOTTOU, 2017). The tractable computation is performed
with the Wasserstein distance under 1-Lipschitz condition, shown in Equation 2.4, where
here we have (P𝑟||P𝜃) as the supremum (lowest upper bound) overall 1-Lipschitz functions
𝑓 : 𝑋 → 𝑅.

𝑊 (P𝑟,P𝜃) = sup
||𝑓 ||𝐿

E
𝑥∼P𝑟

[𝑓(𝑥)]− E
𝑥′∼P𝜃

[𝑓(𝑥′)] (2.4)

where 𝑓 : 𝑋 → 𝑅 is K-Lipschitz continuous when, given 2 metric spaces (𝑋, 𝑑𝑋)
and (𝑌, 𝑑𝑌 ), 𝑑𝑌 (𝑓(𝑥1), 𝑓(𝑥2)) ≤ 𝐾𝑑𝑋(𝑥1, 𝑥2), ∀𝑥1, 𝑥2 ∈ 𝑋. Thus, if there is a family of



32

parameterised functions 𝑓𝑤, where 𝑤 ∈ 𝑊 , that are K-Lipschitz continuous, then Equation
2.5 presents the maximization of the Wasserstein distance multiplied by a constant.

𝑊 (P𝑟,P𝜃) ∝ max
𝑤∈𝑊

E
𝑥∼P𝑟

[𝑓𝑤(𝑥)]− E
𝑥′∼P𝜃

[𝑓𝑤(𝑥′)] (2.5)

Due to this characteristic of the Wasserstein distance now have the optimization
of a critic 𝑓𝑤 that estimates the Wasserstein distance between P𝑟 and P𝜃 instead of a
discriminator (discriminates real and fake samples). The critic loss is presented in Equation
2.6.

𝐿𝑐𝑟𝑖𝑡𝑖𝑐 = max
𝑤∈𝑊

E
𝑥∼P𝑟

[𝑓𝑤(𝑥)]− E
𝑥′∼P𝜃

[𝑓𝑤(𝑥′)] (2.6)

The generator loss is shown in Equation 2.7.

𝐿𝑔𝑒𝑛 = min
𝜃

E
𝑥∼P𝑟

[𝑓𝑤(𝑥)]− E
𝑥′∼P𝜃

[𝑓𝑤(𝑥′)] = min
𝜃
− E

𝑥′∼P𝜃

[𝑓𝑤(𝑥′)] (2.7)

Arjovsky, Chintala & Bottou (2017) adopted weight clipping to enforce the 1-Lipschitz
constraint. This is done by restricting the weights 𝑤 to a small range (i.e. [-1e-2, 1e-2]). A
drawback of the WGAN algorithm is that the model performance is very sensitive to the
clipping parameter. Gulrajani et al. (2017) proposed WGAN-GP, which brings a better
way to enforce the 1-Lipschitz constraint. They added a gradient penalty in the loss term
that forces the L2 norm of the critic gradients to be unitary, as shown in Equation 2.8.

𝐿 = E
𝑥′∼P𝜃

[𝑓𝑤(𝑥′)]− E
𝑥∼P𝑟

[𝑓𝑤(𝑥)] + 𝜆 E
𝑥′′∼P𝑥′′

[(||∇𝑥′′𝑓𝑤(𝑥′′)||2 − 1)2] (2.8)

where 𝑥′′ = 𝑡𝑥+ (1− 𝑡)𝑥′ sampled from a straight line between 𝑥 (current batch) and
𝑥′, with 𝑡 uniformly sampled between 0 and 1 (𝑡 ∼ 𝑈 [0, 1]).

2.1.1 Convolutional layers

Convolutional Neural Networks (CNN) are widely used to solve Computer Vision tasks,
such as image classification (RADFORD; METZ; CHINTALA, 2015; GOODFELLOW; BENGIO;

COURVILLE, 2016). The basic building blocks of CNNs are convolutions, pooling (down-
sampling) operators, activation functions, and fully-connected layers, which are essentially
similar to hidden layers of a Multilayer Perceptron (MLP). CNN contain at least one
convolution layer, which is composed of a set of filters applied to the entire input vector
(GOODFELLOW; BENGIO; COURVILLE, 2016).

Regular neural networks receive a single vector as input and process this input through
a set of hidden layers. Each hidden layer is constituted by a set of neurons, and each
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Figure 3 – Example of a filter applied to a 2D input to generate a feature map

neuron is fully connected to all neurons in the previous layer. Thus, the neurons in a single
layer function completely independently and do not share any connections (no parameter
sharing). The last fully-connected layer is called the “output layer” and in the context of
a classification problem, it is associated with the computation of the class scores.

CNNs use filters to process a given input, such as a 2D image. Each filter is a matrix
𝑘 × 𝑘 of weights to be learned during the training process. The convolution operation
consists of a dot product, which is an element-wise multiplication, and it is applied between
the filter-sized region of the input and the filter, which is then summed, resulting in a
single value. A sequence of convolutional operations generates a feature map, as shown in
Figure 3, where a 3x3 filter is successively applied to a 2D input to obtain a 2D feature
map.

A typical convolutional layer consists of three stages (GOODFELLOW; BENGIO; COURVILLE,
2016). In the first phase, the filter is applied to produce several convolutions to generate
several linear activations. Initially, the filter is applied to the upper left region of the input,
then the dot product is performed, generating the entry (1,1) of the feature map. Then,
the filter is moved to the right according to the stride value before another dot product is
performed. If the stride value is equal to (1,1), then the filter moves one column (or one
pixel in the case of 2D images) to the right. Also, the filter moves one row to the bottom
every time the final column is processed. The feature map size is controlled by the stride
value. The larger the stride, the smaller the feature map.
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When the data is associated with 2D images, each filter produces a linear combination
of all pixel values in a neighbourhood defined by the size of the filter. A grayscale image
input has 𝑤× ℎ dimensions and when considering a colour image, the input has 𝑤× ℎ× 𝑐
dimensions, where 𝑐 is the number of channels (or depth of the input), in this case, 𝑐 = 3,
which are the RGB channels. It is also possible to consider 1D convolutions, which can
be applied in time series data, where the channels are the number of time series to be
processed. One advantage of convolutions is that we store much fewer parameters than
MLP models since the filter is much smaller than the input (i.e. 2D image with thousands
of pixels). The learned filter can detect small, meaningful features on an image, such as its
edges.

In the second phase, we can apply a nonlinear activation function, such as ReLU, to
the feature map. This process is similar to the application of nonlinearities in the outputs
of a fully connected layer. In the third phase, we use a pooling function to reduce the
dimensionality of the feature map to increase the computational efficiency. In the pooling
layer, a summary statistic, generally the mean or max, is obtained from some regions (i.e.
rectangular regions) of the feature map to reduce the number of the parameters of the
network and to create spatial invariance. The spatial invariance is useful if we give more
importance to the detection of a feature (such as a face or a tree), independent of where
this feature is located (GOODFELLOW; BENGIO; COURVILLE, 2016; ISLAM et al., 2021).

Padding can be used to add extra "borders" to the input. For example, in computer
vision, it is possible to use padding to reduce the image shrinking every time a convolution
is applied, by adding extra pixels with a value equal to zero (ISLAM et al., 2021). Moreover,
it ensures that all pixels are used equally frequently. This same concept can be used to
add zero-valued data to other types of inputs to reduce their rapid reduction with the
sequential application of convolutions and to ensure the equal use of each part of the input.

2.2 MULTIOBJECTIVE OPTIMIZATION

Multiobjective models are associated with finding the best compromise solution for 𝑀
conflicting objectives. Considering a solution vector 𝑥 = {𝑥1, ..., 𝑥𝑁}, the general form of
the multiobjective optimization problem with 𝐽 inequalities and 𝐾 equalities is stated as
follows (DEB, 2001):

min/max
𝑥

𝑓𝑚(𝑥), m = 1,2,...,M (2.9)

subject to 𝑎𝑗(𝑥) ≥ 0, 𝑖 ∈ 1, ..., 𝐽 (2.10)
𝑏𝑘(𝑥) = 0, 𝑗 ∈ 1, ..., 𝐾 (2.11)
𝑙𝑖 ≤ 𝑥 ≤ 𝑢𝑖, 𝑖 ∈ 1, ..., 𝑁 (2.12)

(2.13)



35

where 𝑙𝑖 and 𝑢𝑖 are the lower and upper boundaries for variable 𝑖. A solution 𝑥 that
satisfies all the inequalities, equalities and boundaries is a feasible solution, otherwise,
it is an infeasible solution. There are 𝑀 objective functions 𝑓(𝑥) = {𝑓1(𝑥), ..., 𝑓𝑀(𝑥)},
where each objective can be maximized or minimized. One of the main differences between
single and multiobjective optimization is that the last contains an objective space, in
addition to the decision variable space. Thus, each solution 𝑥 is associated with a point
𝑧 = 𝑓(𝑥) = {𝑧1, ..., 𝑧𝑀} in the objective space.

Considering a bi-objective problem, shown in Figure 4, where we want to minimize both
𝑓1 and 𝑓2, we have two non-overlapping regions in the feasible search space: Pareto-optimal
set and non-Pareto-optimal set. Different from single optimization problems, multiobjective
problems have multiple optimal solutions, called Pareto-optimal solutions, which constitute
the Pareto-optimal front. This front appears when the problem is associated with conflicting
objectives. We cannot say that a Pareto-optimal solution 𝑥(1) is better than a Pareto-
optimal solution 𝑥(2) concerning both objectives since choosing between two Pareto-optimal
solutions will decrease the performance in one of the objectives and increase the performance
in another objective. Thus, we can say these two solutions are non-dominated.

To choose between two non-dominated solutions, it is necessary to obtain more infor-
mation to make a more biased search. However, in the absence of any information about
which objective is preferable, all non-dominated solutions are equally important. Thus,
there are two goals in multiobjective optimization: to find a set of solutions as close as
possible to the Pareto-optimal front and find a set of solutions as diverse as possible.

Multiobjective optimization algorithms use the concept of dominance to compare two
solutions. Assuming that there are 𝑀 objectives to be minimized, a solution 𝑥(1) dominates
𝑥(2) if 1 and 2 are true:

1. 𝑥(1) is at least as good as 𝑥(2) in all objectives: 𝑓𝑚(𝑥(1)) ≤ 𝑓𝑚(𝑥(2)) for all 𝑚 = 1, ...,𝑀

2. 𝑥(1) is strictly better than 𝑥(2) in at least one objective: 𝑓𝑚(𝑥(1)) < 𝑓𝑚(𝑥(2)) for at
least one 𝑚 ∈ {1, ...,𝑀}

One can generalize this definition to a mix of minimization and maximization objectives
by changing ’≤’ to ’≥’, and ’<’ to ’>’ when necessary. Considering a solution set 𝑃 , the
non-dominated set of solutions 𝑃 ′ contains solutions that are not dominated by any member
of the set 𝑃 . When the set 𝑃 is the entire search space, the set 𝑃 ′ is the Pareto-optimal
set (DEB, 2001).

2.2.1 NSGA-II

The problem of classical optimization methods is that they convert the multiobjective
problem into a single objective problem, which computes a Pareto-optimal solution in a
unique simulation run, and thus requires running multiple simulations to find multiple
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Figure 4 – Illustration of the feasible region and Pareto front of a bi-objective problem

Pareto-optimal solutions. Multiobjective evolutionary algorithms (MOEA) have been
developed to find multiple and diverse Pareto-optimal solutions in a single simulation run.
Another advantage of MOEAs is that they eliminate the need for weight, target vectors,
and other parameters that are needed in classical optimization to transform multiobjective
problems into single objective problems (Deb et al., 2002; DEB, 2001).

NSGA-II was proposed by Deb et al. (2002) to reduce the computational complexity
when performing non-dominated sorting, ensure diversity using a nonparametric diversity-
preservation mechanism, and use elitism to preserve good solutions over the generations
to speed up the genetic algorithm’s convergence. The NSGA-II procedure is shown in
Algorithm 1 and its complexity is given by 𝑂(𝑛2

𝐼𝑀).

Algorithm 1: NSGA-II
1 Input: 𝑛𝐼 , 𝑛𝐺, 𝑝𝑐, 𝑝𝑚

2 Output: 𝑃
1: 𝑔 ← 1
2: 𝑅𝑔 ← 𝑔𝑒𝑡𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑃𝑜𝑝(𝑛𝐼)
3: while 𝑔 ≤ 𝑛𝐺 do
4: 𝑓𝑖𝑡← 𝑔𝑒𝑡𝐹 𝑖𝑡𝑛𝑒𝑠𝑠(𝑅𝑔)
5: 𝐹 ← 𝑠𝑜𝑟𝑡(𝑓𝑖𝑡)
6: 𝑃 ← 𝑔𝑒𝑡𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑜𝑝(𝐹, 𝑛𝐼)
7: 𝑚𝑎𝑡𝑖𝑛𝑔𝑃𝑜𝑜𝑙← 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑃, 𝑓𝑖𝑡)
8: 𝑄← 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟(𝑚𝑎𝑡𝑖𝑛𝑔𝑃𝑜𝑜𝑙, 𝑅𝑔, 𝑝𝑐)
9: 𝑄← 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑄, 𝑛𝐼 , 𝑝𝑚)

10: 𝑅𝑔 ← 𝑐𝑜𝑛𝑐𝑎𝑡(𝑃,𝑄)
11: end while

The generation counter 𝑔 is initialized in step 1. In step 2, a population 𝑅𝑔 with size
𝑛𝐼 is generated. Steps 4-10 define the evolutionary process associated with NSGA-II. The
fitness of the individuals of 𝑅𝑔 in each objective is evaluated in step 4. In step 5 the
non-dominated sorting procedure is applied to classify the entire population 𝑅𝑔. This
procedure first encounters 𝐹1, which is the front that contains individuals non-dominated
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by any individual from 𝑅𝑔, and has 𝑟𝑎𝑛𝑘 = 1. Then, another front 𝐹2 is computed, which
contains individuals non-dominated by any individual from 𝑅𝑔 − 𝐹1, and has 𝑟𝑎𝑛𝑘 = 2.
Thus, individuals from 𝑅𝑔 are ranked until all the population is fully described by 𝑑

subsets, where |𝐹1|+ |𝐹2|+ ...+ |𝐹𝐷| = |𝑅𝑔|. The smaller the rank the better the solution.
The new parent population is obtained in step 6 by using the rank and the crowding

distance information. The crowding distance is used to maintain the diversity among the
population and is defined as the average side-length of a cuboid formed by the nearest
neighbours of 𝑠 ∈ 𝐹𝑑, where 𝑑 = 1, 2, ...𝐷. It is calculated as follows (Deb et al., 2002):

1. The number of solutions in a front 𝐹𝑑 is defined as 𝑙 = |𝐹 |. For each 𝑠 ∈ 𝐹𝑑, assign
𝑑𝑠 = 0

2. For each objective function 𝑚 = 1, 2, ...,𝑀 , sort the set in the worst order of 𝑓𝑚.
Thus, we can obtain a sorted indexes vector for each objective 𝐼𝑚.

3. For 𝑚 = 1, 2, ...,𝑀 , assign a large distance to the boundary solutions, which gives
𝑑𝐼𝑚

1
= 𝑑𝐼𝑚

𝑙
= ∞. For all the other solutions 𝑗 = 2, ..., 𝑙 − 1, assign 𝑑𝐼𝑚

𝑗
= 𝑑𝐼𝑚

𝑗
+

𝑓
𝐼𝑚
𝑗+1

𝑚 −𝑓
𝐼𝑚
𝑗−1

𝑚

𝑓𝑚𝑎𝑥
𝑚 −𝑓𝑚𝑖𝑛

𝑚
. The parameters 𝑓𝑚𝑎𝑥

𝑚 and 𝑓𝑚𝑖𝑛
𝑚 can be set as the population maximum

and minimum values of the m-th objective function.

The bigger the value of the crowding distance the better the solution. The parent
population is generated in step 6 by adding individuals with the best ranks and then using
the crowding distance to prioritize individuals belonging to the same front. The solutions
of a front 𝑑 = 1, ..., 𝐷 are added to the parent population 𝑃 , while 𝑛𝐼 > |𝑃 |+ |𝐹𝑑|. When
𝑛𝐼 < |𝑃 |+ |𝐹𝑑|, the solutions of the 𝑑− 𝑡ℎ front are included until the total number of
individuals 𝑛𝐼 is fulfilled. In this situation, individuals from 𝐹𝑑 are prioritized according
to their crowding distance. Thus, individuals with the worst crowding distance values will
be discarded.

In step 7 the mating pool is built by using the binary tournament selection operator. In
Deb et al. (2002), this operator was modified to consider the crowding distance operator,
so that individuals with the same front rank could be prioritized. After that, in steps 8
and 9, the offspring population is obtained using crossover and mutation operators with
probabilities 𝑝𝑐 and 𝑝𝑚 respectively. Finally, NSGA-II uses elitism, which requires the
concatenation of the parent and offspring populations (step 10), and thus preserves good
parents along the evolutionary process.

2.3 DRSA

Ordinal classification or sorting refers to allocating a set of alternatives in pre-defined
classes that are ordered in terms of preferences (ROY, 1996). Several sorting methods have
been used in the last decades, and new proposals and studies continue to emerge in the
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literature (FERNANDEZ; FIGUEIRA; NAVARRO, 2021). Ordered classes can be characterized
by rules when adopting the DRSA method (GRECO; MATARAZZO; SLOWINSKI, 2001),
which is an evolution of the classical rough set approach proposed by Pawlak (PAWLAK,
1982). Thus, in DRSA, the decision-maker’s preferences can be represented by a set of
”𝐼𝑓..., 𝑡ℎ𝑒𝑛...” rules 𝑅.

Let 𝐷𝑇 be a data table, which is a tuple < 𝑈,𝑄, 𝑉, 𝑓 >, where 𝑈 is a finite set of
objects or decision examples, 𝑄 = 𝐶 ∪ 𝐷 , where C is the finite set of the conditional
attributes, and D is a decision attribute (here we consider a total of |𝐷| classes or groups),
𝑉𝑞 is the value set of attribute 𝑞, 𝑉 = ∪𝑞∈𝑄𝑉𝑞, and the information function 𝑓(𝑥, 𝑞) is
defined as 𝑓 : 𝑈 × 𝑄 → 𝑉 , such that 𝑓(𝑥, 𝑞) ∈ 𝑉𝑞 for each 𝑞 ∈ 𝑄, 𝑥 ∈ 𝑈 (GRECO;

MATARAZZO; SLOWINSKI, 2001; SLOWINSKI; GRECO; MATARAZZO, 2012).
It is possible to identify inconsistencies in classifications in 𝑈 exploring dominance

information. The information granules 𝐷+
𝑝 (𝑥) = {𝑦 ∈ 𝑈 : 𝑦𝐷𝑝𝑥} and 𝐷−

𝑝 (𝑥) = {𝑦 ∈
𝑈 : 𝑥𝐷𝑝𝑦} are outranking binary relations extracted from the data table, where the first
information granule contains all the objects that dominate 𝑥 with respect to a set 𝑃 ⊆ 𝐶

of attributes and the second contains all the objects that are dominated by 𝑥 with respect
to a set 𝑃 ⊆ 𝐶 of attributes (GRECO; MATARAZZO; SLOWINSKI, 2001; SLOWINSKI; GRECO;

MATARAZZO, 2012).
After computing the information granules, two partitions of U, 𝐶𝑙≥𝑡 = ∪𝑠≥𝑡𝐶𝑙𝑠 and

𝐶𝑙≤𝑡 = ∪𝑠≤𝑡𝐶𝑙𝑠, can be used to detect inconsistencies. Considering that the preference
direction grows from class 1 to class |𝐷|, 𝐶𝑙≥𝑡 is an upward union of classes, containing
elements that belong to a class 𝑡 or better, and 𝐶𝑙≤𝑡 is a downward union of classes, which
contains elements belonging to a class 𝑡 or worse. Inconsistencies occur when 𝑥 ∈ 𝐶𝑙≥𝑡 and
𝐷+

𝑝 (𝑥) ∩ 𝐶𝑙≤𝑡−1 ̸= ∅ or 𝑥 /∈ 𝐶𝑙≥𝑡 and 𝐷−
𝑝 (𝑥) ∩ 𝐶𝑙≥𝑡 ≠ ∅. Given that there may be ambiguity

relative to the inclusion of 𝑥 in some classes, we need to consider a way of representing this
ambiguity. To represent certain knowledge about an object 𝑥, lower approximations are used,
𝑃*(𝐶𝑙≥𝑡 ) = {𝑥 ∈ 𝑈 : 𝐷+

𝑝 (𝑥) ⊆ 𝐶𝑙≥𝑡 } and 𝑃*(𝐶𝑙≤𝑡 ) = {𝑥 ∈ 𝑈 : 𝐷−
𝑝 (𝑥) ⊆ 𝐶𝑙≤𝑡 }. To represent

possible knowledge, upper approximations are used, 𝑃 *(𝐶𝑙≥𝑡 ) = {𝑥 ∈ 𝑈 : 𝐷−
𝑝 (𝑥)∩𝐶𝑙≥𝑡 ̸= ∅}

and 𝑃 *(𝐶𝑙≤𝑡 ) = {𝑥 ∈ 𝑈 : 𝐷+
𝑝 (𝑥)∩𝐶𝑙≤𝑡 ̸= ∅}. Boundaries represent the ambiguous knowledge

concerning 𝑥,𝐵𝑛𝑝(𝐶𝑙≥𝑡 ) = 𝑃 *(𝐶𝑙≥𝑡 )−𝑃*(𝐶𝑙≥𝑡 ) and𝐵𝑛𝑝(𝐶𝑙≤𝑡 ) = 𝑃 *(𝐶𝑙≤𝑡 )−𝑃*(𝐶𝑙≤𝑡 )(GRECO;

MATARAZZO; SLOWINSKI, 2001; SLOWINSKI; GRECO; MATARAZZO, 2012).
It is possible to transform the patterns of the classification of an object into a language

that the DM can understand more easily by using a rule induction algorithm, which will
contribute to the decision-making process. At the end of the induction process, rules of the
type "If . . . , Then" will be obtained, where the first part refers to the condition criteria
and thus describe decision examples in terms of elements of C, and the second part is the
conclusion about the object, which describes decision examples in terms of elements of
D (GRECO; MATARAZZO; SLOWINSKI, 2001). The general structure of a decision rule is
shown below.
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IF 𝑎𝑢,1 satisfies ℎ𝑟,1 and 𝑎𝑢,2 satisfies ℎ𝑟,2 and ... and 𝑎𝑢,𝑐 satisfies ℎ𝑟,𝑐; THEN 𝑢 belongs
to 𝑑𝑟.

where 𝑢 ∈ 𝑈 , and ℎ𝑟,𝑐 is the 𝑐-th criteria threshold , where 𝑐 ≤ |𝐶|, for rule 𝑟 ∈ 𝑅,
which defines the conditional part of the rule, and 𝑑𝑟 ∈ 𝐷, defines the decision part for
rule 𝑟. Certain rules will learn thresholds from objects that are associated with certain
knowledge 𝑃*(𝐶𝑙≥𝑡 ) and 𝑃*(𝐶𝑙≤𝑡 ). Possible rules will learn thresholds from objects that are
associated with possible knowledge 𝑃 *(𝐶𝑙≥𝑡 ) and 𝑃 *(𝐶𝑙≤𝑡 ). To understand the types of
rules in more detail, data reduction, preference discovery, rule induction algorithms, and
classification issues, please refer to (GRECO; MATARAZZO; SLOWINSKI, 2001; SLOWINSKI;

GRECO; MATARAZZO, 2012; BŁASZCZYŃSKI; GRECO; SŁOWIŃSKI, 2007; BŁASZCZYŃSKI;

SŁOWIŃSKI; SZELĄG, 2011; BŁASZCZYŃSKI; GRECO; SŁOWIŃSKI, 2012).
In this study, the software jMAF (BŁASZCZYŃSKI et al., 2013) was used to induce rules.

This software induces two types of rules: certain and possible. The set of rules induced by
jMAF is minimal and complete. Therefore, the elimination of any rule belonging to the
induced set implies that some consistent decision examples from the universe 𝑈 will not
be reallocated to their original classes, or some inconsistent decision examples will not be
allocated to clusters of classes that reflect this inconsistency.

2.3.1 IMO-DRSA

Rules can be used as preferences and be exploited in an interactive multiobjective opti-
mization approach. An interactive procedure is composed of two alternating phases: the
computation phase and the dialogue phase. In the computation phase, a sample of feasible
solutions is calculated and presented to the DM. Then, in the dialogue phase, the DM has
two options: to discriminate between good and bad solutions or to choose the single most
preferable solution. When a single solution is chosen, the procedure stops. Otherwise, a
preference model is extracted from the DM evaluation of the proposed solutions.

The preference model can be exploited to a new sample of feasible solutions in the next
computation phase, to better fit the DM’s preferences. The decision rules stemming from
DRSA has some advantages. The first is that in IMO procedures the preference model
appearing between the dialogue stage and the computation phase is implicit, whereas
the decision rules can be explicitly shown to the DM for his/her approval. Also, the
preference model should be easily understandable, which is also fulfilled by decision rules.
The IMO-DRSA procedure, proposed in Greco, Matarazzo & Słowiński (2008), is shown
in 5.

In the first step, an initial set of feasible solutions is generated by optimizing the
problem. Then, a representative set of non-dominated solutions is presented to the DM. If
the DM is satisfied with a unique solution, then this is the compromise solution and the
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Figure 5 – IMO-DRSA procedure

procedure stops. Otherwise, the DM is asked to indicate a subset of ’good’ solutions in
the sample. A data table 𝐷𝑇 is constructed with the information provided by the DM
concerning ’good’ solutions, and the remaining solutions are classified as ’other’. Next,
DRSA is applied to 𝐷𝑇 and a set of rules 𝑅 is induced. Then, 𝑅 is presented to the DM
and he/she is asked to select the rule he/she judges to be the most important.

We start the procedure again. Now, we can use the preference information to find more
interesting solutions for the DM. The rule selected by the DM is used as a constraint to
the problem to guide the optimization algorithm to find a region of feasible solutions that
are more interesting for the DM. Then we start the dialogue phase again until the single
most preferable solution is found.

2.4 PORTFOLIO OPTIMIZATION

Traditionally, the problem of portfolio selection, which possess a central role in financial
management, involves the computation of proportions of capital that must be allocated in
a set of available assets with the objective of maximizing return and minimizing risk of an
investment portfolio. For this problem, the rule of expected return-variance or E-V rule
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provides efficient and, often, diversified portfolios (MARKOWITZ, 1952). Given that 𝑝𝑖𝑡 is
the price of asset 𝑖 a time 𝑡, where 𝑡 ∈ {1, ..., 𝑇}, the return of asset 𝑖 after 𝑑 periods is
defined as 𝑟𝑖𝑡 = 𝑝𝑖𝑡−𝑝𝑖(𝑡−𝑑)

𝑝𝑖(𝑡−𝑑)
.

The log-return formula can substitute the simple return formula in the context of
the Markowitz framework because of the desirable statistical properties of log-returns.
Unlike simple returns, log-returns are time-additive, which simplifies the calculation of
multi-period returns. Additionally, log-returns are more robust when dealing with highly
volatile assets because they do not permit negative prices, ensuring that the logarithm is
always defined.

The log-return for an asset 𝑖 after 𝑑 periods, denoted as 𝑟log
𝑖𝑡 , is defined as:

𝑟log
𝑖𝑡 = log

(︃
𝑝𝑖𝑡

𝑝𝑖(𝑡−𝑑)

)︃
This formula is preferred because it approximates the continuously compounded rate of

return, which aligns better with the assumptions of normality in asset returns, a common
assumption in financial models like the E-V rule.

Portfolio selection problems that give optimal utility based on expected return and
variance, as proposed by Markowitz (1952), are classified as Mean-Variance Optimization
(MVO), a case of quadratic optimization problem (KOLM; TUETUENCUE; FABOZZI, 2014).
The risk aversion formulation of the classical MVO is presented below.

minimize 𝑤𝑇 Ω𝑤 − 𝜆𝑤𝑇𝜇 (2.14)

subject to
𝑁∑︁

𝑖=1
𝑤𝑖 = 1 (2.15)

𝑤𝑖 ≥ 0 (2.16)

Equation (2.14) is the objective function and it expresses preferences of the DM relative
to risk and return. 𝜆 is the risk aversion factor, which reflects the investor’s objectives,
ranging from 0 (risk-averse investor) to 10 (highly tilted toward higher risk) (FABOZZI et

al., 2007), 𝑤𝑖 represents stock’s 𝑖 proportion in the portfolio, Ω is the covariance matrix
of the returns of assets composing the index, 𝜇𝑖 is the expected return of stock 𝑖 and 𝑁

is the number of assets in the universe. (2.15) is the budget constraint. In this model,
non-dominated solutions are generated and a set of portfolios, named efficient frontier, is
formed. If one chooses a solution contained in the set of non-dominated portfolios, one
cannot change to another solution contained in this set without deteriorating one of the
objectives (BEASLEY, 2013; RESENDE; RIBEIRO, 2016) (return or risk). Then, if one wants
to improve return, it must deteriorate risk and vice-versa. A generic plot of this frontier
is illustrated in Figure 6, where the horizontal and vertical axis represents the standard
deviation and the expected return of the portfolio, respectively.
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Figure 6 – The efficient frontier

Figure 7 – Price data for 6 stocks

Investors’ attitude towards risk and return is used as an indicator for the choice of a
portfolio belonging to this frontier. If the investor is more tilted to high return, then it
may select an asset that produces the highest expected return possible, otherwise, it may
diversify his/her portfolio to mitigate risk or, if there is full risk aversion, choose an asset
that contains the minimum standard deviation possible (FABOZZI et al., 2007).

Consider an example of price data for six stocks presented in Figure 7. The associated
return data, shown in Figure 9, is used as input for the Markowitz optimization model.
After optimizing the markwotiz model, it is possible to obtain a frontier of non-dominated
portfolios, as shown in Figure.

In this example, 500 random portfolios were generated to demonstrate the effect of
diversification in a universe of 6 assets. The random portfolios are diversified and therefore
have less risk compared to Apple and Chevron. It is evident that there are portfolios a
rational decision-maker would never choose, such as Chevron’s, because there are portfolios
that offer higher returns at a lower level of risk.
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Figure 8 – Return data for 6 stocks

Figure 9 – Efficient Frontier generated from the data of the 6 stocks

2.4.1 Practical Portfolio Optimization

It is possible to modify or extend this classical framework, incorporating, for example,
additional criteria or constraints, such that it becomes more realistic, reflecting the
context and objectives of the financial agent, and also to obtain a more diversified
portfolio. Extensions inserted in the model can include lot sizing, transaction costs,
portfolio cardinality, various types of constraints reflecting specific characteristics of the
investment, financial agent or country involved; alternative risk measures or modeling and
quantification of the impact of wrong estimates of risk and return (FABOZZI et al., 2007;
KOLM; TUETUENCUE; FABOZZI, 2014; BEASLEY, 2013).

2.4.1.1 Alternative risk measures

The advances of research on portfolio management include the development of new risk
measures. Artzner et al. (1999) defined properties that a measure of risk 𝜌 must satisfy to
be considered coherent:

1. Monotonicity: Consider two asset returns 𝑋 and 𝑌 , which are random variables. If
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𝑋 ≥ 𝑌 , then 𝜌(𝑋) ≤ 𝜌(𝑌 ). Fabozzi et al. (2007) shows another way of seeing this
property. If 𝑋 ≥ 0, then 𝜌(𝑋) ≤ 0. In other words, if there are only positive returns,
then the risk should be non-positive.

2. Subadditivity: Merging assets in a portfolio do not create extra risk. 𝜌(𝑋 + 𝑌 ) ≤
𝜌(𝑋) + 𝜌(𝑌 )

3. Positive homogeneity: For any positive real number 𝜆, 𝜌(𝜆𝑋) = 𝜆𝜌(𝑋). Portfolio size
influences risk. In other words, large portfolio positions implies that their required
liquidation time will also be large.

4. Translational invariance: For any real number 𝛼, 𝜌(𝑋 + 𝛼𝑟) = 𝜌(𝑋)− 𝛼. The main
function of a risk measure is to rank risks. Therefore, inclusion of cash or any risk
free asset does not contribute to portfolio risk,

Fabozzi et al. (2007) categorizes risk measures in two classes: Dispersion and Downside.
Dispersion measures are measures of uncertainty that equally penalize overperformance
and underperformance relative to the mean. Some types of these measures are listed below:

• Variance of return: Incorporated in the works of Markowitz (1952) and one of the
most known dispersion measures.

𝑉 𝐴𝑅(𝑅𝑝) = 𝐸

[︃(︂ 𝑁∑︁
𝑖=1

𝑤𝑖𝑅𝑖 − 𝐸
[︂ 𝑁∑︁

𝑖=1
𝑤𝑖𝑅𝑖

]︂)︂2
]︃

(2.17)

• Mean Absolute Deviation (MAD): Introduced by KONNO & YAMAZAKI
(1991). Uses absolute deviations in place of squared deviations. It is a dispersion
measure based on the absolute deviations from the mean. The resulting optimization
problem is linear, which is more solver-friendly than the MVO problem.

𝑀𝐴𝐷(𝑅𝑝) = 𝐸

⎡⎣⃒⃒⃒⃒⃒
𝑁∑︁

𝑖=1
𝑤𝑖𝑅𝑖 −

𝑁∑︁
𝑖=1

𝑤𝑖𝜇𝑖

⃒⃒⃒⃒
⃒
⎤⎦ (2.18)
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The resulting optimization problem is:

minimize
∑︀𝑇

𝑡=1 𝑦𝑡

𝑇
(2.19)

subject to 𝑦𝑡 +
𝑁∑︁

𝑖=1
𝑎𝑖𝑡𝑤𝑖 ≥ 0 (2.20)

𝑦𝑡 −
𝑁∑︁

𝑖=1
𝑎𝑖𝑡𝑤𝑖 ≥ 0 (2.21)

𝑁∑︁
𝑖=1

𝑟𝑖𝑤𝑖 ≥ 𝜌 (2.22)

𝑁∑︁
𝑖=1

𝑤𝑖 = 1 (2.23)

𝑤𝑖 ≥ 0 (2.24)

Where 𝑟𝑖𝑡 is the realization of the random variable 𝑅𝑖 in period 𝑡 ∈ (1, ..., 𝑇 ),
𝑟𝑖 = 𝐸[𝑅𝑖] and 𝑎𝑖𝑡 = 𝑟𝑖𝑡 − 𝑟𝑖.

A model that uses a downside risk measure aims to maximize the probability of
satisfying a certain return threshold.

• Semi-Variance: Variance equally penalizes overperformance and underperformance.
Markowitz (1959) presented this measure as an increment to its original variance
measure of risk.

• Value-at-Risk (VaR): Measures the predicted maximum loss at a specified proba-
bility threshold 1− 𝛼 (eg. 𝛼 = 5% ).

• Conditional Value-at-Risk (CVaR): Rockafellar & Uryasev (2000) proposed
this measure in order to repair VaR deficiencies. This measure is a coherent risk
measure, as it satisfies all the properties established by Artzner et al. (1999). Also,
its optimization model is linear and can be solved very efficiently by optimization
software.

2.4.1.2 Practical constraints

Depending on the institution or investor context, some constraints can be incorporated
to the model in order to reflect practical issues. The optimization output may contain a
few large positions and many small positions. This is undesirable due to extra transaction
costs (FABOZZI et al., 2007). In this case, threshold/holding/floor-ceiling constraints can be
included in the model:

𝜖𝑍𝑖 ≤ 𝑤𝑖 ≤ 𝜓𝑖𝑍𝑖 for each 𝑖 ∈ 1, ..., 𝑁 (2.25)
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Where 𝑍𝑖 are binary variables. 𝑍𝑖 = 1 if asset 𝑖 is included in the portfolio and 𝑍𝑖 = 0
if 𝑖 is not included. Equation (2.25) ensures that if an asset 𝑖 belongs to the portfolio, then
its proportion 𝑤𝑖 must lie between 𝜖𝑖 and 𝜓𝑖, otherwise, if 𝑖 is not contained in the portfolio,
𝑤𝑖 = 0. Investors might want to restrict their portfolio size, for example to build an index
tracking portfolio and keep transactions cost low (FABOZZI et al., 2007; SANT’ANNA et al.,
2017).

𝑁∑︁
𝑖=1

𝑍𝑖 = 𝐾 (2.26)

Equation (2.26) restrict the number of assets contained in the portfolio to 𝐾. Those
constraints generate discontinuous efficient frontiers (CHANG et al., 2000). This is because
some non-dominated portfolios of the original continuous efficient frontier would not be
considered by any rational investor, as Fabozzi et al. (2007) exemplifies, there can be
portfolios with less risk and greater returns. Thus, from incorporating these new constraints
to MVO, a Cardinality Constrained Portfolio Optimization (CCPO) model is assembled
and shown below.

minimize 𝑤𝑇 Ω𝑤 − 𝜆𝜇𝑇𝑤 (2.27)

subject to 𝜖𝑍𝑖 ≤ 𝑤𝑖 ≤ 𝜎𝑖𝑍𝑖 for each 𝑖 ∈ 1, ..., 𝑁 (2.28)
𝑁∑︁

𝑖=1
𝑍𝑖 = 𝐾 (2.29)

𝑁∑︁
𝑖=1

𝑤𝑖 = 1 (2.30)

𝑍𝑖 ∈ {0, 1} (2.31)

Other practical constraints can be incorporated into this model, i.e. class/sector, lot
size, and transaction costs constraints.

2.4.1.3 Active and Passive strategies

Fund management and portfolio can be classified in two broad approaches: (BEASLEY;

MEADE; CHANG, 2003; FABOZZI et al., 2007; JORION, 2003; ROLL, 1992):

• Active management: Markets are not fully efficient and management teams can
work to make the portfolio achieve better performance than the market, using
available information and their experience. Incurs high fixed costs, paid to the
managers, and high transaction costs, because of frequent trading.
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• Passive management: It is assumed that markets are efficient, so that market
prices fully reflect risk and return. Incurs in lower fixed costs and lower transaction
costs, but, if the market falls, the return falls.

Those two strategies are pure, but mixed strategies are possible too. This is the case
when a portion is invested passively and the remainder is invested actively. This alternative
can be illustrated with a model that aims to minimize Tracking Error Variance (TEV)
conditional to a certain excess return target (ROLL, 1992):

minimize 𝑥𝑇 Ω𝑥 (2.32)

subject to 𝜇𝑇𝑥 = 𝐺 (2.33)
𝑁∑︁

𝑖=1
𝑥𝑖 = 0 (2.34)

(2.35)

Where x = w𝑝 − w𝑏 is a vector representing the difference between the managed
portfolio and the benchmark proportions. 𝐺 is the manager’s expected performance
relative to the benchmark.

2.5 INDEX TRACKING PROBLEMS

A passively managed fund is known as index fund/tracker fund. A manager that adopts
this strategy could buy all the stocks of a given stock index and reproduce it perfectly
(full replication), but this strategy has some disadvantages (BEASLEY; MEADE; CHANG,
2003; CANAKGOZ; BEASLEY, 2009; SANT’ANNA et al., 2017):

• The composition of the index is revised periodically. Therefore, the holdings of all
stocks will change periodically to reflect the new composition’s weights of the index.

• Transaction costs associated with the index’s stocks cannot be limited since it is
necessary to trade all stocks to reduce tracking error periodically.

The index tracking problem is concerned with index replication, but limiting transaction
costs by using fewer stocks. Decisions concerning the maintenance of the tracking portfolio
are enclosed in a decision support system. Important components of this system are
(GAIVORONSKI; KRYLOV; WIJST, 2005):

• Benchmark or Index to be tracked

• Risk measure relative to deviations from the index (tracking error)
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• Rebalancing strategies to reflect price changes in the market in portfolio weights

• Specify trade-off: maximum portfolio size and maximum tracking error allowed

• Decision rules regarding the cash flow generated by the portfolio (i.e. dividends)

• Decision rules regarding changes in the benchmark composition (i.e. merges)

There is a variety of country/world indexes to be tracked and these are provided by
firms such as S&P (2024) and B3 (2024), that compute indexes’ theoretical weights using
their own methodology. Some risk measures relative to the benchmark, which are going to
be identified as TE, are presented below (GAIVORONSKI; KRYLOV; WIJST, 2005; RUDOLF;

WOLTER; ZIMMERMANN, 1999):

• MAD relative to an index: Absolute deviations between the benchmark and
portfolio returns are minimized. Implies in a linear model.

𝑇𝐸 = 1
𝑇

𝑇∑︁
𝑡=1

⃒⃒⃒⃒
⃒𝑅𝐼

𝑡 −
𝑁∑︁

𝑖=1
𝑟𝑖𝑡𝑤𝑖

⃒⃒⃒⃒
⃒ (2.36)

Where 𝑅𝐼
𝑡 is the benchmark return in period 𝑡 ∈ {1, ..., 𝑇}.

• Mean Squared Error (MSE): Quadratic deviations between the benchmark and
portfolio returns are minimized.

𝑇𝐸 = 𝐸

[︃(︂
𝑅𝐼

𝑡 −
𝑁∑︁

𝑖=1
𝑟𝑖𝑡𝑤𝑖

)︂2
]︃

(2.37)

• TEV: Its formulation is presented in Section 2.4.1.3. The associated formulation is
a quadratic optimization problem and it requires the benchmark weights.

𝑇𝐸 = (𝑤𝑝 − 𝑤𝑏)𝑇 Ω(𝑤𝑝 − 𝑤𝑏) (2.38)

𝑤𝑝 is a vector that represents the portfolio weights to be optimized and w𝑏 is a
vector representing the benchmark proportions

• VaR relative to an index: Similar to VaR measure. It is the largest value 𝑤 by
which the portfolio return can miss the index target in 1− 𝛼 fraction of cases.

𝑇𝐸 = 𝑉 𝑎𝑅𝐼𝛼 = inf
𝜑
{𝜑|𝑃 (𝜇𝑇𝑤 ≥ 𝑅𝐼

𝑡 − 𝜑) ≥ 1− 𝛼} (2.39)

• CVaR relative to an index: It shows the mean deviation relative to the benchmark
in the worst 𝛼 cases.

𝑇𝐸 = 𝐸
(︂
𝑅𝐼

𝑡 − 𝜇𝑇𝑤
⃒⃒⃒
𝜇𝑇𝑤 < 𝑅𝐼

𝑡 − 𝑉 𝑎𝑅𝐼𝛼

)︂
(2.40)
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Even though constraint (2.26) is obligatory for this kind of problem, these risk measures
can be combined with other practical constraints, such as those presented in Section 2.4.1.2,
to reflect the context in which the tracking portfolio of an investor/institution is applied.

A systematic literature review on index tracking, spanning the last 30 years, was
conducted and published during the development of this thesis (SILVA; FILHO, 2023). This
review highlighted the critical role of the index tracking approach in portfolio optimization
and the growing adoption of advanced techniques in recent years.

The objective of this systematic review was to develop an investigation concerning
the current solution approaches for the index tracking problem using a set of research
questions. The methodology consisted of searching for articles and conference papers
written in the English language related to this class of portfolio selection problems. The
research questions are presented in Table 1

RQ Description

#1 Are index tracking solution methods more relevant to journals focusing
on operations research and computer science?

#2 Is there a concentration of heuristic methods applied in a specific
quantitative modelling framework?

#3 Has there been a growth in the number of non-heuristic methods applied to
the index tracking problem?

#4 Has there been a growth in the number of heuristics/metaheuristics applied
to the index tracking problem?

#5 Are heuristic approaches more used than non-heuristic approaches for
index tracking problems?

#6 Do heuristic approaches have more cite impact than non-heuristic
approaches for index tracking problems?

#7 Is there a prevalence of using a specific heuristic/metaheuristic
in index tracking problems?

#8 Is there an integration between heuristic and general-purpose solvers?

#9 Is there a prevalence of using specific evaluation metrics for heuristic
approaches?

#10 Is there a prevalence of using a specific solution method to
compare with heuristic approaches?

#11 Is there a prevalence of solving for a specific tracking error objective
function when using heuristic approaches?

#12 Is there a prevalence of solving for specific practical constraints when
using heuristic approaches?

#13 Which data sources were most adopted in heuristic approaches?

Table 1 – Research questions for index tracking systematic literature review

The set of research questions was divided into two parts. The first part refers to general
solution approaches for the index tracking problem and comparison among two groups:
heuristic and non-heuristic methods. The production of both approaches grew in the last
three decades, also, non-heuristic methods were more adopted than their counterparts. On
the other hand, heuristics obtained the best performance when citation impact is taken
into consideration, considering the metrics adopted in this work.
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The second part refers to a specific analysis of heuristic/metaheuristic approaches
applications developed for this problem. The first part of this analysis consisted of investi-
gating the main heuristics, if there were hybridized heuristics/metaheuristics, comparison
against other methods, and the associated evaluation metrics. Next, the model structure
of the models solved by approximated methods was studied, taking into consideration
objective functions, constraints, and data used in the problem. Table 2 summarizes the
answers to each research question.

Researchers may refer to the published systematic review (SILVA; FILHO, 2023) for
insights into advancements in index tracking problems, particularly when employing
approximate solution methods. The review also provides detailed information on state-of-
the-art model structures and commonly used algorithms, offering valuable guidance for
studies focused on model and algorithm development within this domain.

RQ Findings

#1 Index tracking solution methods are more relevant to journals focusing
on operations research and computer science

#2 The vast amount of the developed heuristics/metaheuristics solutions
were applied to mathematical programming formulations more often

#3 There has been a growth in the number of non-heuristic methods applied to
the index tracking problem

#4 There has been a growth in the number of heuristics/metaheuristics applied
to the index tracking problem

#5 Heuristic approaches are not more used than non-heuristic approaches for
index tracking problems

#6 Heuristic approaches have more cite impact than non-heuristic
approaches for index tracking problems

#7 There is a prevalence of using Differential Evolution and Genetic algorithms
in index tracking problems

#8 Solvers are integrated with heuristics. A total of 11 hybridized
heuristics were found

#9 There is a prevalence of using specific evaluation metrics for heuristic
approaches. The most used metrics were RMSE and MSE

#10 Yes heuristics are more compared against other heuristics
or the CPLEX solver

#11
There is a prevalence of solving for a specific tracking error objective

function when using heuristic approaches. A good part of the
works adopted RMSE and MSE

#12 No. There is no prevalence of solving for specific practical constraints when
using heuristic approaches

#13 The most used databases were OR-library and datastream

Table 2 – Summary of the answers to each research question of the index tracking system-
atic literature review

This thesis makes a significant contribution by introducing uncertainty into the tradi-
tionally deterministic index tracking model through a stochastic programming approach.
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This approach leverages synthetic market data and employs heuristics for problem-solving
(Chapter 3). Furthermore, the thesis integrates investor preferences into the model, enabling
the identification of tracking portfolios customized for various investor profiles (Chapters 4
and 5). This is achieved via a simulated interaction process that not only extracts investor
preferences effectively but also ensures their satisfaction over time through heuristic-based
adjustments.

2.6 CHAPTER CONCLUSION

In this chapter, some optimization and computational intelligence methods that can be
applied to portfolio optimization were presented. An introduction to index tracking was
provided, along with a discussion of the findings from a published systematic review on
the topic. These methods were presented to give a base knowledge of the algorithms and
methods developed in this work that will be presented in the next chapters.
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3 AN INDEX TRACKING APPROACH BASED ON MULTIPLE MARKET SCE-
NARIOS THROUGH GENERATIVE ADVERSARIAL NETWORKS

Metaheuristics are still efficient for the cardinality-constrained optimization problem since
portfolios with a cardinality of at least five assets can’t be solved by exact algorithms
in a reasonable time (GRAHAM; CRAVEN, 2021). In index tracking, some approximate
approaches have been proposed to produce good solutions that operate considering two
partial allocation phases: selection of the subset of assets (asset selection) and weight/re-
source allocation.

Pure heuristics perform the two phases simultaneously (ANDRIOSOPOULOS et al., 2013;
ANDRIOSOPOULOS; NOMIKOS, 2014; GRISHINA; LUCAS; DATE, 2017; AMORIM; SILVA; FILHO,
2021; GARCIA; GUIJARRO; OLIVER, 2018) and when there are hybridizations with general-
purpose solvers, the first phase is performed by the heuristic approach and the second phase
is performed by the solver (STRUB; TRAUTMANN, 2019; SCOZZARI et al., 2013; SANT’ANNA

et al., 2017; RUIZ-TORRUBIANO; SUAREZ, 2009; GUASTAROBA; SPERANZA, 2012; WANG

et al., 2012). The advantage of pure heuristics is that they can deal with very complex
nonlinear and nonconvex problems. The advantage of hybridized heuristics is that there is
no need for solution repairing and constraint handling mechanisms, as these problems are
circumvented by the solver in the second phase.

Various metaheuristic algorithms have been proposed for addressing the index tracking
problem. Some examples include Kernel Search (GUASTAROBA; SPERANZA, 2012), Greedy
Randomized Adaptive Search Procedure (GRASP) (SILVA; SILVA; FILHO, 2022a), Differential
Evolution (DE) (SCOZZARI et al., 2013), and quantum heuristics (FERNáNDEZ-LORENZO;

PORRAS; GARCíA-RIPOLL, 2021). Although there are many different approaches available,
a majority of the pure and hybridized metaheuristics proposed for the index tracking
problem within the mathematical programming framework in recent years are based on
Genetic Algorithm (GA)s.

GAs have been proposed by Holland (1975) and since then, they have been widely
studied and applied. Inspired by the principles of natural selection and genetics, GAs are
a class of algorithms that mimic the process of natural evolution to solve optimization
problems. Due to the possibility of parallelizing the optimization process and their ability
to handle complex non-linear problems without rigid mathematical assumptions or extra
information like the gradient or Hessian matrix, GAs have found applications in various
fields such as engineering, management, and computer science (OMIDVAR; LI; YAO, 2022;
KATOCH; CHAUHAN; KUMAR, 2021; YU et al., 2022). Recently, GAs have been used in
different applications, such as the optimization of complex production and logistics systems
(Ahmed Bacha; BENATCHBA; Benbouzid-Si Tayeb, 2022; ARKHIPOV et al., 2020), to fine-tune
epidemiological models (GHOSH; BHATTACHARYA, 2020), and feature selection in machine
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learning (ZHOU; HUA, 2022; THAKKAR; CHAUDHARI, 2022).
GAs are very important in the field of portfolio optimization. Streichert’s hybrid encod-

ing (Streichert; Ulmer; Zell, 2004) enabled the development of genetic operators, constraint
handling and repairing mechanisms that produce feasible financial portfolios when realistic
constraints are considered, contributing to the extensive adoption of GAs in single and
multiobjective portfolio optimization (ANAGNOSTOPOULOS; MAMANIS, 2010; ANAGNOS-

TOPOULOS; MAMANIS, 2011; SILVA; FILHO, 2021b; LIAGKOURAS; METAXIOTIS, 2018). To
the best of our knowledge, Beasley et al. (BEASLEY; MEADE; CHANG, 2003) were the first
to develop GAs for the index tracking problem with realistic constraints, providing a pure
GA based on fitness and unfitness metrics, to solve nonlinear tracking error and excess
return objective functions subject to cardinality, transaction costs and other constraints.

Andriosopoulos et al. (2013) compared the performance of pure GA and DE in building
portfolios to track physical shipping markets, where portfolios produced by GA obtained
the minimum tracking errors and maximum excess returns, irrespective of the rebalance
frequency. Grishina, Lucas & Date (2017) studied a behaviourally based model, namely the
prospect theory with index tracking model, and developed pure GA and DE approaches
to solve it, where the GA approach had an advantage in terms of CPU time. Ni & Wang
(2013) proposed a multiobjective index tracking model that considers accumulated excess
return, tracking error and tracking error volatility. The authors combined lexicographic
goal programming with a GA to obtain portfolios that minimize unwanted deviations from
the most important objectives’ targets.

Hybrid GAs have been proposed for index tracking, considering general-purpose solvers
to perform a more objective capital allocation. Ruiz-Torrubiano & Suarez (2009) intro-
duced a hybridized GA for a quadratic index tracking model, where the genetic operators
performed the asset selection phase and an exact quadratic solver performed the capital
allocation phase in the relaxed index tracking model. The hybrid approach can obtain
near-optimal solutions in an acceptable time depending on the size of the index and
cardinality of the portfolio.

Sant’Anna et al. (2017) proposed a hybrid heuristic incorporating kernel search (GUAS-

TAROBA; SPERANZA, 2012) ideas, where solutions are constructed considering information
about the weight of the assets in the exact solution of the relaxed index tracking model
with tracking error constraints, instead of random initialization. Based on Sant’Anna et al.
(2017), Anis, Costa & Kwon (2023) proposed an exploration–exploitation GA that uses
multiple restarts (exploration) and focuses on a promising feasible region (exploitation).
Strub & Trautmann (2019) proposed a hybrid GA to solve the index tracking model that
incorporated fund regulation constraints imposed by the European Union. The hybrid GA
obtained competitive performance relative to the pure GA and Gurobi.

Another direction in index tracking research concerns statistical approaches that aim
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to compute solutions with a good out-of-sample performance and that produce these
solutions faster than metaheuristics applied to index tracking problems based on the
mathematical programming framework. In the literature, these models are commonly
referred to as regularized or sparse index tracking models (BENIDIS; FENG; PALOMAR,
2018; GIUZIO; FERRARI; PATERLINI, 2016; TAS; TURKAN, 2018; WU; YANG, 2014; WU;

YANG; LIU, 2014; YANG; WU, 2016; ZHAO; LIAN, 2016; SANT’ANA; CALDEIRA; FILOMENA,
2020). In the general model, the squared errors between the index and portfolio returns
are minimized, generally considering budget and long-only constraints. The parameter
that controls the portfolio sparsity is associated with a penalty function that approximates
the exact cardinality constraint.

The real cardinality constraint is the ℓ0 norm, which counts the number of nonzero
elements in the portfolio. Since minimizing ℓ0 is NP-hard, it is more advantageous to
employ a continuous and differentiable function to approximate ℓ0. Some motivations for
the adoption of regression with regularization models are the overfit reduction and a more
efficient portfolio optimization process (XU; LU; XU, 2016; FASTRICH; PATERLINI; WINKER,
2014; GIUZIO, 2017; BENIDIS; FENG; PALOMAR, 2018), becoming advantageous for large
indexes, such as the S&P 500 and Russell 2000.

Convex approaches like Least Absolute Shrinkage and Selection Operator (LASSO)
that uses the ℓ1 penalty and elastic net that combines the ℓ1 and ℓ2 penalties do not
satisfy the nonnegative weights constraint. Then, it is possible to satisfy this constraint of
index tracking models with the nonnegative LASSO (WU; YANG; LIU, 2014; YANG; WU,
2016) and nonnegative Elastic net (WU; YANG, 2014; DING et al., 2023). Recently, Liu et al.
(2023) proposed the nonnegative group bridge, which utilizes the efficient group bridge
method to select inter-group and intra-group variables simultaneously.

Also, ℓ𝑞 norms, where 0 < 𝑞 < 1, can also be used to satisfy the nonnegativity constraint,
but are non-convex (BENIDIS; FENG; PALOMAR, 2018; GIUZIO, 2017; FASTRICH; PATERLINI;

WINKER, 2014). The ℓ𝑞 can control the diversity of the portfolio, where the lower the
upper bound on the ℓ𝑞 norm, the less diversified the portfolio (FASTRICH; PATERLINI;

WINKER, 2014). Other approaches have been proposed to incorporate more realistic aspects
into sparse index tracking models, such as uncertainty (GIUZIO; FERRARI; PATERLINI,
2016), transaction costs (SHU; SHI; TIAN, 2020) and quantile regression (ZHAO; LIAN, 2016).
Recently, a new way to control the number of assets in this approach was proposed in (LI

et al., 2022).
Recent research has been introducing deep learning in the index tracking context to

incorporate the learning of more complex relationships between the available assets and
the market index. Thus, this new perspective tries to provide even better solutions than
those provided by the previous frameworks studied in the literature.

To the best of our knowledge, the study of Heaton et al Heaton, Polson & Witte (2018)
was the first to propose an autoencoder-based index tracking framework. In their approach,
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a deep autoencoder was used to detect and select stocks most similar to the benchmark
by calculating the information loss during the encoding-decoding process. If a stock was
closer to its auto-encoded version, its communal information, or the information content
of this stock in the aggregate information of the universe of assets, was higher. The asset
selection phase was performed by ranking and choosing the 𝐾 stocks concerning their
communal information, where 𝐾 is the cardinality of the portfolios. In the second phase of
the partial allocation, the weights were defined based on the equal-weighted 1/𝐾 scheme.

Considering the Heaton, Polson & Witte (2018) framework, Ouyang et al Ouyang,
Zhang & Yan (2019) used deep autoencoders to perform the asset selection process, but
also proposed the inclusion of a deep neural network to perform resource allocation without
using information about the benchmark. The authors proposed a method to obtain a set
of weights connecting the input and output units directly and thus capturing nonlinear
relationships between the selected assets. Thus, this last network performs a dynamic
weight allocation driven by the selected stocks’ time series behaviour.

Kim & Kim (2020) used latent vectors from the deep autoencoder approach, inspired by
Ouyang, Zhang & Yan (2019), Heaton, Polson & Witte (2018), and stacked autoencoders,
to select the 𝐾 most similar assets. The similarity between an asset return vector and the
generated latent vector was computed according to either the correlation coefficient or the
mutual information criteria. The weights were defined based on the equal-weighted 1/𝐾
scheme.

Zhang et al. (2020) evaluated the performance of six different autoencoders on the
construction of tracking portfolios with different cardinalities 𝐾. The authors used au-
toencoders to select a subset of assets based on the extracted non-linear relationship
between the available assets and the market index. The weights were optimized through a
regularized quadratic programming index tracking model, considering long-only constraints.
The autoencoders performed better when used to build small cardinality portfolios (less
than 30 assets), where the best tracking portfolios were constructed with the sparse and
denoising autoencoders.

As was shown in some works on autoencoder-based index tracking (OUYANG; ZHANG;

YAN, 2019; HEATON; POLSON; WITTE, 2018; ZHANG et al., 2020), it is not beneficial to
include too many stocks contributing with the same information in an autoencoder-based
index tracking approach. It is recommended to combine the most-communal stocks and
the least-communal stocks to improve tracking performance.

Recent studies went in a different direction from the autoencoder-based index tracking.
They performed the asset selection phase by using a deep neural network architecture
with fixed noise (Deep NNF), in which the portfolio’s weights were the softmax layer
probabilities generated by the fixed noise (KWAK; SONG; LEE, 2021). The authors adopted
fixed noise as an input to prevent changes in the portfolio’s weights before the rebalancing
period as new data comes in during training. The authors used the Deep NNF model to
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perform both partial allocation steps (selecting assets and allocating weights). Zheng et al.
(2020) proposed a way to perform asset selection through a stochastic neural network. This
neural network learns the stochastic process that samples assets in a way that minimizes
the tracking error loss function through a first-order method, such as gradient descent.

There are advantages and disadvantages to using deep learning and sparse index
tracking approaches. The deep learning index tracking approach can learn complex non-
linear relationships between assets and the index but doesn’t have the model extension
capabilities of the mathematical programming models and sparse index tracking. Also,
concerning autoencoder-based index tracking, there is no consensus about the best way
to combine the assets based on their communal information. The sparse index tracking
approach aims to minimize overfitting and is useful for large indexes, a scenario that is
difficult for the mathematical programming approach. But, there are some limitations
relative to model extension and these approaches are associated with the challenge of
obtaining optimal penalty parameters (SHU; SHI; TIAN, 2020; LI et al., 2022).

Different from the deep learning and sparse index tracking approaches, the mathemati-
cal programming approach can handle a diversity of real-world constraints and objective
functions formulations for index tracking, such as convex Mixed-Integer non-linear program-
ming (MINLP) reformulation for the index tracking cointegration approach (SANT’ANA;

CALDEIRA; FILOMENA, 2020), liquidity requirements (VIEIRA et al., 2021), to approach
index tracking as a multiobjective problem (NI; WANG, 2013), and incorporate uncertainty
through scenario-based optimization (MELLO; BAYRAKSAN, 2014; DEB; ZHU; KULKARNI,
2018).

Overall, this work advances the state-of-the-art approximate approaches for mathe-
matical programming index tracking models and leverages the power of machine learning
in index tracking, providing valuable insights and practical implications for researchers,
practitioners, and investors in the field.

Concerning research on machine learning models applied in index tracking, this study
proposes an innovative approach to index tracking by combining GANs with index tracking
based on mathematical programming. This allows for a more realistic building process
of index tracking portfolios using deep learning relative to past works. The GANs can
capture complex nonlinear relationships between assets and the index and generate syn-
thetic market scenarios. Thus, it is possible to take advantage of the model extension
capabilities of mathematical programming and incorporate uncertainty using synthetic
scenarios generated by GANs to produce more robust portfolios.

Approximate approaches that solve the NP-hard mathematical programming index
tracking models are important to obtain good solutions in feasible time. The recently
proposed metaheuristics and GAs that optimize index tracking portfolios only deal with
models that consider historical data. This study proposes ways to incorporate multiple
synthetic market scenario information generated by GANs to incoporate uncertainty in
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single and multiobjective GAs that can address various realistic constraints in index
tracking models.

3.1 INDEX TRACKING PORTFOLIOS THROUGH GANS

3.1.1 Index tracking model with simulated data

The traditional index tracking approach uses real (historical) data from an in-sample
period of size 𝑏. The historical data is a matrix 𝑀𝑏 with dimensions 𝑁 × 𝑏, where 𝑁 is the
number of available assets to invest or the size of the universe of assets. By optimizing the
index tracking problem with the Real Data Model (RDM), formulated using Equations
(3.1)-(3.5), a subset of 𝐾 assets from the universe of assets is used to track a benchmark.

Min 𝑇𝐸 =
∑︀𝑏

𝑡=1[𝑅
𝑝
𝑡 −𝑅𝐼

𝑡 ]2
𝑏

(3.1)

subject to 𝜖𝑖𝑍𝑖 ≤ 𝑤𝑖 ≤ 𝜓𝑖𝑍𝑖, 𝑖 = 1, ..., 𝑁 (3.2)
𝑁∑︁

𝑖=1
𝑍𝑖 = 𝐾 (3.3)

𝑁∑︁
𝑖=1

𝑤𝑖 = 1 (3.4)

𝑍𝑖 ∈ {0, 1} (3.5)

where 𝑅𝑝
𝑡 = ∑︀𝑁

𝑖=1 𝑤𝑖𝑟𝑖𝑡 is the constructed portfolio return at time 𝑡. The objective function
(3.1) represents a mean squared error objective function to be minimized, 𝑡 = 1, 2, ..., 𝑏 is
the time index, 𝑖 = 1, 2, ..., 𝑁 is the asset index, 𝑅𝐼

𝑡 is the benchmark return at time t, 𝑟𝑖𝑡

is the stock 𝑖 return at time t, 𝑤𝑖 is the stock 𝑖 proportion in the portfolio, 𝑍𝑖 indicates
if stock 𝑖 is included in the portfolio or not, and 𝐾 = is the number of assets in the
portfolio. Constraint (3.2) guarantees that if 𝑖 belongs to the portfolio, then its proportion
𝑤𝑖 lies between 𝜖𝑖 and 𝜓𝑖, otherwise, if 𝑖 is not contained in the portfolio, 𝑤𝑖 = 0. Finally,
constraint (3.3) is the cardinality constraint that controls the size of the portfolio, and
(3.4) is the budget constraint.

Next, the index tracking approach that constructs portfolios through multiple scenarios
from simulated data is presented. A simulation 𝑀̂𝑓

𝑠, 𝑠 = 1, 2, ..., |𝑆|, which is a sample
from the distribution 𝑃 (𝑀̂𝑓 |𝑀𝑏), is a matrix with dimensions 𝑁 × 𝑓 , where 𝑓 is the size
of the out-of-sample period to be simulated. This shows that in our approach, simulations
depend on the most recent historical data that would be used in RDM. The set of sampled
simulations is defined as 𝑆. The elements of the matrix 𝑠 are the simulated returns 𝑟𝑖𝑡𝑠 ,
where 𝑡𝑠 = {1, 2, .., 𝑓} is the out-of-sample time index for all 𝑠. The return of the portfolio
at time 𝑡𝑠 is given by 𝑅𝑝

𝑡𝑠
= ∑︀𝑁

𝑖=1 𝑤𝑖𝑟𝑖𝑡𝑠 .



58

As was already known, index tracking models aim to minimize the mean squared
error portfolio return relative to the index. Thus, it is possible to use the simulations
𝑠 ∈ 𝑆 to estimate the distribution 𝑃 (𝜀|𝑀𝑏, 𝑤), where 𝜀 = 𝑇𝐸𝑠 =

∑︀𝑓

𝑡𝑠=1[𝑅𝑝
𝑡𝑠

−𝑅𝐼
𝑡𝑠

]2

𝑓
is the

tracking error of the constructed portfolio in a simulation 𝑠 ∼ 𝑃 (𝑀̂𝑓 |𝑀𝑏), and 𝑅𝐼
𝑡𝑠

is the
simulated benchmark return at time 𝑡𝑠. From 𝑃 (𝜀|𝑀𝑏, 𝑤), an objective function 𝜃(𝑀𝑏, 𝑤)
to be minimized can be considered in the index tracking problem through the Synthetic
Data Model (SDM), presented below.

Min 𝜃(𝑀𝑏, 𝑤) (3.6)

subject to 𝜖𝑖𝑍𝑖 ≤ 𝑤𝑖 ≤ 𝜓𝑖𝑍𝑖, 𝑖 = 1, ..., 𝑁 (3.7)
𝑁∑︁

𝑖=1
𝑍𝑖 = 𝐾 (3.8)

𝑁∑︁
𝑖=1

𝑤𝑖 = 1 (3.9)

𝑍𝑖 ∈ {0, 1} (3.10)

For instance, one could aim to minimize the mean tracking error of the simulations, by
making 𝜃(𝑀𝑏, 𝑤) = E𝑇 𝐸∼𝑃 (𝜀|𝑀𝑏,𝑤)[𝑇𝐸]. After constructing a portfolio using RDM or SDM
the realized tracking error is observed on the true out-of-sample data using Equation 3.11
presented below.

𝑇𝐸[𝜏,𝜏+𝑣−1] =
∑︀𝜏+𝑣−1

𝑡=𝜏 [𝑅𝑝
𝑡 −𝑅𝐼

𝑡 ]2
𝑣

(3.11)

where 𝜏 is the initial out-of-sample time index and 𝑣 is the rebalancing frequency or the
frequency in which SDM or RDM are optimized. The rebalancing frequency method allows
a fund to establish a discipline on how frequently it will reflect new market conditions as
time goes by. If the portfolio is rebalanced every 20 time units, then 𝑣 = 20. Given that
the test data is given by a matrix 𝑀𝑇 with dimensions 𝑁 × 𝑇 , the mean tracking error
over the test set can be computed from Equation 3.12. Of course that 𝑏 columns from 𝑀𝑇

will be used as the first block of historical data. Thus, the initial out-of-sample period is
𝜏 = 𝑏+ 1.

𝑇𝐸𝑀𝑇 (𝑣) =
∑︀𝛾−1

𝑘=0 𝑇𝐸
[𝜏+𝑘𝑣,𝜏+𝑘𝑣+𝑣−1]

𝛾
(3.12)

where 𝛾 = ⌈𝑇 −𝑏
𝑣
⌉ is the number of rebalances performed in the test set and 𝜏 +𝑘𝑣+𝑣−1 ≤

𝜏 + 𝑇 − 1. A ceiling function was used to extract 𝛾, since it is possible the ratio can result
in a real number rather than an integer, then it is necessary to limit the last time index.
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3.1.2 GAN architecture

The adopted GAN architecture is based on the WGAN-GP methodology (GULRAJANI et

al., 2017), and is presented in Figure 10. The WGAN-GP methodology was proposed by
Gulrajani et al. (2017) to improve WGANs. The purpose of WGAN-GP is to replace the
weight clipping, used in WGANs to enforce the 1-Lipschitz constraint. A discriminator may
not be forced to satisfy this constraint, but when it does, the GAN performs better than
the traditional GAN framework. Weight clipping may lead to exploding and vanishing
gradients, then the proposed alternative to deal with these problems is the gradient penalty
(GP). GP enforces the 1-Lipschitz continuity constraint by penalizing the critic’s output
gradient, such that this gradient is forced to have a unitary norm.

The generator (Figure 10a) considers the current market state to simulate a market
scenario 𝑀̂𝑓 , containing a horizon of size 𝑓 for 𝑌 assets. The benchmark data was also
included in the input, as shown in Figure 11, thus 𝑌 = 𝑁 + 1 is the total number of
assets and the index. The generator 𝐺 is constituted of two networks: conditioning and
simulator. The presence of a conditioning component in the generator makes the proposed
GAN a conditional GAN or cGAN (see (MIRZA; OSINDERO, 2014)), where the generator is
conditioned on some extra information. In our case, the extra information presented to
the generator is the compressed market state representation.

The conditioning network processes the historical data input 𝑀𝑏 through sequential
1D convolutional layers over the time dimension. Thus, the current state of the market
presented to 𝐺 will have its time-series data representation compressed sequentially. To
generate random scenarios, a latent vector 𝜆 ∼ 𝒩 (0, 1) with dimensions 2𝑌 × 1 and the
compressed market state are used as an input for the simulator to generate different outputs
every time a new simulation is requested. The latent vector represents random events that
could affect the market. The activation function of the conditioning and simulator hidden
layers was 𝑅𝑒𝐿𝑢. 𝑇𝑎𝑛ℎ was chosen as the activation function of the output layer of the
simulator because the output belongs to [−1, 1], which can better represent the returns’
domain.

The discriminator 𝐷 outputs a critic value for a real market realization 𝑀𝑓 or a
simulated market simulation 𝑀̂𝑓 . Thus, the discriminator receives as input either the
concatenation of 𝑀𝑏 and 𝑀𝑓 or the concatenation of 𝑀𝑏 and 𝑀̂𝑓 , where the representation
of this concatenation is sequentially compressed by convolutional layers. 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 was
adopted as the activation function of the discriminator hidden layers. This GAN model
will be used before each portfolio rebalancing to input simulation data into the SMD
model.
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(a) The generator network. This network is composed by the conditioning and simulator
networks.

(b) The discriminator network. This network returns a critic
value for a real or simulated (fake) market scenario.

Figure 10 – GAN architecture used in this work

Figure 11 – GAN input representation for index tracking
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3.1.3 Model evaluation

Although there are different quantitative scores to evaluate GANs that were trained to
generate images (JABBAR; LI; OMAR, 2021), a human can also complement the assessment
by visually inspecting the quality and diversity of the generated images (BORJI, 2019). It
is more difficult to visualize the simulation quality and diversity in a portfolio optimization
context, due to the visual pollution and noise associated with the superposition of multiple
time series for a large number of assets. To evaluate the simulations in this context one
may investigate if the simulations generated by a model 𝑚 are benefic for a solver (or
heuristic).

Along with the challenges associated with the direct evaluation of the quality of the
simulations generated by GANs in portfolio optimization due to the lack of a quantitative or
qualitative assessment method, other complications emerge due to the combinatorial nature
of this problem when cardinality constraints are included. It is hard to continuously monitor
the progress of the model during training since solving the index tracking optimization
problem in every epoch for a specific GAN model would make the training process
cumbersome and time-consuming as the universe of assets grow. Therefore, it is necessary
to find a way to sample GAN models before evaluating them.

This study proposes to train a GAN model for a fixed number of epochs 𝑒𝑀𝐴𝑋 and
evaluate its performance from equal-distanced epochs (checkpoints). Each (GAN, Epoch)
pair is considered to be an individual model. What must be taken into consideration is
that it is unknown if the best model will be found in the last epoch and that the specific
objective is to track a benchmark. The evaluation consists in comparing the performance of
a heuristic SDM-h that optimizes SDM using simulated data from 𝑚 to that of a heuristic
RDM-h that optimizes RDM. Thus, the models are sampled in a sequence of epochs
𝑐 = {𝑒0 = Δ𝐸, 𝑒0 + Δ𝐸, 𝑒0 + 2Δ𝐸, ..., 𝑒𝑀𝐴𝑋}, where 𝑒𝑀𝐴𝑋

Δ𝐸
is the number of samples per

model 𝑚.
The model samples (𝑚, 𝑒) are generated through the GAN training process. Thus, the

checkpoints for each model 𝑚 are saved according to Δ𝐸. For instance, if 𝑒𝑀𝐴𝑋 = 1000
and Δ𝐸 = 50, then the first checkpoint for a given model 𝑚 is 𝑒 = 50 and the last is
𝑒 = 1000, giving a total of 20 checkpoints.

Algorithm 2 was proposed to evaluate the sampled overall tracking errors of a model 𝑚,
given 𝑒𝑀𝐴𝑋 and Δ𝐸, to get the epoch in which 𝑚 performed better, with respect to the
overall tracking error. It begins by initializing the current best epoch 𝑒𝑏𝑒𝑠𝑡 and the current
best overall tracking error 𝑇𝐸𝑀𝑡

𝑏𝑒𝑠𝑡. Next, the algorithm loops over each model sample
(𝑚, 𝑒) and evaluates the performance of SDM-h that solves SDM from the simulated data
provided by a sampled model. If the resultant overall tracking error from (𝑚, 𝑒) is lower
than 𝑇𝐸𝑀𝑡

𝑏𝑒𝑠𝑡, the variables 𝑒𝑏𝑒𝑠𝑡 and 𝑇𝐸𝑀𝑡
𝑏𝑒𝑠𝑡 are updated. After the loop evaluates 𝑚 for all

the considered epochs 𝑒, the combination (𝑚, 𝑒) that minimized 𝑇𝐸𝑀𝑡
𝑏𝑒𝑠𝑡 is added to the set

of good quality models Φ.
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Finally, SDM-h and RDM-h are compared. To do this, a vector 𝑇𝐸𝑅𝐷 is considered,
where each element of this vector is an overall tracking error 𝑇𝐸𝑀𝑇

𝑒𝑥𝑒𝑐, 𝑒𝑥𝑒𝑐 = 1, 2, ..., 𝛼𝑅𝐷,
obtained by running RDM-h for 𝛼𝑅𝐷 times, for a given 𝑣. From this vector, it is possible
to calculate, for instance, the mean overall tracking error when using a real data model
𝜇[𝑇𝐸𝑅𝐷]. Then, it is possible to compare the overall performance of Φ against the
performance of 𝑇𝐸𝑅𝐷.

Algorithm 2: Model evaluation algorithm
1 Input: Δ𝐸, 𝑒𝑀𝐴𝑋 , 𝑚𝑀𝐴𝑋 , 𝑀𝑇 , 𝜐, SDM-h, 𝛼𝑅𝐷

2 Output: Φ
1: 𝑒← 0, Φ← {}
2: for m = 1:𝑚𝑀𝐴𝑋 do
3: 𝑒𝑏𝑒𝑠𝑡 ← {}
4: 𝑇 𝐸𝑀𝑡

𝑏𝑒𝑠𝑡 ←∞
5: while 𝑒 ≤ 𝑒𝑀𝐴𝑋 do
6: 𝑒← 𝑒 + Δ𝐸
7: 𝐺𝐴𝑁 ← 𝑔𝑒𝑡𝑀𝑜𝑑𝑒𝑙(𝑚, 𝑒)
8: 𝑇 𝐸𝑀𝑇 ← 𝑔𝑒𝑡𝑆𝐷𝑀(𝐺𝐴𝑁, SDM-h, 𝑀𝑇 , 𝑣)
9: if 𝑇 𝐸𝑀𝑇 ≤ 𝑇 𝐸𝑀𝑡

𝑏𝑒𝑠𝑡 then
10: 𝑇 𝐸𝑀𝑡

𝑏𝑒𝑠𝑡 ← 𝑇 𝐸𝑀𝑇

11: 𝑒𝑏𝑒𝑠𝑡 ← 𝑒
12: end if
13: Φ← Φ ∪ (𝑚, 𝑒𝑏𝑒𝑠𝑡)
14: end while
15: end for

A final consideration is that three conditions were adopted to compare the RDM-h and
SDM-h. The first is that their search mechanisms are the same. Thus, if a GA is adopted,
then the selection, crossover, and mutation operators of SDM-h and RDM-h are the same.
The second is that although their objective to be optimized is the same, the only difference
between them is their solution evaluation procedure (i.e. fitness calculation). The final
consideration is that the in-sample data 𝑀𝑏 used by SDM-h and RDM-h are the same for
a certain rebalance period 𝑡. Thus, considering a rebalancing period 𝑡 where the in-sample
data is 𝑀𝐵, 𝑀𝑏 is used to optimize RDM through RDM-h, and the same 𝑀𝑏 is used as an
input to the model (𝑚, 𝑒) to generate a set of simulations 𝑆 to solve SDM through SDM-h.

3.1.4 Metaheuristics to solve the multiple scenario index tracking problem

This work proposes to use GAs to solve RDM and SDM, since this kind of heuristic
is widely adopted in the portfolio optimization context (KALAYCI; ERTENLICE; AKBAY,
2019; ALMEIDA-FILHO; SILVA; FERREIRA, 2021), and in many studies of the index tracking
literature. The Streichert (Streichert; Ulmer; Zell, 2004) hybrid encoding was adopted. A
real-valued vector w = {𝑤1, 𝑤2, ..., 𝑤𝑁} represent the weights of the portfolio and the
assets included in the portfolio are represented by a binary vector B = {𝑍1, 𝑍2, ..., 𝑍𝑁}.
Also, elitism was adopted in the GAs, since one of them is based on NSGA-II (Deb et

al., 2002). The genetic operators selected based on the literature and the considerations
presented in subsection 3.1.3 are presented below.
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• Selection: The binary tournament selection was adopted since it is often adopted
in the portfolio optimization context (LIAGKOURAS; METAXIOTIS, 2018). In this
strategy, two randomly selected solutions compete in a tournament for a place in
the mating pool. When a single-objective problem is considered, the winner of the
tournament is the fittest one. In a multi-objective problem, the winner is the solution
contained in the best non-dominated front, or, if both solutions belong to the same
front, the solution with a higher crowding-distance.

• Crossover: Uniform crossover was applied to the binary vector, as it was performed
in many studies involving cardinality constrained portfolio selection (LIAGKOURAS;

METAXIOTIS, 2018). In this operator, a single child is generated from two parents.
Assets that are included in both parents will also be present in the child. Assets
contained in only one of the parents have a 50% chance of being present in the child
(ANAGNOSTOPOULOS; MAMANIS, 2010; ANAGNOSTOPOULOS; MAMANIS, 2011).

• Mutation: Sant’Anna et al. (2017) bit-flip mutation operator was applied in the
binary vector of an individual with probability 𝑝𝐵 = 1

𝑁
. It exchanges one stock

contained in the portfolio for another not contained in the portfolio. A Gaussian
random mutation with 𝜎 = 0.15 is applied in each decision variable on the real-valued
genotype. (ANAGNOSTOPOULOS; MAMANIS, 2011; Streichert; Ulmer; Zell, 2004).

After generating an initial population, or each time crossover and mutation are applied,
it is necessary to satisfy the constraints (3.2)−(3.5). Thus, the repairing mechanisms
described in Streichert, Ulmer & Zell (2004) were adopted to adjust the generated portfolios
during the GA process.

3.1.4.1 SDM-SAAGA-GAN

The first genetic algorithm is based on the Sample Average Approximation (SAA) ap-
proach (MELLO; BAYRAKSAN, 2014; SHAPIRO; MELLO, 1998). The estimate of 𝜃(𝑀𝑏, 𝑤) =
E𝑇 𝐸∼𝑃 (𝜀|𝑀𝑏,𝑤)[𝑇𝐸] is obtained considering a single realization of the random sample of
simulations 𝑆, which gives 𝜃(𝑀𝑏, 𝑤) = 1

|𝑆|
∑︀

𝑠∈1,2,...,|𝑆| 𝑇𝐸𝑠. The name of the metaheuristic
is SDM-SAAGA-GAN. The proposed algorithm for SDM-SAAGA-GAN is presented in
Algorithm 3.

At line 2, a new population 𝑅𝑔 is initialized containing a total of 𝑛𝐼 portfolios. The
algorithm loops at lines 4-12 until the predefined number of generations 𝑛𝐺 is achieved.
The elitist selection is performed at lines 4−6, selecting the best individuals from 𝑅𝑔

based on their fitness 𝜃 and constructing the set of indexes 𝑃 . In line 7, the best current
solution is selected. The population of the next generation is computed in lines 8-12. At
line 8 the new population 𝑅𝑔+1 is initialized by using the indexes of the best individuals
of the current population 𝑃 . Next, at line 9, the mating pool is generated by applying the
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Algorithm 3: SDM-SAAGA-GAN
1 Input: 𝑛𝐼 , 𝑛𝐺, 𝑝𝑐, 𝑝𝑚 𝑆, 𝑁 , 𝐾
2 Output: 𝑥, 𝜃(𝑀𝑏, 𝑥), 𝑅𝑔

1: 𝑔 ← 1
2: 𝑅𝑔 ← 𝑔𝑒𝑡𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑃 𝑜𝑝(𝑛𝐼 , 𝑁, 𝐾)
3: while 𝑔 ≤ 𝑛𝐺 do
4: 𝑓𝑖𝑡← 𝑔𝑒𝑡𝐹 𝑖𝑡𝑛𝑒𝑠𝑠(𝑆, 𝑅𝑔)
5: 𝐹 ← 𝑠𝑜𝑟𝑡(𝑓𝑖𝑡)
6: 𝑃 ← 𝑔𝑒𝑡𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑃 𝑜𝑝(𝐹, 𝑛𝐼)
7: 𝑥, 𝜃(𝑀𝑏, 𝑥)← 𝑠𝑒𝑙𝑒𝑐𝑡𝐵𝑒𝑠𝑡(𝑃 )
8: 𝑅𝑔+1 ← 𝑔𝑒𝑡𝑁𝑒𝑤𝑃 𝑜𝑝(𝑃, 𝑛𝐼)
9: 𝑚𝑎𝑡𝑖𝑛𝑔𝑃 𝑜𝑜𝑙← 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑃, 𝑓𝑖𝑡)

10: 𝑄← 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟(𝑚𝑎𝑡𝑖𝑛𝑔𝑃 𝑜𝑜𝑙, 𝑅𝑔, 𝑁, 𝑝𝑐)
11: 𝑄← 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑄, 𝑛𝐼 , 𝑁, 𝑝𝑚)
12: 𝑅𝑔 ← 𝑐𝑜𝑛𝑐𝑎𝑡(𝑅𝑔+1, 𝑄)
13: end while

selection operator in 𝑅𝑔+1, considering their fitness. At lines 10 and 11, crossover, followed
by mutation, are applied with probabilities 𝑝𝑐 and 𝑝𝑚, respectively. The population of the
next generation is assembled by concatenating the offspring 𝑄 with their parents 𝑅𝑔+1.

Algorithm 3 can solve RDM. This can be achieved by making 𝑆 = {𝑀𝑏}, instead of
𝑆 = {𝑀̂𝑓

1
, 𝑀̂𝑓

2
, ..., 𝑀̂𝑓

|𝑆|
}. Thus the fitness will be calculated based on a unique tracking

error from the performance of a portfolio in the historical data 𝑀𝑏, which is different
from taking the mean of the tracking errors from the performance of a portfolio in all
simulations 𝑀̂𝑓

𝑠
∈ 𝑆. When the RDM is solved with Algorithm 3, the algorithm is referred

to as RDM-GA.

3.1.4.2 SDM-SBDGA-GAN

Another perspective for solving the SDM can be evaluated by transforming it into a
multi-objective optimization problem, containing |𝑆| objectives, which are the tracking
errors to be minimized in each scenario. MS-NSGA-II can be used to solve problems where
it is necessary to find solutions with a well-balanced compromise to multiple scenarios
and maintain the trade-off among multiple objectives. Algorithm 4 was proposed for the
procedure of a metaheuristic based on the MS-NSGA-II, which aims to find solutions
with the best compromise to multiple scenarios only. Since there is only one objective
to be minimized (𝑇𝐸), it is not necessary to worry about the trade-off between multiple
objectives.

The population 𝑅𝑔 is initialized at lines 2−5. This initial population is constituted of
the last generation populations of SDM-SAAGA-GAN obtained for each scenario taken
as an individual optimization problem. For this approach, the 𝑔𝑒𝑡𝐹 𝑖𝑡𝑛𝑒𝑠𝑠(𝑆,𝑅𝑔) function
returns a vector of tracking errors for each individual, instead of a unique tracking error.
In lines 7 and 8, by calculating the fitness of the portfolios that belong to 𝑅𝑔, it is possible
to obtain the vectors that store the maximum and minimum fitness of each scenario.

After the generations loop begins, the elitist selection is performed at lines 10−13. The
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Algorithm 4: SDM-SBDGA-GAN
1 Input: 𝑛𝐼 , 𝑛𝐺, 𝑝𝑐, 𝑝𝑚 𝑆, 𝑁 , 𝐾
2 Output: 𝑥, 𝜃(𝑀𝑏, 𝑥)

1: 𝑔 ← 1
2: 𝑅𝑔 ← {}
3: for 𝑠 ∈ 𝑆 do
4: 𝑥, 𝜃(𝑀𝑏, 𝑥), 𝑅𝑠 ← SDM-SAAGA-GAN(𝑛𝐼 , 𝑛𝐺, 𝑝𝑐, 𝑝𝑚, 𝑠, 𝑁, 𝐾)
5: 𝑅𝑔 ← 𝑐𝑜𝑛𝑐𝑎𝑡(𝑅𝑔, 𝑅𝑠)
6: end for
7: 𝑓𝑖𝑡← 𝑔𝑒𝑡𝐹 𝑖𝑡𝑛𝑒𝑠𝑠(𝑆, 𝑅𝑔)
8: 𝑚𝑎𝑥𝑠, 𝑚𝑖𝑛𝑠 ← 𝑔𝑒𝑡𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝐸𝑥𝑡𝑟𝑒𝑚𝑒𝑠(𝑓𝑖𝑡)
9: while 𝑔 ≤ 𝑛𝐺 do

10: 𝑓𝑖𝑡← 𝑔𝑒𝑡𝐹 𝑖𝑡𝑛𝑒𝑠𝑠(𝑆, 𝑅𝑔)
11: 𝐹 ← 𝑛𝑜𝑛𝐷𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑𝑆𝑜𝑟𝑡(𝑓𝑖𝑡)
12: 𝑐𝑟𝑀𝑒𝑡𝑟𝑖𝑐← 𝑔𝑒𝑡𝐶𝑅𝑀𝑒𝑡𝑟𝑖𝑐(𝑓𝑖𝑡, 𝑚𝑎𝑥𝑠, 𝑚𝑖𝑛𝑠)
13: 𝑃, 𝑙𝑎𝑠𝑡𝐹 𝑟𝑜𝑛𝑡𝐼𝑑𝑥, 𝑓𝑅𝑎𝑛𝑘 ← 𝑔𝑒𝑡𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑃 𝑜𝑝(𝐹, 𝑛𝐼)
14: 𝑥, 𝜃(𝑀𝑏, 𝑥)← 𝑠𝑒𝑙𝑒𝑐𝑡𝐵𝑒𝑠𝑡(𝑃, 𝑅, 𝑆, 𝑐𝑟𝑀𝑒𝑡𝑟𝑖𝑐)
15: 𝑅𝑔+1 ← 𝑔𝑒𝑡𝑁𝑒𝑤𝑃 𝑜𝑝(𝑃, 𝑛𝐼)
16: 𝑚𝑎𝑡𝑖𝑛𝑔𝑃 𝑜𝑜𝑙← 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑃, 𝑓𝑖𝑡, 𝑓𝑅𝑎𝑛𝑘, 𝑐𝑟𝑀𝑒𝑡𝑟𝑖𝑐)
17: 𝑄← 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟(𝑚𝑎𝑡𝑖𝑛𝑔𝑃 𝑜𝑜𝑙, 𝑅𝑔, 𝑁, 𝑝𝑐)
18: 𝑄← 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑄, 𝑛𝐼 , 𝑁, 𝑝𝑚)
19: 𝑅𝑔+1 ← 𝑐𝑜𝑛𝑐𝑎𝑡(𝑅𝑔+1, 𝑄)
20: end while

solutions from 𝑅𝑔 are ranked according to the non-dominated sort (Deb et al., 2002), which
generates a set of non-dominated fronts 𝐹 . A scenario-based crowded rank procedure was
proposed in (DEB; ZHU; KULKARNI, 2018). From this procedure, the computed 𝑐𝑟𝑀𝑒𝑡𝑟𝑖𝑐 is
used to maintain the diversity among individuals in NSGA-II and to maintain a diverse set
of scenario-wise nondominated solutions in the multiple scenario problem. The 𝑐𝑟𝑀𝑒𝑡𝑟𝑖𝑐

of a solution 𝑥 is used to maintain the scenario-wise diversity only and compute it using
Equation 3.13.

𝐶𝑅(𝑥) = |𝑋𝑚𝑎𝑥(𝑥)|+ 𝜇[𝑓𝑖𝑡(𝑥)] (3.13)

where 𝑋𝑚𝑎𝑥(𝑥) is the set of scenarios where 𝑥 performed poorly. In other words, |𝑋𝑚𝑎𝑥(𝑥)|
counts in how many scenarios the tracking error of 𝑥 was closer to an upper bound tracking
error contained in 𝑚𝑎𝑥𝑠. 𝑋𝑚𝑎𝑥(𝑥) was adopted because the strategy is to find solutions
with the highest number of scenarios where it performed well. To untie solutions with
an equal value of |𝑋𝑚𝑎𝑥(𝑥)| one can adopt 𝜇[𝑓𝑖𝑡(𝑥)] = 𝜃(𝑀𝑏, 𝑤). More detail about the
computation of CR is presented in the proposed Algorithm 5.

At lines 2-14 of Algorithm 5, the CR metric is computed for each solution 𝑥 of the
population and the respective values are stored in the vector 𝑐𝑟𝑀𝑒𝑡𝑟𝑖𝑐. It is considered
that 𝑛𝐼 = 𝑓𝑖𝑡.𝑑𝑖𝑚[0] and |𝑆| = 𝑓𝑖𝑡.𝑑𝑖𝑚[1], since 𝑓𝑖𝑡 is a 𝑛𝐼 × |𝑆| matrix. The absolute
distances of the tracking error obtained by 𝑥 on scenario 𝑠 relative to the lower and upper
bound tracking errors of 𝑠 are 𝑑𝑚𝑖𝑛 and 𝑑𝑚𝑎𝑥, respectively. Using these distances, 𝑋𝑚𝑎𝑥

is computed at lines 4-11. If the tracking error obtained by 𝑥 in 𝑠 is closer to the lower
tracking error of 𝑠, then this scenario is added to 𝑋𝑚𝑖𝑛, otherwise, 𝑠 is added to 𝑋𝑚𝑎𝑥.
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Algorithm 5: getCRMetric
1 Input: 𝑓𝑖𝑡, 𝑚𝑎𝑥𝑠, 𝑚𝑖𝑛𝑠

2 Output: 𝑐𝑟𝑀𝑒𝑡𝑟𝑖𝑐
1: 𝑐𝑟𝑀𝑒𝑡𝑟𝑖𝑐← {}
2: for 𝑥 = 1 : 𝑓𝑖𝑡.𝑑𝑖𝑚[0] do
3: 𝑋𝑚𝑖𝑛 ← {},𝑋𝑚𝑎𝑥 ← {}
4: for 𝑠 = 1 : 𝑓𝑖𝑡.𝑑𝑖𝑚[1] do
5: 𝑑𝑚𝑖𝑛 ← |𝑓𝑖𝑡[𝑥, 𝑠]−𝑚𝑖𝑛𝑠[𝑠]|
6: 𝑑𝑚𝑎𝑥 ← |𝑓𝑖𝑡[𝑥, 𝑠]−𝑚𝑎𝑥𝑠[𝑠]|
7: if 𝑑𝑚𝑖𝑛 < 𝑑𝑚𝑎𝑥 then
8: 𝑋𝑚𝑖𝑛 ← 𝑋𝑚𝑖𝑛 ∪ 𝑠
9: else

10: 𝑋𝑚𝑎𝑥 ← 𝑋𝑚𝑎𝑥 ∪ 𝑠
11: end if
12: end for
13: 𝐶𝑅← |𝑋𝑚𝑖𝑛|+ 𝜇[𝑓𝑖𝑡[𝑥, :]]
14: 𝑐𝑟𝑀𝑒𝑡𝑟𝑖𝑐← 𝑐𝑟𝑀𝑒𝑡𝑟𝑖𝑐 ∪ 𝐶𝑅
15: end for

Going back to Algorithm 4, at line 13 the elitist selection constructs the set of indexes
of the best solutions 𝑃 based on the non-dominated fronts 𝐹 . The 𝑔𝑒𝑡𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑜𝑝(𝐹, 𝑛𝐼)
function also returns the rank of the solutions according to 𝐹 , named 𝑓𝑅𝑎𝑛𝑘, where the
lower the rank, the better the solution. At line 14 the best solution 𝑥 is selected based on
the best 𝐶𝑅(𝑥) (the lower the 𝐶𝑅(𝑥) the better the solution 𝑥).

In line 14, the best current solution is selected. Since the process of computing the next
generation population was already explained (lines 15-19), the binary tournament selection
will be considered from the scenario-based dominance perspective. In SDM-SBDGA-GAN,
the mating pool is generated by applying the selection operator in 𝑅𝑔+1, considering that
the winner is the one with the best 𝑓𝑅𝑎𝑛𝑘, or if the competitors have the same rank, the
solution with the best 𝑐𝑟𝑀𝑒𝑡𝑟𝑖𝑐 wins.

The feature that distinguishes the adopted GAs from each other is their fitness
calculation. Thus, it is possible to compare different genetic algorithms based on the
complexity of the fitness computation. The overall time complexity to calculate the mean
tracking error for a portfolio with 𝛽 return samples for 𝑁 assets is 𝑂(𝛽𝑁). In RDM-GA, it
is necessary to calculate a mean tracking error for each portfolio in the population, using 𝑏
returns samples for 𝑁 assets. Thus, computing the mean tracking error for each portfolio
in the population results in 𝑂(𝑛𝐼𝑏𝑁).

On the other hand, in SDM-SAAGA-GAN, it is necessary to calculate the mean
tracking error |𝑆| times for each portfolio in the population, using 𝑓 return samples for 𝑁
assets. Therefore, the complexity becomes 𝑂(𝑛𝐼 |𝑆|𝑓𝑁). In the case of SDM-SBDGA-GAN,
the first step is to calculate |𝑆| mean tracking errors (or objectives) for each portfolio. Next,
the algorithm uses the fast non-dominated sorting approach (Deb et al., 2002) to obtain the
ranks and compute the 𝑐𝑟𝑀𝑒𝑡𝑟𝑖𝑐 for each portfolio. Thus, the computational complexity
for this algorithm is 𝑂(𝑛𝐼 |𝑆|𝑓𝑁 + 𝑛2

𝐼 |𝑆|+ 𝑛𝐼 |𝑆|), which simplifies to 𝑂(𝑛𝐼 |𝑆|(𝑓𝑁 + 𝑛𝐼)).
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Year 1st third 2nd third Final third
2010 X X X
2011 X X X
2012 X
2013 X
2014
2015 X X X
2016 X X
2017 X X X
2018 X X X
2019 X X X
2020 X X X

Table 3 – Available composition information between 2010 and 2020

3.2 MATERIALS AND METHODS

3.2.1 Dataset

The collected historical closing prices are from the Ibovespa market index and some
of its components from 2010-01-12−2021-09-08. To guide the construction of the set
of alternatives or universe, it was decided that it would be composed of stocks from
the Brazilian market that were included in the theoretical Ibovespa portfolio at least
once during this period, and had at most 5 missing values. The Ibovespa composition is
rebalanced in a four-month fashion (the first, second, and final third of the year) according
to the methodology of B3 (B3, 2021). To satisfy these conditions, tickers of components
from the final Ibovespa composition or its composition previews were searched for every
third between 2010 and 2020, as shown in Table 3.

Some compositions were not found, especially in 2014 when it was not possible to
find any related data. After collecting the candidate tickers, the Alpha Vantage API
(Alpha Vantage, 2021) was adopted to search historical price data for each candidate ticker.
The data processing steps are presented in Figure 12. After selecting the assets and
constraining all the time series for the stocks and the index to the specified period, the
collected historical data contained 2884 daily closing prices per time series.

The only preprocessing step was the removal of missing data. Thus, 41 Stocks with
at most 5 missing price values were filtered, and the missing prices were associated with
at least one of the following five dates: 2017-10-17, 2016-09-12, 2013-12-24, 2013-07-09,
and 2012-04-10. These 5 days were removed from all the time series since the missing data
consist of a very low percentage of the total data (∼ 0.2%) and they are non-consecutive.
The final dataset includes 𝑁 = 41 stocks and the Ibovespa index, which gives a total of 42
time series, and each time series contains 2879 daily closing prices.
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Figure 12 – Data processing steps

3.2.2 Model, rebalancing strategies and GAs hyperparameters

The adopted values for the parameters of the index tracking model were 𝜖𝑖 = 0, 𝜓𝑖 = 1
and 𝐾 = 10. As it was already shown in Section 3.1, multi-period portfolio optimization
problems were considered since there is a trade-off between transaction costs associated
with portfolio rebalance frequency and tracking error (FABOZZI et al., 2007). Of course, the
fund reflects the exploration of this trade-off depending on its strategy. Thus, different
rebalancing frequency alternatives that could be considered by a fund manager depending
on his/her willingness to incur higher transaction costs were investigated.

The following rebalancing frequency alternatives were evaluated: rebalance the portfolio
every 10, 20, and 40 days. To evaluate if using an out-of-sample window smaller/bigger
than the GAN simulation output would be advantageous, 10 and 40 days rebalancing
frequencies were analysed. If it is advantageous it could be concluded that it is possible to
train a single type of model for different rebalancing strategies, instead of one model for
each rebalancing strategy by varying the horizon 𝑓 of the GAN’s output. For the GAs,
the adopted hyperparameters were 𝑛𝐼 = 40, 𝑛𝐺 = 100, 𝑝𝑐 = 1.0, and 𝑝𝑚 = 1/𝑁 .

3.2.3 GAN training setup

As it was already shown in Figure 10, 𝑏 = 40 and 𝑓 = 20 were adopted for historical and
simulated data, respectively. The GAN implementation was done in PyTorch (PASZKE et

al., 2019). A total of 30 models were trained for 8000 epochs each using CUDA through
an NVIDIA GeForce GTX 1650 (4GB). Also, it was considered that Δ𝐸 = 400. The
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WGAN-GP training process solver and parameters were the ones adopted in Gulrajani et
al. (2017). A mini-batch size of 128 was adopted.

The period in which the GAN was trained was from 2010-01-12 until 2020-11-09. This
period comprises 2673 daily returns. Since 𝑏 = 40, then the training set contains a total of
2634 matrices of size (𝑁 + 1)× 40, Each matrix represents the market state for 𝑁 assets
and the index, considering 40 daily returns of data, where the first row of the matrix
represents the return of the index and the remaining rows represent the returns of the
𝑁 assets. These matrices are stacked to form the training set. Therefore, considering
𝑏 = 40, if 𝑇 𝐼𝑁𝑆 = 40 returns are available in the training period, then only 1 matrix is
contained in the training set. if 𝑇 𝐼𝑁𝑆 = 42 returns are available in the training period, then
3 matrices are contained on the training set. Similarly, for 𝑇 𝐼𝑁𝑆 returns in the training
period, 𝑇 𝐼𝑁𝑆 − 𝑏+ 1 matrices of size (𝑁 + 1)× 𝑏 are generated.

The test period was from 2020-11-10 until 2021-09-08, containing a total of 205 daily
returns. To ensure that no data from the training period is used, 40 daily returns from the
total of 205 are used as input for the neural network at the first time step of the test data.
Thus, the out-of-sample period is from 2021-01-11 until 2021-09-08, and the total number
of out-of-sample daily returns is 𝑇 = 165. The GAN will generate simulations periodically,
depending on the chosen rebalance strategy. If the rebalance strategy is 𝑣 = 60 days, then
the simulations will be generated every 60 days. The generated simulations, containing
simulated future market states with 𝑓 = 20 daily returns, will be used as input for the
index tracking model.

The period from 2010 to 2021 includes various phases of the economic cycle, such as
the post-2008 crisis recovery, periods of high volatility, and the COVID-19 crisis. This
allows the model to be trained under different market conditions, increasing the robustness
of the simulation. The choice of the test period between 2020 and 2021 includes the initial
phase of the post-pandemic recovery, where the market was still experiencing significant
fluctuations. This is relevant for testing the model’s effectiveness in uncertain market
conditions.

3.2.4 Experiment design

The adopted experiment design to evaluate the GAN model and the proposed metaheuristics
are presented in Figure 13. The first step was to train 𝑚𝑀𝐴𝑋 = 30 GAN models and save
their states according to Δ𝐸 and the total number of epochs, and thus generate the set
Φ. After training all the models, for each rebalancing frequency 𝑣, SDM-SAAGA-GAN
and SDM-SBDGA-GAN are run for each model (𝑚, 𝑒) once. Before each call to one of the
metaheuristics designed for SDM, 30 simulations of the market are generated, using the
respective 𝑀𝑏 of the rebalancing period 𝑡, and thus generate 𝑆, with |𝑆| = 30.

The RDM-GA was run 30 times, which is equal to the number of considered GAN
models 𝑚𝑀𝐴𝑋 , for each 𝑣 to produce the mean performance it is necessary to evaluate
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Figure 13 – The adopted experiment design

a metaheuristic that solves SDM and produces the set Φ. It is interesting to note that
the same information 𝑀𝑏 was used to generate the simulations in a rebalancing period 𝑡

to solve the RDM. Thus, the performance of the metaheuristics is compared given the
same amount of information. Finally, for each rebalancing frequency 𝑣, one can use the
model evaluation algorithm (Algorithm 2), and compare the performance of the SDM
metaheuristics against RDM-GA, and also verify which of the two SDM metaheuristics is
the best for this problem.

3.3 RESULTS AND DISCUSSION

This section begins by presenting the results on the quality of GAN models and the
performance of metaheuristics that use the simulations generated from these models.
Subsection 3.3.2 presents a comparison between the performance of the GAs that use the
simulated data from GAN and the GA that uses historical data. The last subsection brings
explanations about why in some situations the simulations generated by GAN are good or
bad.

3.3.1 Market simulation using GANs

From Figure 14 it can be observed that the instability in the mean overall out-of-sample
tracking error produced by the 30 GAN models over the training process. As can be seen,
there is no consistent reduction of the mean out-of-sample tracking error as the training
epochs get higher for both evolutionary algorithms. But, it was possible to find models
(𝑚, 𝑒) that obtained better performance than the mean tracking error obtained by the
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(a) 𝑣 = 10 days (b) 𝑣 = 20 days

(c) 𝑣 = 40 days

Figure 14 – Performance of the tracking error produced by 30 models for both heuristics
over the epochs

RDM-GA. The next results show the performance of the metaheuristics designed for SDM
that used simulations from good quality models (𝑚, 𝑒) ∈ Φ.

From what is presented in Figure 15, the higher the number of epochs the more
frequently better models will be produced for both metaheuristics applied to SDM. It is
also possible to see, that the SDM-SBDGA-GAN approach produces good quality solutions
more frequently than the SDM-SAAGA-GAN approach as the epochs get higher. This
indicates that there is a difference in the model state where SDM-SBDGA-GAN can take
advantage of simulated data better than SDM-SAAGA-GAN. Although the adopted GAN
model was trained for a rebalancing frequency of 𝑣 = 20 days, it can be observed that the
results for 𝑣 = 40 and 𝑣 = 10 are very similar concerning the frequency of good solutions
over the epochs.

The results presented in Figure 16 concern a density heatmap of the mean overall
tracking error obtained by each of the metaheuristics that use simulations from (𝑚, 𝑒) ∈ Φ
over the epochs. It can be observed that smaller tracking errors for both metaheuristics
approaches are concentrated in a higher number of epochs, especially for SDM-SBDGA-
GAN. This is also true for any of the considered rebalancing frequency values 𝑣, but it is
more evident in 𝑣 = 20, which is the rebalancing frequency for which the 30 GAN models
were trained. The same cannot be said for SDM-SAAGA-GAN when 𝑣 = 40, where the
best values for tracking error were concentrated in smaller epoch values. Thus, considering
the majority of the cases, as the training epochs get higher, the more frequently smaller
tracking errors will be found. The results presented in Figures 15 and 16 show that the
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(a) 𝑣 = 10 days (b) 𝑣 = 20 days

(c) 𝑣 = 40 days

Figure 15 – Frequency of good models relative to RDM-GA for all rebalancing strategies

(a) 𝑣 = 10 days (b) 𝑣 = 20 days

(c) 𝑣 = 40 days

Figure 16 – Mean overall out-of-sample tracking error over the epochs for all the rebalanc-
ing strategies and metaheuristics

models may learn better market patterns over the epochs, and thus can potentially obtain
better overall tracking error values over the epochs.

A final comment is that if it was needed to train the GAN in a future period to reflect
patterns from new data, it would be more advantageous to sample models between 6000
and 8000 epochs so that it is possible to evaluate the best models and obtain better
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DeltaT Algorithm 𝜇[𝑇𝐸] 𝜎[𝑇𝐸]

10 RDM-GA 4.3e-05 2.1e-04
SDM-SAAGA-GAN 4.3e-05 5.0e-06
SDM-SBDGA-GAN 4.1e-05 6.0e-06

20 RDM-GA 4.9e-05 3.1e-04
SDM-SAAGA-GAN 4.2e-05 4.0e-06
SDM-SBDGA-GAN 3.8e-05 5.0e-06

40 RDM-GA 4.6e-05 3.2e-04
SDM-SAAGA-GAN 4.0e-05 6.0e-06
SDM-SBDGA-GAN 3.9e-05 5.0e-06

Table 4 – Overall tracking error performance for the RDM and SDM metaheuristics in
the out-of-sample period.

tracking errors when compared to the RDM-GA. Also, although there are models that
can perform better than RDM-GA, it would be interesting to train the model for more
epochs and check if the performance can be increased or decreased.

3.3.2 SDM vs RDM

Now the impact of using simulated data from the GAN instead of real historical data in the
index tracking problem is compared. Thus, the performance of RDM-GA against the SDM
heuristics is observed. Table 4 and Figure 18 comprises the results of the models (𝑚, 𝑒) ∈ Φ
with respect to the mean overall out-of-sample tracking error for each metaheuristic that
solves SDM in each rebalancing strategy. Table 4 presents the overall tracking error results
for each rebalancing frequency and adopted metaheuristics. Figure 18 shows the mean
tracking error for SDM-SAAGA-GAN, SDM-SBDGA-GAN, and RDM-GA, obtained in
each rebalancing period given a rebalancing frequency 𝑣.

In Figure 18, the leftmost figure column is analyzed first. In the Figures of this column,
the solid line is the mean out-of-sample tracking error and the area is one standard
deviation from the mean. It can be observed that, in the first half of the out-of-sample
period, the portfolios constructed with RDM-GA contained assets that couldn’t match
the index in some periods. Thus, high peaks of tracking errors can be observed for all the
rebalancing strategies.

These high peaks were not observed in the performance results of SDM-SAAGA-
GAN and SDM-SBDGA-GAN. Thus, the portfolios built using SDM had a more stable
performance over the out-of-sample period for all the rebalancing strategies. Now, observing
Table 4, comparing the performance of SDM-SBDGA-GAN against SDM-SAAGA-GAN, it
is possible to observe that the former was able to build portfolios with better performance
for 𝑣 = 20. In 𝑣 = 10 and 𝑣 = 40, it was possible to see just a slight difference between
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(a) 𝑣 = 10 days (b) 𝑣 = 20 days

(c) 𝑣 = 40 days

Figure 17 – Boxplots for the overall tracking error performance for the RDM and SDM
metaheuristics in the out-of-sample period.

the performance of these two metaheuristics. Also, for 𝑣 = 10 the overall tracking errors
of both SDM heuristics are closer to the RDM heuristic performance. This may indicate
that SDM performs poorly if the rebalancing frequency is higher than the frequency for
which the GAN was trained for. More details about the results can be observed in Figure
17 which contains the boxplots for the overall tracking errors in each rebalancing strategy.
The first thing to note is that the dispersion of the overall tracking error produced by
SDM-SBDGA-GAN and SDM-SAAGA-GAN was smaller than the RDM-GA. Also, it can
be observed that the SDM-SBDGA-GAN can obtain better minimum values than the
SDM-SAAGA-GAN in 𝑣 = 10 and 𝑣 = 20. Also, the maximum overall tracking error values
of the SDM-SBDGA-GAN are at least as good as SDM-SAAGA-GAN for all rebalancing
strategies.

The mean trajectory of the cumulative return was also presented for all the metaheuris-
tics in the rightmost figure column. It can be observed how close SDM-SBDGA-GAN is to
the index trajectory when compared to the RDM-GA and SDM-SAAGA-GAN trajectories
for 𝑣 = 20 and 𝑣 = 40.
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(a) 𝑣 = 10 days

(b) 𝑣 = 20 days

(c) 𝑣 = 40 days

Figure 18 – Comparison of the RDM-GA, SDM-SAAGA-GAN, and SDM-SBDGA-GAN
mean out-of-sample tracking error for the respective rebalancing periods
(left), and the mean trajectory of the cumulative return (right) for the three
rebalancing strategies.
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𝑣 Model Epoch 𝜇[𝑇𝐸] 𝑡𝑏𝑒𝑠𝑡 𝑡𝑤𝑜𝑟𝑠𝑡

10 GAN-19 7200 2.8e-05 2021-02-09 2021-08-04
20 GAN-26 8000 2.7e-05 2021-06-08 2021-05-10
40 GAN-15 7200 2.9e-05 2021-05-10 2021-03-11

Table 5 – Performance of the best models for each rebalancing strategy with respect to
the mean overall out-of-sample tracking error. The respective best and worst
rebalancing period is also presented

3.3.3 Comparison between simulated and realized data

The next results, presented in Table 5 concern the analysis of the models that offered the
best simulations for SDM-SBDGA-GAN in each rebalancing strategy. SDM-SBDGA-GAN
was analyzed because it performed well concerning the mean overall out-of-sample tracking
error for the main rebalancing strategy (𝑣 = 20) and slightly better for 𝑣 = 10 and 𝑣 = 40.
More specifically, it was necessary to understand why the models performed well or badly
in some periods. To do that, for the best model of rebalancing frequency 𝑣, the rebalancing
period 𝑡𝑣𝑏𝑒𝑠𝑡 in which it achieved the best performance and 𝑡𝑣𝑤𝑜𝑟𝑠𝑡, which is the rebalancing
period in which it achieved the worst performance, were evaluated. The simulations for
the index to be tracked (IBOV) and the top 4 highest weight assets of the portfolio are
presented. The results are presented in Figures 19, 20, and 21.

Figure 19 shows the simulations generated in the best and worst period by the best
model of rebalancing frequency 𝑣 = 10. Before looking at those results, it is necessary to
remember that the SDM metaheuristic constructs the portfolio directed by the simulated
index data. Then, the first thing to do is to look at the index data and see if the mean
trajectory of the simulated index data presents the same trends as the realized index data.
It can be observed that for the best period simulations, shown in Figure 19a, the simulated
and realized IBOV data trajectories are very similar at the beginning of the out-of-sample
period and diverge in the last periods. During this out-of-sample period, the index varied
mostly within a return range of −0.02 and 0.02, which was also the case for the selected
assets.

Now, looking at the worst period simulations, presented in Figure 19b, the simulated
index mean trajectory does not diverge too much from the realized data. The problem
is that the four assets with the highest weight in the portfolio had their data simulated
within a return range of −0.02 and 0.02, whilst the realized trajectory of the top 3 assets
varied beyond these values. Thus, instead of selecting assets with a lower variance, as was
the case for the index trajectory, the metaheuristic selected assets with higher variance
because the simulations indicated that these assets had less variance.

Next, the results for the best model of the rebalancing strategy for which GAN was
trained are presented in Figure 20. From Figure 20a the simulated index trajectory is
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(a) Mean trajectory of the return simulations for the period where the portfolio achieved its best
performance

(b) Mean trajectory of the return simulations for the period where the portfolio had its worst
performance

Figure 19 – Simulations generated using the best and worst out of sample periods for
GAN-19, which is the model that achieved the best 𝜇[𝑇𝐸] for the rebalancing
strategy of 10 days. The mean trajectory of the simulated returns are for the
IBOV benchmark and the stocks with the highest price in the portfolio during
the rebalancing period

similar to that of the realized data in the best rebalancing period. The selected assets
also reflect these. For the results of the worst period simulations, shown in Figure 20b,
the simulated trajectory of the IBOV index had a very low variance, which was not the
case for the real trajectory. This forced the heuristic to select assets that had a simulated
trajectory with very low variance, but the real trajectories of these selected assets were
very different from the simulated trajectories impacting the portfolio with high deviations
from the index.

The final results are for the rebalancing frequency 𝑣 = 40, presented in Figure 20.
Concerning the results for the best rebalancing period, the simulated trajectory of the index
does not diverge too much from the real index data, summing to the fact that the selected
assets’ simulated trajectories also do not diverge too much from their real trajectories, the
produced tracking portfolio has good quality. Observing the worst period index simulated
trajectory, it diverges from the real trajectory, since the former has a lower variability.
As a consequence, the wrong assets were selected, with high amplitude oscillations, and
the built portfolio was not able to keep track of the low amplitude oscillations of the real
trajectory of the index.

Two problems misguide the construction of good portfolios when considering the studied
GAN approach. The first is that even when the index’s simulated trajectory is similar to
the index’s real trajectory, there is no guarantee that the selected assets will produce a
good tracking portfolio. That’s because the selected assets’ simulated data may diverge
too much from the real trajectory. The other problem occurs when the index simulations
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(a) Mean trajectory of the return simulations for the period where the portfolio achieved its best
performance

(b) Mean trajectory of the return simulations for the period where the portfolio had its worst
performance

Figure 20 – Simulations generated using the best and worst out of sample periods for
GAN-26, which is the model that achieved the best 𝜇[𝑇𝐸] for the rebalancing
strategy of 20 days. The mean trajectory of the simulated returns are for the
IBOV benchmark and the stocks with the highest price in the portfolio during
the rebalancing period

(a) Mean trajectory of the return simulations for the period where the portfolio achieved its best
performance

(b) Mean trajectory of the return simulations for the period where the portfolio had its worst
performance

Figure 21 – Simulations generated using the best and worst out of sample periods for
GAN-15, which is the model that achieved the best 𝜇[𝑇𝐸] for the rebalancing
strategy of 40 days. The mean trajectory of the simulated returns are for the
IBOV benchmark and the stocks with the highest price in the portfolio during
the rebalancing period
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are very poor, diverging too much from their real trajectory. In this case, the portfolio
construction will be corrupted from the beginning. The metaheuristic will produce bad
portfolios even if there are assets in which their associated simulations would be able to
build good tracking portfolios, but since the metaheuristic will be misguided by the poor
simulation of the index, they’ll never be included in the portfolio. Maybe it is easier to
first solve the simulated index data problem since the focus is on a single asset. This could
be performed by adding extra GAN inputs concerning the current state information about
the index to be tracked or by using a separate prediction model for the index to measure
the quality of the index’s simulations. This prediction model for the index wouldn’t replace
the simulations produced by GAN for this asset since they’re used in the SDM but would
give support in understanding if the simulations are very unrealistic or not.

3.3.4 Extending the application to hybrid heuristics

It is possible to extend other heuristics, such as hybrid heuristics, to solve the multiple-
scenario index tracking model based on GANs through the SAA and SBD approaches. The
hybrid heuristics for index tracking work in two phases: asset selection and weight allocation.
The asset selection is performed through crossover and mutation genetic operators to
search for different asset combinations to be included in the portfolio. The weight allocation
phase uses general-purpose solvers to adjust the weights for the selected assets considering
a nonlinear or linear index tracking model.

Four solution approaches based on Ruiz-Torrubiano & Suarez (2009) (GATOR) and
Sant’Anna et al. (2017) (GASAN) hybrid GAs were adopted. For the second phase, Ruiz-
Torrubiano & Suarez (2009) quadratic index tracking model (R09) and the Wang et al.
Wang et al. (2012) linear index tracking model (W12) were considered. The CPLEX
general-purpose solver was used to solve R09 and W12 in the second phase considering
the historical data 𝑀𝑏 as an instance of the problem.

It is possible to extend the heuristics to consider the multiple-scenario optimization by
considering the SAA and SDB approaches to evaluate the fitness of the solutions. Thus, it
is possible to consider four groups of heuristics, giving 12 heuristics in total:

• R09-GASAN: R09-GASAN, SDM-R09-SAAGASAN-GAN, SDM-R09-SBDGASAN-
GAN

• R09-GATOR: R09-GATOR, SDM-R09-SAAGATOR-GAN, SDM-R09-SBDGATOR-
GAN

• W12-GASAN: W12-GASAN, SDM-W12-SAAGASAN-GAN, SDM-W12-SBDGASAN-
GAN

• W12-GATOR: W12-GATOR, SDM-W12-SAAGATOR-GAN, SDM-W12-SBDGATOR-
GAN
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Each group contains one GA where the fitness is calculated based on historical data and
two SAA and SBD GAs where the fitness is calculated based on GAN-generated markets.
The same hyperparameters defined in Section 3.2.2 were adopted for these hybrid GAs.

As can be seen in Figures 40 - 43, the hybrid GAs based on SBD produces more stable
portfolios than GAs based on SAA in the majority of the cases. Thus, the comparison
proceeds with hybrid GAs based on historical data and GAs based on SBD. The best
hybrid GAs based on historical data for all rebalancing strategies are the R09-GASAN
and W12-GASAN as can be seen in Figure 44.

The comparison of the best hybrid GAs based on historical data against the hybrid
GAs based on SBD for each rebalancing strategy is presented in Figure 22. It is possible to
observe that SDM-R09-SBDGASAN-GAN and SDM-W12-SBDGASAN-GAN can produce
more stable portfolios than the other historical data and SBD approaches for 𝑣 = 10 and
𝑣 = 40. Also, as shown in Figure 45, it is possible to observe that SBD hybrid GAs are
better than the SDM-SBDGA-GAN.
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(a) 𝑣 = 10 days

(b) 𝑣 = 20 days

(c) 𝑣 = 40 days

Figure 22 – Comparison of historical hybrid GAs against SBD hybrid GAs for each rebal-
ancing strategy.



82

3.4 CONCLUSIONS

This study analyses the construction of tracking portfolios through a GAN based on the
WGAN-GP methodology. Two metaheuristics were proposed to optimize an SDM that uses
simulated scenarios from GANs to optimize tracking portfolios. Due to the combinatorial
nature of the problem and since there is no objective metric to measure the quality of
the GAN model, an approach that simply selects the best model, based on the overall
tracking error, within a subset of training epochs was proposed. The experiments involved
real closing price data from the Ibovespa index and some assets of the Brazilian market
between 2010 and 2021.

The experiments showed that GAN models can learn hidden patterns to generate
better simulations as the number of epochs grows. It was possible to observe that one
can train models to construct portfolios for a specific rebalancing strategy and use these
trained models for constructing portfolios in other rebalancing strategies. It was observed
that it was possible to obtain good models for lower rebalancing frequencies (𝑣 = 40) than
the original rebalancing frequency for which GAN was trained (𝑣 = 20). This is important
because it may not be necessary to train new models for evaluating other rebalancing
strategies.

It was possible to observe that the metaheuristics used to solve the SDM have a better
performance because they produce portfolios with more stable tracking errors over the
out-of-sample period than the metaheuristic that solves the RDM. Also, when comparing
the two SDM metaheuristics, SDM-SAAGA-GAN and SDM-SBDGA-GAN, it was possible
to see that SDM-SBDGA-GAN, which considers scenario-based dominance, was better
than SDM-SAAGA-GAN. More stable portfolios were also observed when extending the
SBD approach to hybrid GAs for the highest and lowest rebalancing frequencies, 𝑣 = 10
and 𝑣 = 40, respectively. It was also possible to draw some discussions about two problems
associated with how bad quality simulation data may impact portfolio construction. This
study proposes to keep the focus on getting better index simulation data by feeding more
input information about the index in GAN or by finding ways to measure the index
simulated data quality. These potential solutions will be evaluated in future work.

This work shows the potential that synthetic data generated by GANs can have in index
tracking models based on the mathematical programming framework. Thus, it is possible
to add more realistic constraints, such as transaction costs, turnover, and others presented
in Liagkouras & Metaxiotis (2018), which can be handled by genetic algorithms. Also, to
increment the performance of this GAN-based approach to build tracking portfolios, one
could first evaluate what would be the best value for 𝑏 in the RDM-GA, based on the
overall mean out-of-sample tracking error, then adjust the architecture of the adopted
GAN network to handle this change in the size of the input, before training the GAN
model.

One of the main challenges of this study is the way in which the performance of GAN
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models is evaluated when applied to combinatorial portfolio optimization models. Thus,
the definition of quality metrics for a set of simulations 𝑆 that outputs a judgement about
the capacity of 𝑆 to produce good portfolios or using time series cluttering reduction
approaches (ZHAO et al., 2022) to better visualize the GAN outputs in this context is
one direction. The development of better methods to incorporate information associated
with simulation produced by GANs in the solvers is another challenge. Another challenge
associated with realistic applications of GANs in this context is to propose ways to handle
their unstable training process.

Future work involves the evaluation of other formulations for multiple-scenario index
tracking, and also for enhanced index tracking (GUASTAROBA; SPERANZA, 2012; YANG;

HUANG; HONG, 2023), by evaluating other realistic constraints and objectives. Although the
SAA approach was evaluated, there is also the possibility to investigate the performance of
the Stochastic Approximation (SA) approach in this problem (MELLO; BAYRAKSAN, 2014).
It is possible to use simulated scenarios to increment our previous work on preference
learning in the portfolio optimization context (SILVA; FILHO, 2021b). It shouldn’t be
forgotten that although SDM-SBDGA-GAN performed better than SDM-SAAGA-GAN,
the former is more computationally costly than the latter. Thus, proposing new ways to
reduce the computational cost of SDM-SBDGA-GAN, while maintaining the quality of its
solutions, is a research direction.

Finally, taking into consideration a recent survey of the field (NIKOLENKO, 2019), it
would be interesting to evaluate the impact of including synthetic data in the training set,
since there is a limited amount of financial assets data. Synthetic data could also be used
to increment the training process of reinforcement learning approaches, which have been
adopted in investment problems (SCHNAUBELT, 2022; LIN et al., 2022).
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4 A SIMULATED IMO-DRSA APPROACH FOR COGNITIVE EFFORT REDUC-
TION IN THE CLASSICAL MULTIOBJECTIVE PORTFOLIO INTERACTIVE
OPTIMIZATION

Obtaining the optimal Pareto front in multiobjective portfolio problems can be impractical
when considering real-world constraints, such as portfolio cardinality. Thus, it is interesting
to consider multiobjective evolutionary algorithms to solve this type of problem in a
reasonable time, but without quality guarantees (SILVA; FILHO, 2021b). IMO-DRSA can
reduce the search space using the preference information of the investor until the most
preferable solution is found. The problem is that there is no evidence on how to reduce the
number of representative portfolios to minimize DM cognitive effort during the interaction,
taking the satisfaction of preferences in future distributions of portfolio components returns
into account.

The objective of this work was to provide a way to support the reduction of the
number of representative examples presented for the investor, while regarding out-of-
sample preference satisfaction of the examples that compose a data table. A simulation
approach was proposed to analyze and compare methods that select a small and robust
sample of representative solutions to compose data tables.

Multiobjective portfolio optimization has been one of the main areas of research in
financial MCDM (ZOPOUNIDIS et al., 2015; ALMEIDA-FILHO; SILVA; FERREIRA, 2021).
Approaches that incorporate DM’s preferences to solve this problem are interesting
because the search can be performed in specific regions of the approximate efficient frontier
(Purshouse et al., 2014; Yu; Jin; Olhofer, 2019). Recent advances involve the application of
Machine learning techniques to learn preference information. Hu et al. (HU et al., 2019)
proposed an MCDM approach based on dynamic feature analysis, where decision trees
learn preference structures. The authors used functions to model simulated preferences
and tested their algorithm capacity to learn the simulated DM’s preferences. Mendonça et
al. (MENDONçA et al., 2020) proposed a parallel NSGA-II to find the approximate Pareto
frontier and solutions contained in the frontier are selected by a neural network. The
proposed neural network compares two solutions and returns the best solution reflecting
the preferences learned from the DM.

Köksalan and Şakar (KöKSALAN; ŞAKAR, 2016) developed a procedure in which the
DM preferences are elicited through an interactive weighted Tchebycheff procedure, where
for each iteration the DM chooses from a small set of solutions of a multi-period portfolio
optimization problem with 3 criteria. Fernandez et al. (FERNANDEZ et al., 2019) used an
interval-based outranking approach to capture uncertainty in the DM’s preferences and
simulated directly elicited preference parameters. The approach allowed searching for the
most suitable portfolio by aggregating all the criteria required by the DM through fuzzy logic
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in a bi-criteria optimization problem. Borovicka (BOROVIčKA, 2020) experimented with the
construction of portfolios under uncertainty by using an interactive fuzzy multiobjective
procedure to handle vague preference information and input data.

In IMO-DRSA, the interaction with the DM is processed using the DRSA, which
is a method that learns the DM’s preferences with decision examples and structure it
using logical rules (GRECO; MATARAZZO; SŁOWIŃSKI, 2008; Purshouse et al., 2014; GRECO;

MATARAZZO; SŁOWIŃSKI, 2010). IMO-DRSA have been customized for different problems,
such as pavement maintenance (AUGERI; GRECO; NICOLOSI, 2019), space-time models
for facility location (BARBATI; CORRENTE; GRECO, 2020), and portfolio optimization
(SALVATORE; MATARAZZO; SŁOWIŃSKI, 2013). To the best of our knowledge, the work of
Greco et al. (SALVATORE; MATARAZZO; SŁOWIŃSKI, 2013) was the first to apply IMO-
DRSA in the financial portfolio optimization context using the MVO model. The study
adopts meaningful quantiles of the candidate portfolio’s return distribution to represent
uncertainty and extract DM preferences. In this work we address Greco et al. (SALVATORE;

MATARAZZO; SŁOWIŃSKI, 2013) proposed increment for IMO-DRSA, in the portfolio
optimization context, to deal with distributions of returns over time.

4.1 PROPOSED SIMULATION APPROACH

The first step of IMO-DRSA is to generate an initial set 𝑆0 of solutions performing some
iterations of the evolutionary algorithm. Then, a data table is generated from 𝑆0 and
the DM can perform two actions, one is to choose a solution (stop) and the other is to
select a subset of solutions and classify them as ’good’ (and begin new interaction). When
the DM chooses a unique solution, IMO-DRSA is terminated, otherwise, a rule induction
algorithm is applied to the data table. After rule induction, the DM chooses a subset of
rules and the evolutionary algorithm performs a search respecting the rule chosen by the
DM. Finally, the DM chooses an action or interacts again (the loop starts over) (GRECO;

MATARAZZO; SŁOWIŃSKI, 2008). We developed a way to simulate different choices of
solutions, rules, and interactions of the DM. Now, the concepts will be presented along
with an illustrative example of a bi-objective portfolio optimization problem, where the
objective to be minimized is risk (𝜎) and the objective to be maximized is return (𝜇𝑟).

The simulation approach is based on the IMO-DRSA loop. The finite set of outcomes
containing all possibilities of DMs and solutions is represented by a tree, shown in Figure
23. The white node 𝑆0 represents the initial set of solutions shown to the DM at the
beginning of the first interaction and black nodes are solutions obtained by the evolutionary
algorithm after some interaction has been performed.

For instance, 𝑆𝐸1 is a set of solutions generated by the evolutionary algorithm, where
its non-dominated solutions will be presented to the DM at the beginning of interaction 4
after he/she chooses rule AW at the end of interaction 1, rule CY at the end of interaction
2 and rule E1 at the end of interaction 3.
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Figure 23 – Proposed DM sampling approach.

A sample-path is a path that begins in 𝑆0 and terminates in a chosen non-dominated
solution 𝑥 ∈ 𝑆𝑦 or extends to 𝑆𝑦+1. A representative set of non-dominated solutions from
𝑆𝑦−1 is presented for the DM in the form of a data table 𝐷𝑇 𝑦. If the DM chooses a
subset of ’good’ solutions instead of a unique solution from 𝐷𝑇 𝑦, a set of rules is induced
and he/she chooses 𝑟𝑢𝑙𝑒𝑦 to represent his/her preferences. The sample-path is defined by
its maximum interaction level 𝑦𝑚𝑎𝑥, the sequence of rules (interaction choices) induced
according to the type of investor 𝐷𝑀𝑡𝑦𝑝𝑒 in past interactions, and the final most preferable
solution.

Illustrations of sample-paths with 𝑦𝑚𝑎𝑥 = 4 for two different types of investors are
shown in Figure 24. The blue and orange lines could represent risk-averse and risk-prone
investor interaction choices, respectively. We can see that for each type of investor and
interaction level 𝑦, a data table 𝐷𝑇 𝑦 was generated from 𝑋𝐷𝑇 𝑦 ⊂ 𝑆𝑦−1, a 𝑟𝑢𝑙𝑒𝑦 was
induced from 𝐷𝑇 𝑦 and 𝑆𝑦 was generated by the evolutionary algorithm constrained by
𝑟𝑢𝑙𝑒𝑦. Considering the blue line, if |𝐷𝑇 4| = 15, then there are 15 sample-paths (or 15
simulated risk-averse investors). The only difference between these 15 sample-paths is the
solution choice at the end of interaction 4.

Each 𝑆𝑦−1 contains |𝑋𝐷𝑇 𝑦 | representative non-dominated solutions, which represent
|𝑋𝐷𝑇 𝑦 | different DMs. Our approach implies supporting the reduction of 𝑋𝐷𝑇 𝑦 , before
showing it to the DM in interaction 𝑦. Thus, what we want is to show a small subset
of good solutions. When we say good, we mean a portfolio with a high probability of
satisfying DM rules (obtained in the last interaction) in the out-of-sample period.
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Figure 24 – Two sample-paths originated from 𝑆0.

This study proposed algorithm 6 to enable the generation of branches from each node
of the IMO-DRSA process tree presented in Figure 23. Each run of this algorithm implies
simulating, for each level of interaction 𝑦, unique choices of 𝑋𝐷𝑇 𝑦 , and 𝑟𝑢𝑙𝑒𝑦, starting from
a node 𝑆𝑦−1 that was not branched yet. Also, this algorithm simultaneously simulates
choices of solutions that compose the data table 𝑋𝐷𝑇 𝑦 , which represent terminations of
the IMO-DRSA procedure (|𝑋𝐷𝑇 𝑦 | different simulated investors).

Figure 25 illustrates this algorithm generating 𝑆1 starting from 𝑆0, considering a bi-
criteria portfolio optimization problem and its associated theoretical true efficient frontier.
𝐷𝑇 𝑦 elements will be selected and classified by the simulated DM in lines 1-10, where 𝑦 is
the current interaction level, and 𝐷𝑇𝑠𝑖𝑧𝑒 is the size of the data table. If 𝐷𝑇𝑠𝑖𝑧𝑒 = 6, we
could have 2 solutions classified as ’good’ and 4 solutions classified as ’others’, which gives
6 elements constituting the data table.

If 𝑦 = 1 X is equal to the initial random solution set 𝑆0. Next, a random subset of non-
dominated feasible solutions of 𝑋, named 𝑋𝐷𝑇 𝑦 , containing 𝐷𝑇𝑠𝑖𝑧𝑒 elements is generated
by using the 𝑟𝑎𝑛𝑑𝑆𝑢𝑏𝑠𝑒𝑡(𝑋,𝐷𝑇𝑠𝑖𝑧𝑒) function. We adopted a random subset because we
consider that no a priori information of the DM is collected before the initialization of
IMO-DRSA.

If 𝑦 > 1, 𝑆𝑦−1 is assigned to be the initial solution 𝑋, which is a node (any black
node of the tree presented in Figure 23) that was not branched yet. The function
𝑔𝑒𝑛𝐷𝑎𝑡𝑎𝑇𝑎𝑏𝑙𝑒(𝑆𝑦−1, 𝐷𝑇𝑠𝑖𝑧𝑒) is defined by the analyst and uses a data table construc-
tion method to select a subset 𝑋𝐷𝑇 𝑦 ⊂ 𝑆𝑦−1 of robust solutions, where |𝑋𝐷𝑇 𝑦 | = 𝐷𝑇𝑠𝑖𝑧𝑒.
Finally, if 𝑦 is not the last interaction, 𝐷𝑇 𝑦 is generated by classifying elements from
𝑋𝐷𝑇 𝑦 according to 𝐷𝑀𝑡𝑦𝑝𝑒 at line 10.

Lines 11 and 12 use DRSA to induce a set of rules from 𝐷𝑇 𝑦 and sample one rule from
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Algorithm 6: simulateInteraction
1 Input: 𝑣0, 𝐷𝑀𝑡𝑦𝑝𝑒, 𝛾, 𝑝𝑎𝑟𝑠𝑒𝑣𝑜𝑙, 𝐷𝑇𝑠𝑖𝑧𝑒, 𝑦, 𝑆𝑦−1, 𝑦𝑚𝑎𝑥

2 Output: 𝑆𝑦, 𝐷𝑇 𝑦, 𝑟𝑢𝑙𝑒𝑦, 𝐷
1: 𝑋 = 𝑆𝑦−1

2: if 𝑦 == 1 then
3: 𝑋𝐷𝑇 𝑦 = 𝑟𝑎𝑛𝑑𝑆𝑢𝑏𝑠𝑒𝑡(𝑋, 𝐷𝑇𝑠𝑖𝑧𝑒)
4: else
5: 𝑋𝐷𝑇 𝑦 = 𝑔𝑒𝑛𝐷𝑎𝑡𝑎𝑇𝑎𝑏𝑙𝑒(𝑋, 𝐷𝑇𝑠𝑖𝑧𝑒)
6: end if
7: 𝑑𝑎𝑡𝑎𝑇𝑎𝑏𝑙𝑒 = {}
8: 𝑟𝑢𝑙𝑒 = {}
9: if 𝑦 < 𝑦𝑚𝑎𝑥 then

10: 𝑑𝑎𝑡𝑎𝑇𝑎𝑏𝑙𝑒 = 𝑔𝑒𝑡𝐸𝑣𝑎𝑙(𝑋𝐷𝑇 𝑦 , 𝐷𝑀𝑡𝑦𝑝𝑒)
11: 𝑟𝑢𝑙𝑒𝑠 = 𝑔𝑒𝑡𝑅𝑢𝑙𝑒𝑠(𝑑𝑎𝑡𝑎𝑇𝑎𝑏𝑙𝑒)
12: 𝑟𝑢𝑙𝑒 = 𝑠𝑎𝑚𝑝𝑙𝑒(𝑟𝑢𝑙𝑒𝑠, 1)
13: 𝑋𝑓

𝑟𝑢𝑙𝑒 = {}
14: while |𝑋𝑓

𝑟𝑢𝑙𝑒|/|𝑋| < 𝛾 do
15: 𝑋 = 𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑎𝑟𝑦𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚(1, 𝑝𝑎𝑟𝑠𝑒𝑣𝑜𝑙, 𝑟𝑢𝑙𝑒)
16: 𝑋𝑓

𝑟𝑢𝑙𝑒 = 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒(𝑋, 𝑟𝑢𝑙𝑒)
17: end while
18: end if
19: 𝑆𝑦 = 𝑋
20: 𝐷𝑇 𝑦 = 𝑑𝑎𝑡𝑎𝑇𝑎𝑏𝑙𝑒
21: 𝑟𝑢𝑙𝑒𝑦 = 𝑟𝑢𝑙𝑒
22: 𝐷 = 𝑋𝐷𝑇 𝑦

Figure 25 – Generating 𝑆1 using 𝐷𝑇 1.
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this set, respectively. The set of non-dominated feasible solutions 𝑋𝑓
𝑟𝑢𝑙𝑒 ⊂ 𝑆𝑦 is initialized

in line 13. The while loop (lines 14-17) runs one generation of the evolutionary algorithm
constrained by 𝑟𝑢𝑙𝑒𝑦 until the proportion of non-dominated feasible solutions in 𝑆𝑦 is
bigger than 𝛾. We use this condition to stop the evolutionary algorithm since we want a
good number of non-dominated feasible solutions in 𝑆𝑦. The storage of outputs that will
be used to produce a new 𝑆𝑦+1 in the next interaction occurs at lines 19-21. The simulated
DMs, or equivalently, the available choice alternatives 𝑋𝐷𝑇 𝑦 in data table 𝐷𝑇 𝑦, are stored
at line 22.

Algorithm 7 was proposed in this work and used to run IMO-DRSA simulations. The
following parameters must be specified: 𝑣0, 𝛾, 𝑦𝑚𝑎𝑥, 𝑝𝑎𝑟𝑠𝑒𝑣𝑜𝑙, 𝐷𝑇𝑠𝑖𝑧𝑒, 𝐷𝑀𝑡𝑦𝑝𝑒𝑠, 𝑛𝑅𝑢𝑛𝑠. All
these parameters were already presented previously, except 𝑛𝑅𝑢𝑛𝑠, which is the number
of different random origins 𝑆0 of the sample-paths. This algorithm writes sample-paths
starting from interaction 1 and finishing in interaction 𝑦𝑚𝑎𝑥 for all types of investors.
Figure 24 shows the sample-paths of two types of investors generated by lines 3-14 of this
algorithm.

First, an initial set of feasible solutions 𝑆 = 𝑆0 is generated through 𝑣0 iterations of
the multiobjective evolutionary algorithm with its set of parameters 𝑝𝑎𝑟𝑠𝑒𝑣𝑜𝑙. Then, the
algorithm starts to generate the path from 𝑆0 for each type of investor. The simulation
results can be structured in .txt files stored in paths defined by the 𝐷𝑀𝑡𝑦𝑝𝑒 and 𝑒𝑥𝑒𝑐.
In lines 7-14, the function 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛() is called and returns the results of the
interaction, which are stored in the disk.

Algorithm 7: Simulated IMO-DRSA
1 Input: 𝑣0, 𝛾, 𝑦𝑚𝑎𝑥, 𝑝𝑎𝑟𝑠𝑒𝑣𝑜𝑙, 𝐷𝑇𝑠𝑖𝑧𝑒, 𝐷𝑀𝑡𝑦𝑝𝑒𝑠, 𝑛𝑅𝑢𝑛𝑠
2 Output: simulated data tables, rules and solution choices

1: 𝑒𝑥𝑒𝑐 = 1
2: for 𝑒𝑥𝑒𝑐 ≤ 𝑛𝑅𝑢𝑛𝑠 do
3: 𝑆0 = 𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑎𝑟𝑦𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚(𝑣0, 𝑝𝑎𝑟𝑠𝑒𝑣𝑜𝑙)
4: for each 𝑑 ∈ 𝐷𝑀𝑡𝑦𝑝𝑒𝑠 do
5: 𝑆 = 𝑆0

6: 𝑦 = 1
7: for 𝑦 ≤ 𝑦𝑚𝑎𝑥 do
8: 𝑆, 𝐷𝑇 , 𝑟𝑢𝑙𝑒, 𝐷 = 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛(
9: 𝑑, 𝛾, 𝑝𝑎𝑟𝑠𝑒𝑣𝑜𝑙, 𝐷𝑇𝑠𝑖𝑧𝑒, 𝑦, 𝑆)

10: 𝑤𝑟𝑖𝑡𝑒(𝑆, ’𝑑/𝑒𝑥𝑒𝑐/S𝑦.txt’ )
11: 𝑤𝑟𝑖𝑡𝑒(𝐷𝑇, ’𝑑/𝑒𝑥𝑒𝑐/DT𝑦.txt’ )
12: 𝑤𝑟𝑖𝑡𝑒(𝑟𝑢𝑙𝑒, ’𝑑/𝑒𝑥𝑒𝑐/rule𝑦.txt’ )
13: 𝑤𝑟𝑖𝑡𝑒(𝐷, ’𝑑/𝑒𝑥𝑒𝑐/𝑠𝑜𝑙𝐶ℎ𝑜𝑖𝑐𝑒𝑠𝑦.txt’ )
14: y = y + 1
15: end for
16: end for
17: exec = exec + 1
18: end for
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4.1.1 Data table generation analysis

The proposed simulation approach can be used to investigate different data table generation
methods through the 𝑔𝑒𝑛𝐷𝑎𝑡𝑎𝑇𝑎𝑏𝑙𝑒(𝑆𝑦−1, 𝐷𝑇𝑠𝑖𝑧𝑒) function. These methods will assign
non-dominated feasible solutions from 𝑆𝑦 to the data table 𝐷𝑇 𝑦+1, such that the size of
this data table is small, to reduce cognition, and the alternatives contained in it are robust,
in the sense that they will, potentially, fulfill the investor’s preferences (𝑟𝑢𝑙𝑒𝑦) over a good
portion of the out-of-sample period. We will demonstrate how this investigation can be
performed by using two simple data table generation methods.

First, we will define 𝑓𝑟𝑒𝑓 , a reference point in the multiobjective space that will be
used to compute the quality of the non-dominated feasible solutions in both methods The
evaluation of a solution 𝑥 ∈ 𝑆𝑦 in an objective 𝑚 is given by 𝑓𝑚(𝑥). 𝑆𝑦 contains solutions
constrained by 𝑟𝑢𝑙𝑒𝑦, and this rule contains a maximum number of 𝑀 conditions. Each
condition defines an upper (Eq. 4.1) or lower (Eq. 4.2) bound constraint on objective 𝑚.

𝑓𝑚(𝑥) ≤ 𝑢𝑏𝑚 (4.1)

𝑓𝑚(𝑥) ≥ 𝑙𝑏𝑚 (4.2)

We refer to any of these two types of bound values as 𝐵𝑚. The reference point is
defined as follows:

𝑓𝑟𝑒𝑓 = (𝑓 1
𝑟𝑒𝑓 , ..., 𝑓

𝑀
𝑟𝑒𝑓 ) (4.3)

where 𝑓𝑚
𝑟𝑒𝑓 = argmax

𝑓𝑚(𝑥)
|𝑓𝑚(𝑥)−𝐵𝑚|, 𝑥 ∈ 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒(𝑆𝑦). 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒(𝑆𝑦) is the set containing

solutions 𝑥 ∈ 𝑆𝑦 whose objective evaluations satisfy 𝑟𝑢𝑙𝑒𝑦 conditions. This is simply
establishing that the reference point will be constituted of each objective value farthest
from each rule condition that bounds it.

The reference point is illustrated in Figure 26. In this figure, the solutions are constrained
by two rules in a bi-objective portfolio optimization problem. In this illustration we use
the term ’auxiliary points’ to refer to 𝑓𝜎 and 𝑓 𝑟. Now, the data generation methods are
presented.

• Method 1 (𝑐𝑙𝑜𝑠𝑒𝑟): this method chooses the solutions whose objective evaluations
are most closer to the reference point 𝑓𝑟𝑒𝑓 to compose the data table 𝐷𝑇 𝑦+1.

• Method 2 (𝑓𝑎𝑟𝑡ℎ𝑒𝑟): this method chooses the solutions whose objective evaluations
are most farther from the reference point 𝑓𝑟𝑒𝑓 to compose the data table 𝐷𝑇 𝑦+1.

The distance of the solution’s objective evaluation 𝑓(𝑥) = (𝑓 1(𝑥), ..., 𝑓𝑀(𝑥)) to the
reference point can be measured by any distance metric, such as an euclidian norm.
Solutions are added to 𝑋𝐷𝑇 𝑦+1 until |𝑋𝐷𝑇 𝑦+1| = 𝐷𝑇𝑠𝑖𝑧𝑒.



91

Figure 26 – Reference point computation.

A data table generation method can be evaluated through metrics concerning the data
table’s solutions performance in the out-of-sample period 𝑡. We define two here: mean
number of feasible solutions (NMFS𝑦

𝑡 ) and mean infeasibility (MI𝑦
𝑡 ) at evaluation period t,

and interaction level 𝑦.

NMFS𝑦
𝑡 =

∑︀𝑛𝑅𝑢𝑛𝑠
𝑤=1 |𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒(𝑋𝐷𝑇 𝑦 ,𝑤)|

𝑛𝑅𝑢𝑛𝑠
(4.4)

MI𝑦
𝑡 =

∑︀𝑛𝑅𝑢𝑛𝑠
𝑤=1

∑︀
𝑥∈𝑋𝐷𝑇 𝑦,𝑤−𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒(𝑋𝐷𝑇 𝑦,𝑤) 𝐼(𝑥)

𝑛𝑅𝑢𝑛𝑠
(4.5)

The objective of NMFS𝑦
𝑡 is straightforward, since we want to evaluate the method

capacity to select robust solutions that satisfy DM’s preferences in the out-of-sample
period. MI𝑦

𝑡 is used to analyze on average how bad the infeasible solutions of 𝑋𝐷𝑇 𝑦 ,𝑤 are,
where 𝐼(𝑥) = ∑︀

𝑚=1−|𝑓𝑚(𝑥)−𝐵𝑚| is the infeasibility of solution 𝑥 with respect to 𝑟𝑢𝑙𝑒𝑦−1.
These metrics are only calculated for 𝑦 > 1, since the rules are induced after interaction 1.

4.1.2 Analysis with different types of investors

In this simulation approach, the analyst may also include different types of investors using
the 𝑔𝑒𝑡𝐸𝑣𝑎𝑙(𝑋𝐷𝑇 𝑦 , 𝐷𝑀𝑡𝑦𝑝𝑒) function, which simulates data table classifications. Consider
the data table constructed by some of the methods described in subsection 4.1.1 showed
in Table 6.

In this data table, 𝐷𝑇𝑠𝑖𝑧𝑒 = 6, and it was required that the simulated investor indicated
three ’good’ solutions and three ’other’ solutions. Two types of investors were considered:
the risk-averse investor will always choose the subset of least risky assets, whereas the
risk-prone investor will choose the subset of most profitable assets. Columns 4 and 5 of
Table 6 contain the result of the classification of the decision examples of this data table
performed by simulated risk-averse and risk-prone investors, respectively. The analyst may
explore different investors instead of these extreme types.
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Table 6 – Classification performed by two types of simulated investors

solution risk return risk-averse risk-prone
𝑥1 0.0001 0.002 good other
𝑥2 0.0003 0.005 good other
𝑥3 0.0004 0.006 good other
𝑥4 0.0005 0.010 other good
𝑥5 0.0009 0.013 other good
𝑥6 0.0012 0.020 other good

4.2 CASE STUDY: EXPERIMENTAL SETUP

In this section, the simulation approach configurations, the chosen data set containing stock
data, the portfolio optimization model, the evolutionary algorithm, and the evaluation
metrics used for the case study are presented.

4.2.1 Data and software

Data is from OR-library (<http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files>), con-
taining 291 weekly price data for the stocks of Nikkei 225 index. We adopted an in-sample
period of 240 weeks to perform the optimization and evaluated the portfolios in an out-
of-sample period of 50 weeks so that we can calculate the evaluation metrics. Portfolio’s
risk and return were recalculated in each out-of-sample week. Rules were inducted by the
VC-DOMLEM algorithm which is available in software jMAF(BŁASZCZYŃSKI et al., 2013).

4.2.2 Portfolio optimization model

MVO formulations are largely applied in evolutionary portfolio optimization studies, where
the most commonly used risk measure is variance. Incorporating practical constraints to
MVO, a CCPO model is assembled in its multiobjective form and shown below.

minimize 𝑤𝑇 Ω𝑤 (4.6)

maximize 𝜇𝑇𝑤 (4.7)

subject to 𝜖𝑍𝑖 ≤ 𝑤𝑖 ≤ 𝜓𝑖𝑍𝑖 for each 𝑖 ∈ 1, ..., 𝑁 (4.8)
𝑁∑︁

𝑖=1
𝑍𝑖 = 𝐾 (4.9)

𝑁∑︁
𝑖=1

𝑤𝑖 = 1 (4.10)

𝑍𝑖 ∈ {0, 1} (4.11)

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files
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where 𝑝𝑖𝑡 is the price of asset 𝑖 a time 𝑡, where 𝑡 ∈ {1, ..., 𝑇}, the return of asset 𝑖 after 𝑑
periods is defined as 𝑟𝑖𝑡 = ln

(︁
𝑝𝑖𝑡

𝑝𝑖(𝑡−𝑑)

)︁
(CHANG et al., 2000; BEASLEY; MEADE; CHANG, 2003).

Threshold/holding/floor-ceiling (4.8) and cardinality (4.9) constraints can be included
in the model to reduce undesirable extra transaction costs (FABOZZI et al., 2007), where
𝑍𝑖 are binary variables. 𝑍𝑖 = 1 if asset 𝑖 is included in the portfolio and 𝑍𝑖 = 0 if 𝑖 is
not included. Equation (4.8) ensures that if an asset 𝑖 belongs to the portfolio, then its
proportion 𝑤𝑖 must lie between 𝜖𝑖 and 𝜓𝑖, otherwise, if 𝑖 is not contained in the portfolio,
𝑤𝑖 = 0. Equation (4.9) restrict the number of assets contained in the portfolio to 𝐾. We
adopted 𝜖𝑖 = 0, 𝜓𝑖 = 1 and 𝐾 = 10.

4.2.3 Multiobjective evolutionary algorithm

We choose NSGA-II (Deb et al., 2002), a non-dominated sorting-based multiobjective
algorithm, since it is usually adopted to solve constrained multiobjective portfolio selection
problems and has competitive performance (LIAGKOURAS; METAXIOTIS, 2018; KALAYCI;

ERTENLICE; AKBAY, 2019). The time complexity of NSGA-II is 𝑂(𝐼2𝑀).The hybrid
encoding proposed by Streichert (Streichert; Ulmer; Zell, 2004) was used. The weights of a
portfolio are represented by a real-valued vector w = {𝑤1, 𝑤2, ..., 𝑤𝑁} and the included
assets are defined by a binary vector B = {𝑍1, 𝑍2, ..., 𝑍𝑁}. The number of individuals
adopted was 250. The selected genetic operators are described below. We choose NSGA-
II (Deb et al., 2002), a non-dominated sorting-based multiobjective algorithm, since it is
usually adopted to solve constrained multiobjective portfolio selection problems and has
competitive performance (LIAGKOURAS; METAXIOTIS, 2018; KALAYCI; ERTENLICE; AKBAY,
2019). The hybrid encoding proposed by Streichert (Streichert; Ulmer; Zell, 2004) was used.
The weights of a portfolio are represented by a real-valued vector w = {𝑤1, 𝑤2, ..., 𝑤𝑁}
and the included assets are defined by a binary vector B = {𝑍1, 𝑍2, ..., 𝑍𝑁}. The number
of individuals 𝐼 adopted was 250. The selected genetic operators are described below.

• Selection: Binary tournament selection is the most commonly used selection
strategy in the portfolio selection field (LIAGKOURAS; METAXIOTIS, 2018). This
operator concerns the competition of two solutions in a tournament for a place in
the mating pool. The winner of the tournament is the solution contained in the best
non-dominated front, or, if both solutions belong to the same front, the solution
with a higher crowding-distance.

• Crossover: Uniform crossover was applied to the binary vector, as it was performed
in many studies involving cardinality constrained portfolio selection (LIAGKOURAS;

METAXIOTIS, 2018). In this operator, a single child is generated from two parents.
Assets that are included in both parents will also be present in the child. Assets
contained in only one of the parents have a 50% chance of being present in the child.
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We adopted 𝑝𝐶 = 1.0 (ANAGNOSTOPOULOS; MAMANIS, 2010; ANAGNOSTOPOULOS;

MAMANIS, 2011).

• Mutation: Sant’Anna et. al (SANT’ANNA et al., 2017) bit-flip mutation operator was
applied in the binary vector of an individual with probability 𝑝𝐵 = 1

𝑁
. It exchange

one stock contained in the portfolio by another not contained in the portfolio. A
gaussian random mutation with 𝜎 = 0.15 is applied in each decision variable on the
real-valued genotype. (ANAGNOSTOPOULOS; MAMANIS, 2011; Streichert; Ulmer; Zell,
2004).

4.2.4 Simulation configurations

The input parameter used for the simulation approach were: 𝑣0 = 50, 𝑦𝑚𝑎𝑥 = 3, 𝐷𝑇𝑠𝑖𝑧𝑒 = 6,
𝐷𝑀𝑡𝑦𝑝𝑒𝑠 = {𝑟𝑖𝑠𝑘−𝑎𝑣𝑒𝑟𝑠𝑒, 𝑟𝑖𝑠𝑘−𝑝𝑟𝑜𝑛𝑒}, 𝑛𝑅𝑢𝑛𝑠 = 30. For y = 1, 𝛾 = 0.35, and for y = 2,
𝛾 = 0.05. It was necessary to decrease 𝛾 because it was noted in preliminary tests that as 𝑦
grows, it takes much more CPU time to get the same proportion of non-dominated feasible
solutions of 𝑆𝑦−1 in 𝑆𝑦. Evolutionary algorithm’s 𝑝𝑎𝑟𝑠𝑒𝑣𝑜𝑙 was defined in Subsection 4.2.3.

For simplification, the rules were induced using data tables from the generation Method
1 (closer) only, but the solutions 𝑋𝐷𝑇 𝑦 were generated using the two methods. Then each
call to function simulateInteraction() returned 𝑋𝐷𝑇 𝑦 = (𝑋𝑐𝑙𝑜𝑠𝑒𝑟

𝐷𝑇 𝑦 , 𝑋𝑓𝑎𝑟𝑡ℎ𝑒𝑟
𝐷𝑇 𝑦 ).

4.3 CASE STUDY: RESULTS AND DISCUSSION

The case study results involve two parts, one concerning the comparison between data
table generation methods, and another concerning the impact of the interaction level in
rule satisfaction over time. In these two parts, the results of both types of investors have
also been compared.

4.3.1 Comparison of data table generation methods in the out-of-sample period

Figure 27 shows NMFS𝑦
𝑡 (solid line) and the estimated 95% confidence interval of

|𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒(𝑋𝐷𝑇 𝑦 ,𝑤)| for Method 1 (closer) and Method 2 (farther) for the risk-averse
investor. It can be observed that the NMFS𝑦

𝑡 of both data generation method is practi-
cally the same for this type of investor. The overall performance shows that the mean
number of feasible solutions is almost constant from 𝑡 = 0 until 𝑡 = 10 and then de-
creases. Figure 28 shows MI𝑦

𝑡 (solid line) and the estimated 95% confidence interval of∑︀
𝑥∈𝑋𝐷𝑇 𝑦,𝑤−𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒(𝑋𝐷𝑇 𝑦,𝑤) 𝐼(𝑥), and the infeasibility is also equivalent for both methods.

The NMFS𝑦
𝑡 for the risk-averse type, is presented in Figure 29 and the performance for

both methods is similar, but the overall performance showed that NMFS𝑦
𝑡 increases over

time, in contrast with the risk-averse portfolios. The infeasibility over time is shown in 30
and is also reduced over time. Due to the selection of high-risk stocks by the risk-prone
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Figure 27 – NMFS𝑦
𝑡 over the out-of-sample period for the risk-averse investor. Solutions

obtained with 2 interactions.

Figure 28 – MI𝑦
𝑡 over the out-of-sample period for the risk-averse investor. Solutions

obtained with 2 interactions.

investor, the overall behavior of NMFS𝑦
𝑡 and MI𝑦

𝑡 over the out-of-sample period is more
oscillatory in comparison with the risk-averse investor. It can be seen that the selected
portfolios’ return increased over time and therefore, the mean number of feasible solutions
increased since the constraint’s bound on return is fixed.

4.3.2 Analysis of the impact of the interaction level on out-of-sample rule satisfac-
tion

The next results concern the following question: what happens with preference satisfaction
over time when more interactions are performed? Observing Figure 31, NMFS𝑦

𝑡 is higher
and more stable when the interaction level is higher, which shows that, for the risk-
averse investor, choosing to interact again and spend more time running the evolutionary
algorithm to search for low-risk portfolios provide better rule satisfaction over time. Figure
32 shows that more interaction does not decrease or increase MI𝑦

𝑡 over time in comparison
to performing less interaction.

Observing Figure 33, NMFS𝑦
𝑡 behaviour for performing more interaction is similar to
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Figure 29 – NMFS𝑦
𝑡 over the out-of-sample period for the risk-prone investor. Solutions

obtained with 2 interactions.

Figure 30 – MI𝑦
𝑡 over the out-of-sample period for the risk-prone investor. Solutions ob-

tained with 2 interactions.

Figure 31 – NMFS𝑦
𝑡 over the out-of-sample period for the risk-averse investor using the

Method 1 (closer).
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Figure 32 – MI𝑦
𝑡 over the out-of-sample period for the risk-averse investor using the Method

1 (closer).

Figure 33 – NMFS𝑦
𝑡 over the out-of-sample period for the risk-prone investor using the

Method 1 (closer).

performing less interaction. But, there is a difference concerning the standard deviation
of the number of feasible solutions contained in the generated data tables, where more
interaction implied a more volatile preference satisfaction. 34 shows the same result for
infeasibility, where more interaction is associated with volatile infeasibility. For the risk-
prone investor, there exists some uncertainty in the two performance metrics when more
interaction is performed.

The results showed that both data table generation methods have similar performance
in both metrics. But, when comparing the overall performance of these metrics for different
types of investors, we can see that for one type of investor it can decrease over time,
and for another type, it may even increase over time. For instance, the mean number of
feasible representative solutions of the risk-prone investor gets higher than the risk-averse
investors over time. Finally, not all types of investors were benefited from performing more
interactions to optimize the considered portfolio selection problem.
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Figure 34 – MI𝑦
𝑡 over the out-of-sample period for the risk-averse investor using the Method

1 (closer).

4.4 CHAPTER CONCLUSION

This chapter proposes a simulation approach to investigate methods that reduce the
number of representative solutions that compose the data tables presented to a DM in
the IMO-DRSA procedure. The performance of representative solutions is analyzed after
some executions of the proposed simulation approach in future distributions of the stock
returns after the portfolio optimization phase using IMO-DRSA. It is possible to work
with different interaction levels and types of investors.

The case study showed that the simulation approach proposed here can be used
to test the performance of methods that select solutions that compose the data table.
The comparison is based on the performance of the portfolios selected in the data table
generated by each method. Also, one can investigate how the increase in interaction levels
can impact constraint satisfaction over time. This is interesting because it permits us to
investigate the gains of performing more interactions.

Future work may involve experiments with the use of a subset of rules instead of only
one rule per simulated DM to represent its preferences. Another direction is to evaluate the
proposed approach in more complex settings of the portfolio selection problem, i.e. more
than two objectives. Also, since rule-constrained objectives imply populations containing
a high proportion of infeasible solutions as the number of interactions grows, future work
involves the search and application of more efficient constraint handling approaches and
a comparison between different multi-objective evolutionary algorithms to be hybridized
with IMO-DRSA. Another point to be investigated is to measure gains in other variables
with experiments on humans when using this approach to select a data table reduction
method.

The simulation approach proposed in this chapter enhances the evaluation of IMO-
DRSA, enabling an assessment of how the interaction process can be designed. Additional
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aspects and experiments are explored in the next chapter.
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5 INTERACTIVELY LEARNING ROUGH STRATEGIES THAT DYNAMICALLY
SATISFY INVESTOR’S PREFERENCES IN MULTIOBJECTIVE INDEX
TRACKING

Multiobjective index tracking models optimize portfolios considering investors’ desire
to replicate or outperform a market index. Obtaining the optimal Pareto front can be
impractical as the index size grows. Thus, it is interesting to consider EMO approaches to
find good fronts in a reasonable time. We propose a way to learn a rough approximation
of the investor’s preference model to guide the EMO search for the most preferable
portfolio and to perform preference-driven portfolio updates. This model can be obtained
using Interactive Multiobjective Optimization using IMO-DRSA, which is able to guide
evolutionary algorithms using a rule-based model that is refined in each interaction with
the investor. A simulated IMO-DRSA was adopted and extended to analyse how the
number of interactions, criteria considered in the interaction, and methods for cognitive
effort reduction affect the capacity of an evolutionary algorithm to produce good portfolios
for different types of investors during interactions and to maintain their goodness over
time.

Consider a universe of assets of size 𝑁 and that there are 𝑇 + 1 historical prices for
each asset, where 𝑝𝑖𝑡 is the price of asset 𝑖 = 1, 2.., 𝑁 in time 𝑡 = 0, 1, 2, ..., 𝑇 . The return
of asset 𝑖 in 𝑡 is defined as 𝑟𝑖𝑡 = 𝑝𝑖𝑡−𝑝𝑖(𝑡−1)

𝑝𝑖(𝑡−1)
. We want to optimize the proportions of a

portfolio 𝑤 = {𝑤1, 𝑤2, ..., 𝑤𝑁} using the available return data in 𝑡 = 1, .., 𝑇 . The portfolio
return in 𝑡 is given by 𝑅𝑝

𝑡 (𝑤) = ∑︀𝑛
𝑖=1 𝑤𝑖𝑟𝑖𝑡 and 𝑅𝐼

𝑡 is the index return in 𝑡. The tracking
error between the selected portfolio and the index in 𝑡 is computed as absolute deviations
𝑇𝐸𝑡 = |𝑅𝑝

𝑡 − 𝑅𝐼
𝑡 | (FILIPPI; GUASTAROBA; SPERANZA, 2016). The excess return of the

selected portfolio w.r.t the index in 𝑡 is given by 𝐸𝑅𝑡 = 𝑅𝑝
𝑡 − 𝑅𝐼

𝑡 , and it can measure
the fund manager’s capacity to beat the target index (FILIPPI; GUASTAROBA; SPERANZA,
2016; BRUNI et al., 2015).

5.0.1 Multiobjective index tracking

Although some multiobjective index tracking research is associated with adding more
practical features in TE and/or TE variance minimization, such as the minimization of
transaction costs (CHIAM; TAN; MAMUN, 2013; GARCíA; GUIJARRO; MOYA, 2011) and
objectives to control the tracking dynamics (LI; BAO; ZHANG, 2014), most of the works
focus on Enhanced index tracking (EIT), which considers the trade-off between TE and
ER. Li, Sun & Bao (2011) proposed a Multiobjective Immune Algorithm (MIA) to find the
Pareto front of the bi-objective TE-ER model, and selected the solution with the highest
ER/TE ratio. Then, the authors applied their MIA approach in a multiobjective EIT with
additional objectives to control the time-scale features, extracted with empirical mode
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decomposition, of the positive part and negative part of the ER time series (LI; BAO, 2014).
Filippi, Guastaroba & Speranza (2016) proposed a bi-objective kernel search for the

TE-ER model and studied how to choose solutions from the front according to different
market conditions. Bruni et al. (2015) transformed the trade-off between average ER
and its downside risk in a linear model that constructs a portfolio that maximizes ER,
respecting the investor’s downside risk tolerance. Ni and Wang (NI; WANG, 2013) proposed
a model that considers TE and TE volatility, accumulated ER, and combined lexicographic
goal programming with a genetic algorithm to obtain portfolios that minimize unwanted
deviations from the most important objectives’ targets.

Some works considered fuzzy approaches to handle imprecise information. Bilbao-
Terol, Arenas-Parra & Cañal-Fernández (2012) proposed a portfolio construction method
based on Fuzzy Goal Programming (FGP) that handles both the preferences of the
investor concerning portfolio performance metrics, ethical investment and environment,
and expectations associated with uncertain parameters: future returns and ER. Wu and
Tsai (WU; TSAI, 2014) compared three FGP models that consider TE and ER as fuzzy goals,
where the preferences of the investor in each objective were represented by a nonlinear
exponential membership function. The worst out-of-sample performance was from the
max-min FGP and the best was from the additive FGP. Different from past related works,
we provide the interactive estimation of a more transparent preference model, without
parameter specification requirements, to find the most preferable portfolio.

5.0.2 Rebalancing process of index tracking portfolio

In a buy-and-hold strategy, it is possible to use a Single-period buy-and-hold strategy (SBH)
where the optimized portfolio’s position remains unchanged during all the out-of-sample
period or to use a Multi-period buy-and-hold strategy (MBH), where the portfolio positions
are adjusted to follow the market trends more precisely over time. Many studies adopt
the fixed period strategy in MBH, where the market state can be reflected by updating
the portfolio more or less frequently (daily, weekly, quarterly, or annually) considering
the trade-off between rebalance frequency and transaction costs (SANT’ANNA et al., 2017;
BILBAO-TEROL; ARENAS-PARRA; CAñAL-FERNáNDEZ, 2012; BRUNI et al., 2015).

It is also possible to consider a more adaptive strategy in MBH, named event-driven
rebalance, which controls the updating frequency depending on the market conditions in a
give period. A simple strategy is to use a TE threshold based on in-sample data (CHIAM;

TAN; MAMUN, 2013). Another strategy is to use control charts to monitor the portfolio,
such as the approach proposed by Sant’Anna et al. (2019), which combines the portfolio’s
TE and index volatility control charts information to update the portfolio. We propose a
preference-driven rebalancing strategy. Since IMO-DRSA learns rules to approximate the
investor’s preference model, we evaluate if these rules can guide the evolutionary algorithm
to maintain or even increase his/her satisfaction in the out-of-sample period.
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5.0.3 Multiobjective interactive portfolio optimization

Research on portfolio optimization with MCDM methods includes the development of
real-world constraints, risk metrics, and preference learning approaches (KALAYCI; ERTEN-

LICE; AKBAY, 2019; ALMEIDA-FILHO; SILVA; FERREIRA, 2021; ZOPOUNIDIS et al., 2015;
FERNANDEZ et al., 2019; SILVA et al., 2021). Preference learning has become a key element
in supporting multicriteria decision-making (GRECO; KADZIńSKI, 2018). According to
Mousseau & Slowinski (1998), in many cases, it is unrealistic to assume that DMs can
define a large number of parameters precisely. Thus, the use of preference disaggregation
techniques (JACQUET-LAGRèZE; SISKOS, 2001), incorporating features of mathematical
programming and artificial intelligence, to enable systems to learn from decision examples,
is present in many variations of multicriteria methods (GRECO; EHRGOTT; FIGUEIRA,
2016).

An approach to assess the capability of a preference learning method in identifying
the decision maker’s utility with respect to the considered objectives is to use simulated
preference functions or simulated decision makers, as demonstrated in recent studies on
interactive multiobjective optimization (KADZIńSKI; TOMCZYK; SłOWIńSKI, 2020; HU et al.,
2019).

In the classification problem (ROY, 1996), a set of alternatives must be allocated
to predefined classes. One can also distinguish between ordinal classification (sorting),
nominal classification, and clustering. While in sorting problems, the classes are predefined
and ordered in terms of preferences, classification problems deal with predefined but
unordered classes, and in clustering problems, the classes are neither predefined nor ordered
(OUENNICHE; PÉREZ-GLADISH; BOUSLAH, 2018). In preference disaggregation methods
used for sorting, decision examples are allocations of alternatives (real or hypothetical),
called references, to the predefined classes. Some examples of methods are UTADIS
(PARDALOS; SISKOS; ZOPOUNIDIS, 1995), DRSA (GRECO; MATARAZZO; SLOWINSKI, 2001),
the adaptation of ELECTRE-TRI (MOUSSEAU; SLOWINSKI, 1998), and PDTOPSIS-Sort
(de Lima Silva; FERREIRA; de Almeida-Filho, 2020).

Different interactive preference learning approaches have been proposed. Interactive
fuzzy procedures can obtain Pareto-optimized portfolios by requiring the DMs to express
uncertain parameters, such as the relative criteria weights, in each interaction (BOROVIčKA,
2020; MOHEBBI; NAJAFI, 2018). Shen, Lo & Tzeng (2022) used the Analytical Hierarchy
Process (AHP) to obtain a preference order over the criteria, and interactively relaxed
the imprecise fuzzy expectations on less preferable criteria until the DM selected a
Pareto-optimal portfolio. Other procedures can extract preference information by pairwise
comparison of portfolios. Karakaya and Şakar (KARAKAYA; SAKAR, 2021) used an algorithm
to estimate the relative criteria weight to optimize new portfolios, by asking the DM
to compare pairs of solutions in each interaction, and tested it in simulated preference
functions.
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Explainable machine learning approaches have been used to interactively learn rule-
based preference structures using information about the classification of representative
portfolios. Hu et al. (2019) proposed a rule-based approach based on dynamic feature
analysis. In each interaction, a random set of non-dominated portfolios were labelled
according to DM preferences, then a random forest was applied to reduce unimportant
criteria and the preference structure with the most important criteria was learned by
a decision tree. The authors evaluated their algorithm capacity to adapt to different
simulated preference functions in two cases: stable and variable preferences. Another type
of rule-based approach is DRSA, which assumes that the class labels are ordered.

Let 𝐷𝑇 be a data table, which is a tuple < 𝑈,𝑄, 𝑉, 𝑔 >, where 𝑈 is a finite set of
objects or decision examples, 𝑄 = 𝐶 ∪ 𝐷 , where C is the finite set of the conditional
attributes, and D is a decision attribute (here we consider a total of |𝐷| classes or groups),
𝑉𝑞 is the value set of attribute 𝑞, 𝑉 = ∪𝑞∈𝑄𝑉𝑞, and the information function 𝑔(𝑥, 𝑞) is
defined as 𝑔 : 𝑈 × 𝑄 → 𝑉 , such that 𝑔(𝑥, 𝑞) ∈ 𝑉𝑞 for each 𝑞 ∈ 𝑄, 𝑥 ∈ 𝑈 . It is possible
to transform the patterns of the classification of an object into a language that the DM
can understand more easily by using a rule induction algorithm (GRECO; MATARAZZO;

SŁOWIŃSKI, 2008). The general structure of a decision rule is shown below.

IF 𝑎𝑢,1 satisfies ℎ𝑟,1 and 𝑎𝑢,2 satisfies ℎ𝑟,2 and ... and 𝑎𝑢,𝑐 satisfies ℎ𝑟,𝑐; THEN 𝑢 belongs
to 𝑑𝑟.

where 𝑢 ∈ 𝑈 , and ℎ𝑟,𝑐 is the 𝑐-th criteria threshold , where 𝑐 ≤ |𝐶|, for rule 𝑟 ∈ 𝑅,
which defines the conditional part of the rule, and 𝑑𝑟 ∈ 𝐷, defines the decision part for
rule 𝑟. In IMO-DRSA, the interaction with the DM is processed using the DRSA approach,
where the induced decision rules will guide the evolutionary algorithm to her/his most
preferable region of the search space Ω (GRECO; MATARAZZO; SŁOWIŃSKI, 2008).

IMO-DRSA can learn to guide optimization algorithms to the most preferable feasible
solutions by interacting with a decision maker. Let 𝑦 denote the interaction level, where
𝑦 = 1, ..., 𝑦𝑚𝑎𝑥. In the first interaction, 𝑦 = 1, IMO-DRSA generates an initial set 𝑆0 of
non-dominated solutions performing some iterations of the evolutionary algorithm. Then,
a data table 𝐷𝑇 1, containing 𝐷𝑇𝑠𝑖𝑧𝑒 examples, is generated from 𝑆0 and the DM can
perform two actions, one is to choose a solution (stop) and the other is to select a subset
of solutions and classify them as ’good’ (and begin new interaction).

To the best of our knowledge, the work of Salvatore, Matarazzo & Słowiński (2013)
was the first to use IMO-DRSA in the financial portfolio optimization context using
the MVO. The study adopts meaningful quantiles of the candidate portfolio’s return
distribution to extract DM preferences based on stochastic dominance. Most interactive
portfolio optimization approaches did not consider combinatorial portfolio optimization
problems, which require the use of heuristics, such as evolutionary algorithms. Silva and de
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Almeida-Filho (SILVA; FILHO, 2021b) studied the interactive optimization of an NP-hard
portfolio optimization problem. A simulated IMO-DRSA was applied to the cardinality
constrained MVO, using NSGA-II, to evaluate the out-of-sample behaviour of portfolios
produced by different investor types, the number of interactions, and frontier filters. This
work expands (SALVATORE; MATARAZZO; SŁOWIŃSKI, 2013; SILVA; FILHO, 2021b) by
generalizing the application of IMO-DRSA in the combinatorial portfolio optimization
context, considering more instances, more objectives, and studying the influence of different
factors in the evolutionary algorithm performance in the in-sample and out-of-sample
period w.r.t. preference satisfaction.

5.1 SIMULATED IMO-DRSA TO BUILD TRACKING PORTFOLIOS

Let 𝑥𝑦 and 𝑅𝑢𝑙𝑒𝑠𝑦 denote, respectively, the chosen solution and the induced rule set
at iteration 𝑦. When the DM chooses a unique solution 𝑥1, IMO-DRSA is terminated.
Otherwise, a rule induction algorithm is applied to the data table and generates a rule
set 𝑅𝑢𝑙𝑒𝑠1. After the induction of the rule set, the DM chooses a rule that is most
representative w.r.t. its preferences to guide the evolutionary algorithm. The selected rule
becomes a constraint in the search space Ω. Then, for 𝑦 = 2, ..., 𝑦𝑚𝑎𝑥, a rule from 𝑅𝑢𝑙𝑒𝑠𝑦−1

will guide the evolutionary algorithm to search 𝑆𝑦−1, until a condition is met, which will
generate 𝐷𝑇 𝑦. From 𝐷𝑇 𝑦, 𝑥𝑦 or 𝑅𝑢𝑙𝑒𝑠𝑦 can be obtained.

An overview of the simulated IMO-DRSA approach is presented in Figure 35, and it’s
used to evaluate the impact of different factors on the robustness of the solutions w.r.t.
the investor’s preferences, such as the number of interactions, the type of investor and
approaches to reduce the cognitive effort (SILVA; FILHO, 2021b). The simulation parameters
are the size of the data table 𝐷𝑇𝑠𝑖𝑧𝑒, the maximum number of interactions 𝑦𝑚𝑎𝑥, and the
maximum runtime of the evolutionary algorithm 𝜏𝑚𝑎𝑥. As was already discussed, in IMO-
DRSA a decision maker can choose two options: choose a unique solution 𝑥𝑦 or continue
the interaction by sorting the solutions and choosing a rule 𝑟𝑦 from the induced rule set
𝑅𝑢𝑙𝑒𝑠𝑦. Thus, to save computational time, our simulation process considers that, in each
interaction 𝑦 = 1, ..., 𝑦𝑚𝑎𝑥, the simulated investor chooses these two options simultaneously.
Also, 𝑟𝑦−1 is randomly sampled from 𝑅𝑢𝑙𝑒𝑠𝑦−1 to guide the search of the evolutionary
algorithm, whenever a new interaction 𝑦 begins, for 𝑦 = 2, 3, ..., 𝑦𝑚𝑎𝑥.

In this simulation approach, we can adopt some methods that can contribute to the
reduction of the cognitive effort, which is the case of the frontier filter, or the complexity
of the problem solved by the evolutionary algorithm, which is the case of the data table
generation method. The frontier filter is applied in a solution 𝑆𝑦, for 𝑦 > 2, to reduce the
size of the non-dominated frontier by creating a small subset of non-dominated solutions
𝑋𝐷𝑇 𝑦 ⊂ 𝑆𝑦, where |𝑋𝐷𝑇 𝑦 | = 𝐷𝑇𝑠𝑖𝑧𝑒. The data table generation method will use the
in-sample information from portfolios contained in |𝑋𝐷𝑇 𝑦 | to compute a set of criteria that
will be used to generate a data table 𝐷𝑇 𝑦. Thus, the constraints of the problem’s search
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Figure 35 – The simulated IMO-DRSA approach

space will depend on the data table generation method. Next, we present the adopted
multiobjective index tracking model, frontier filters, preference functions of the simulated
investors, and the data table generation methods.

5.1.1 Multiobjective index tracking model

Although many other objectives can be considered, such as transaction costs, ESG,
annualized return and volatility (SILVA; FILHO, 2023; CHIAM; TAN; MAMUN, 2013; BILBAO-

TEROL; ARENAS-PARRA; CANAL-FERNANDEZ, 2012), to generalize the application, we
propose a model that reflects the TE-ER trade-off since these types of models are most
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common in the multiobjective index tracking literature.
The proposed multiobjective index tracking model is constituted by equations (5.1)-

(5.8). This model is based on the model of Filippi, Guastaroba & Speranza (2016) that
reflects the tradeoff between TE and ER, but also considers the minimization of the
downside risk measure adopted in Bruni et al. (2015) and of the worst-case TE. These
two last objectives were considered to quantify and minimize the portfolio’s worst-case
scenario for both TE and ER.

min
𝑤

𝜇(𝑇𝐸) = 1
𝑇

𝑇∑︁
𝑡=1

𝑇𝐸𝑡 (5.1)

min
𝑤

max
𝑡

𝑇𝐸𝑡 (5.2)

max
𝑤

𝜇(𝐸𝑅) = 1
𝑇

𝑇∑︁
𝑡=1

𝐸𝑅𝑡 (5.3)

min
𝑤

max
𝑡

(−𝐸𝑅𝑡) (5.4)

subject to 𝜖𝑍𝑖 ≤ 𝑤𝑖 ≤ 𝜓𝑖𝑍𝑖 for each 𝑖 ∈ 1, ..., 𝑁 (5.5)
𝑁∑︁

𝑖=1
𝑍𝑖 = 𝐾 (5.6)

𝑁∑︁
𝑖=1

𝑤𝑖 = 1 (5.7)

𝑍𝑖 ∈ {0, 1} (5.8)

where the first objective (5.1) is the minimization of TE and the third objective (5.3) is
the maximization of ER. Also, we consider the minimization of a downside risk measure
(BRUNI et al., 2015) for ER and the worst-case TE, in objectives two (5.2) and four
(5.4), respectively. The worst-case TE represents the maximum deviation w.r.t. the index,
and the downside risk represents the maximum underperformance w.r.t. the index. The
cardinality constraint (5.6) limits the size of the portfolio to 𝐾 assets, where 𝑍𝑖 are binary
variables. 𝑍𝑖 = 1 if asset 𝑖 is included in the portfolio and 𝑍𝑖 = 0 if 𝑖 is not included.
Threshold/holding/floor-ceiling (5.5) constraints can be included in the model to reduce
undesirable extra transaction costs (FABOZZI et al., 2007). Equation (5.5) ensures that
if an asset 𝑖 belongs to the portfolio, then its proportion 𝑤𝑖 must lie between 𝜖𝑖 and 𝜓𝑖,
otherwise, if 𝑖 is not contained in the portfolio, 𝑤𝑖 = 0. We adopted 𝜖𝑖 = 0, 𝜓𝑖 = 1 and
𝐾 = 10.
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5.1.2 Frontier filters

The proposed simulation approach can be used to investigate different frontier filters. For
a given interaction 𝑦 = 2, ..., 𝑦𝑚𝑎𝑥, these filters use the information contained in 𝑟𝑦 to
sample 𝐷𝑇𝑠𝑖𝑧𝑒 non-dominated feasible solutions from 𝑆𝑦 to reduce the cognitive effort of
the investor. It is important to note that the way the solutions are sampled from 𝑆𝑦 will
influence the robustness of 𝑥𝑦+1, w.r.t. the fulfilment of the investor’s preferences over a
good portion of the out-of-sample period. In this work, we investigate the performance
of two frontier filters that were proposed in Silva and de Almeida-Filho (SILVA; FILHO,
2021b) for constraints that bound the objective space.

In this work, we consider constraints associated with the set of criteria 𝐶 used in a
𝐷𝑇 . Consider a reference point 𝑔𝑟𝑒𝑓 in the search space Ω that will be used to compute
the quality of the non-dominated feasible solutions in both methods. In an interaction
𝑦 + 1, 𝑆𝑦 contains solutions constrained by 𝑟𝑦, which was randomly sampled from 𝑅𝑢𝑙𝑒𝑠𝑦.
The conditions of 𝑟𝑦 define upper or lower bounds on a subset of criteria 𝐶𝑦 ⊆ 𝐶. The
violation or infeasibility of a solution 𝑥 ∈ 𝑆𝑦 w.r.t. 𝑞′ ∈ 𝐶𝑦 is given by Equation 5.9.

𝐼𝑞′(𝑥) =

⎧⎪⎨⎪⎩ 𝑔(𝑥, 𝑞′)− ℎ𝑟𝑦 ,𝑞′ if lower bound ( ≥ )

ℎ𝑟𝑦 ,𝑞′ − 𝑔(𝑥, 𝑞′) if upper bound ( ≤ )
(5.9)

where ℎ𝑟𝑦 ,𝑞′ is the threshold of 𝑟𝑦 for criterion 𝑞′, and 𝑔(𝑥, 𝑞) is the evaluation of 𝑥 ∈ 𝑆𝑦 in
criterion 𝑞′. The total violation is given by 𝐼(𝑥) = ∑︀

𝑞′∈𝐶𝑦 𝐼𝑞′(𝑥)𝛽𝑞′(𝑥), where 𝛽𝑞′(𝑥) = 1 if
𝐼𝑞′(𝑥) ≥ 0, otherwise 𝛽𝑞′(𝑥) = 0. If 𝐼(𝑥) = 0, then 𝑥 ∈ 𝑆𝑦

𝑟𝑢𝑙𝑒, otherwise, 𝑥 /∈ 𝑆𝑦
𝑟𝑢𝑙𝑒, where

𝑆𝑦
𝑟𝑢𝑙𝑒 is the set containing solutions 𝑥 ∈ 𝑆𝑦 that satisfy 𝑟𝑦 conditions. The reference point

is defined as follows:

𝑔𝑟𝑒𝑓 = (𝑔𝑟𝑒𝑓
𝑞′

1
, ..., 𝑔𝑟𝑒𝑓

𝑞′
|𝐶𝑦 |

) (5.10)

where 𝑔𝑟𝑒𝑓
𝑞′ = argmax

𝑔(𝑢,𝑞′)
|𝑔(𝑢, 𝑞′)− ℎ𝑟𝑦 ,𝑞′ | and 𝑢 ∈ 𝑆𝑦

𝑟𝑢𝑙𝑒. This is simply establishing that the

reference point will be constituted of each criterion 𝑞 value farthest from each rule condition
that bounds it.

• Method 1 (𝑐𝑙𝑜𝑠𝑒𝑟): this method chooses the solutions whose objective evaluations
are closer to the reference point 𝑔𝑟𝑒𝑓 to compose the data table 𝐷𝑇 𝑦.

• Method 2 (𝑓𝑎𝑟𝑡ℎ𝑒𝑟): this method chooses the solutions whose objective evaluations
are farther from the reference point 𝑔𝑟𝑒𝑓 to compose the data table 𝐷𝑇 𝑦.

We applied the euclidian distance between a solution evaluation on 𝐶𝑦, 𝑔(𝑥,𝐶𝑦) =
(𝑔(𝑥, 𝑞′

1), ..., 𝑔(𝑥, 𝑞′
|𝐶𝑦 |)), and the reference point 𝑔𝑟𝑒𝑓 . Solutions are added to 𝑋𝐷𝑇 𝑦+1 until

|𝑋𝐷𝑇 𝑦+1 | = 𝐷𝑇𝑠𝑖𝑧𝑒. Finally, by applying frontier filters, it is possible to exploit the preference
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Table 7 – Calculation of the preference function of the simulated investors in six alterna-
tives.

𝑥 𝜇(𝑇𝐸) 𝑚𝑎𝑥(𝑇𝐸) 𝜇(𝐸𝑅) 𝑚𝑎𝑥(−𝐸𝑅) 𝑓(𝑥, 𝜃𝑇 𝐸) 𝑓(𝑥, 𝜃𝐸𝑅) 𝑓(𝑥, 𝜃𝐸𝑄)
𝑥1 0.0078 0.0263 0.0010 0.0181 0.0509(2) 0.5994(5) 0.2545(2)
𝑥2 0.0141 0.0465 0.0035 0.0347 0.0517(6) 0.5979(1) 0.2587(6)
𝑥3 0.0059 0.0221 -0.0013 0.0182 0.0509(3) 0.6008(6) 0.2545(3)
𝑥4 0.0115 0.0519 0.0033 0.0307 0.0515(4) 0.5980(2) 0.2577(4)
𝑥5 0.0075 0.0187 0.0010 0.0171 0.0508(1) 0.5994(4) 0.2543(1)
𝑥6 0.0086 0.0318 0.0020 0.0318 0.0516(5) 0.5988(3) 0.2579(5)

information of the investor in the out-of-sample period when considering an MBH strategy.
The frontier filter is applied to the non-dominated frontier according to the rule induced
for a given interaction level and the best solution according to the filter is chosen. We
select the farthest solution to 𝑔𝑟𝑒𝑓

ℎ and the closest solution to 𝑔𝑟𝑒𝑓 if the applied filter is
farther and closer, respectively.

5.1.3 Preference function for simulated investors

In this simulation approach, one can consider different types of investors using preference
functions. Some works consider using a vector of weights 𝜃 = {𝜃1, 𝜃2, ..., 𝜃𝑀} to reflect the
trade-off between the objectives in a preference function (i.e. weighted sum or archiving
scalarizing function) of a real or simulated decision-maker where the solution methods under
study don’t know this vector of weights a priori (KADZIńSKI; TOMCZYK; SłOWIńSKI, 2020;
FERREIRA et al., 2018; TOMCZYK; KADZIńSKI, 2020). We considered that the preference of
an investor is modelled as a Chebyshev function, as shown in Equation (5.11). We assume
that the simulated DM knows the problem very well and can precisely specify the weight
of each criterion.

𝑓(𝑥, 𝜃𝐷𝑀) = max
𝑚=1,...,𝑀

{𝜃𝑚|𝑓𝑚(𝑥)− 𝜑𝑚|} (5.11)

where 𝜑 is an ideal point defined by the DM. Here we adopted 𝜑 = {0, 0, 1,−1}. Considering
two solutions 𝑥1 and 𝑥2, if 𝑓(𝑥1, 𝜃

𝐷𝑀) < 𝑓(𝑥2, 𝜃
𝐷𝑀), then 𝑥1 is preferred to 𝑥2.

We consider three investors: one that is more prone to follow the index with 𝜃𝑇 𝐸 =
{0.6, 0.3, 0.05, 0.05}, one more prone to beat the index 𝜃𝐸𝑅 = {0.05, 0.05, 0.6, 0.3}, and
another one that balances all the objectives 𝜃𝐸𝑄 = {0.25, 0.25, 0.25, 0.25}. Table 7 shows
how these simulated investors would evaluate some portfolios and Table 8 shows the final
classification. The simulated investors classify the three best solutions, according to their
preference function, as ’good’ and the remaining solutions as ’other’.
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Table 8 – Classification performed by the simulated investors

x 𝜃𝑇 𝐸 𝜃𝐸𝑅 𝜃𝐸𝑄

𝑥1 good other good
𝑥2 other good other
𝑥3 good other good
𝑥4 other good other
𝑥5 good other good
𝑥6 other good other

5.1.4 Data table generation methods

Data table generation methods help the DM sort portfolios as ’good’ or ’other’ by presenting
information in various ways. The resulting data table includes portfolio information and
DM preferences for rule induction. Different methods produce distinct constraints for the
model, affecting the solver’s performance. An artificial DM classifies portfolios using its
preference function, regardless of the data table generation method, as shown in section
5.1.3.

5.1.4.1 Stochastic dominance approach

The mean-variance approach proposed by Salvatore, Matarazzo & Słowiński (2013) adopts
DRSA for decisions under uncertainty, which was derived from the stochastic dominance
definition (GRECO; MATARAZZO; ROMAN, 2010). In this approach, a set of portfolios is
evaluated on 𝑀 criteria, where some criteria can be random variables. Thus, 𝑔𝑚 : 𝑆 → P,
where P is a set of probability distributions. It is possible to consider a set of meaningful
probability levels Π = {1%, 25%, 50%, 75%, 99%} and the loss (quantile) associated with
each level.

In (SALVATORE; MATARAZZO; SŁOWIŃSKI, 2013) it was assumed that the returns of
portfolios are normally distributed. Thus, we can compute the quantile of the portfolio
return distribution corresponding to 𝑝 ∈ Π using the first two moments of the return
distribution. Thus, we consider that TE and ER are normally distributed as a baseline,
which we call the ’par_quant’ data table generation approach. In this approach, we can
consider, for instance, the maximum deviation w.r.t the index with 99% of probability,
corresponding to 𝑝 = 99%, which is computed as 𝑇𝐸(𝑤)1% ≈ 𝜇(𝑇𝐸(𝑤)) + 2.33𝜎(𝑇𝐸(𝑤)).

A data table that is generated by this approach, using the same portfolios from Table
7, is presented in Table 9. In DRSA, the preference direction of 𝑇𝐸 and 𝐸𝑅 associated
quantiles will be considered as cost (-) and gain (+) attributes, respectively. To reduce
the number of criteria in the data tables within this approach we considered the following
meaningful probability levels Π = {1%, 50%, 99%}. For 𝑇𝐸 we only considered the levels
associated with the right tail of the distribution, which are 1% and 50%. This is because
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Table 9 – Data table generated using the ’par_quant’ method

𝑥 𝑇𝐸
(−)
1% 𝑇𝐸

(−)
50% 𝐸𝑅

(+)
1% 𝐸𝑅

(+)
50% 𝐸𝑅

(+)
99%

𝑥1 0.0219 0.0078 0.0239 0.0010 -0.0219
𝑥2 0.0380 0.0141 0.0433 0.0035 -0.0363
𝑥3 0.0161 0.0059 0.0156 -0.0013 -0.0181
𝑥4 0.0315 0.0115 0.0358 0.0033 -0.0292
𝑥5 0.0193 0.0075 0.0220 0.0010 -0.0199
𝑥6 0.0261 0.0087 0.0282 0.0020 -0.0243

Table 10 – Rules generated for simulated investors using the ’par_quant’ data table
presentation method

𝜃 Rule set

TE and EQ (TE1 <= 0.0219) => (d >= good)
(TE1 >= 0.0261) => (d <= other)

ER (ER1 >= 0.0282) => (d >= good)
(ER1 <= 0.0239) => (d <= other)

the 99% level may produce negative values, which would be not adequate since 𝑇𝐸 is
nonnegative. Table 10 shows the rules induced using information from the generated data
table and the classification performed by the simulated investors (Table 8). The sets of
rules induced for the TE and EQ investors are the same since they classified the portfolios
identically.

Although it was assumed that the portfolio returns are normally distributed in (SAL-

VATORE; MATARAZZO; SŁOWIŃSKI, 2013), this framework support other distributions. We
consider an approach where no assumptions are made on the distributions of tracking errors
and excess returns. Therefore, we compute the sample quantile through a non-parametric
approach. Given a vector 𝑉 of length 𝑇 , the p-th quantile of the sorted copy of 𝑉 is the
continuous value 𝛼(𝑝), defined as 𝛼(𝑝) = 𝑉(𝑘) + (𝑏−𝑘)(𝑉(𝑘+1)−𝑉(𝑘)), where 𝑉(𝑘) is the 𝑘-th
order statistic and 𝑏 = 𝑝𝑇 + ℎ is the real number between the indexes 𝑘 = ⌊𝑏⌋ and 𝑘 + 1,
and ℎ ∈ R is an interpolation factor (HYNDMAN; FAN, 1996). This formula shows that
when the quantile is different from an observation, which are the cases when 𝑏− 𝑘 > 0,
then a linear interpolation between the nearest neighbours 𝑉(𝑘) and 𝑉(𝑘+1) is performed.
The minimum corresponds to 𝑝 = 0.0, the median to 𝑝 = 0.5, and the maximum to 𝑝 = 1.0.
For this approach, we considered the same meaningful probability levels as the parametric
approach.

Considering the quantile definition 7 from (HYNDMAN; FAN, 1996), where ℎ = 1− 𝑝,
resulting in 𝑏 = 𝑝(𝑇 − 1), a data table that is generated by this approach is presented in
Table 11. The associated induced set of rules for each investor is shown in Table 12.
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Table 11 – Data table generated using the ’nonpar_quant’ method

𝑥 𝑇𝐸
(−)
1% 𝑇𝐸

(−)
50% 𝐸𝑅

(+)
1% 𝐸𝑅

(+)
50% 𝐸𝑅

(+)
99%

𝑥1 0.0241 0.0056 0.0241 0.0007 -0.0177
𝑥2 0.0429 0.0118 0.0429 0.0038 -0.0319
𝑥3 0.0183 0.0048 0.0135 -0.0016 -0.0160
𝑥4 0.0333 0.0104 0.0333 0.0035 -0.0282
𝑥5 0.0180 0.0070 0.0180 0.0008 -0.0150
𝑥6 0.0295 0.0065 0.0290 0.0020 -0.0229

Table 12 – Rules generated for simulated investors using the ’nonpar_quant’ data table
presentation method

𝜃 Rule set

TE and EQ (TE1 <= 0.0241) => (d >= good)
(TE1 >= 0.0295) => (d <= other)

ER (ER1 >= 0.0290) => (d >= good)
(ER1 <= 0.0241) => (d <= other)

5.1.4.2 Visualization approach

Although only constraints on TE and ER quantiles were discussed, direct constraints
on the objectives of the model are also possible. However, the TE and ER objectives
have to be included in the data table as evaluation criteria. Following the discussion of
(SALVATORE; MATARAZZO; SŁOWIŃSKI, 2013), a direct interpretation of the TE and ER
probabilistic measures may be too difficult for the Decision Maker (DM), thus, another
way to present portfolios to investors is required.

Visualization approaches in multiobjective optimization can enhance and facilitate
the decision process (see (CHICA et al., 2013; CHICA et al., 2016)). A visualization tool can
support the DM in identifying portfolios that are replicating or outperforming the index. A
simple visualization tool could present the cumulative return trajectories of the candidate
portfolios and the index and ask the DM to sort the portfolios. After the classification is
performed, the complete data table is presented to the rule induction algorithm. Table 7
is an example of a data table generated by the visual approach where the criteria are the
objectives of the model.

Considering the classification performed by the simulated investors (Table 8), the result
of a simulated interaction with a simple visual tool that presents the cumulative returns
of the portfolios of Table 7 is shown in Figure 36.

The simulated portfolio classification in the visual approach appears reasonable. Port-
folios deemed ’good’ by artificial TE and EQ investors show a similar cumulative return
trajectory relative to the index, while portfolios deemed ’good’ by artificial ER investors
outperform the index. The associated induced set of rules for each investor is shown in
Table 13.
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(a) 𝜃𝑇 𝐸

(b) 𝜃𝐸𝑅

A challenge associated with this approach in the real world is time series cluttering. It
refers to the difficulty of effectively visualizing collections of time series data as the number
of series grows, leading to cluttered and overloaded plots that hinder meaningful insights.
Interactive visualization tools that allow users to filter, zoom in, or interact with subsets of
the time series data can help to reduce visual clutter and enable a more objective analysis
(ZHAO et al., 2021).
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(c) 𝜃𝐸𝑄

Figure 36 – The ’visual’ data table generation method. This figure presents the simulated
visual classification of portfolios from Table 1 for each type of investor.

Table 13 – Rules generated for simulated investors using the ’visual’ data table presentation
method

𝜃 Rule set

TE and EQ (meanTE <= 0.0078) => (d >= good)
(meanTE >= 0.0086) => (d <= other)

ER (meanER >= 0.0020) => (d >= good)
(meanER <= 0.0010) => (d <= other)

5.2 MATERIALS AND METHODS

In this section, the simulation approach configurations, the chosen data set containing
stock data, the evolutionary algorithm, and the evaluation metrics used for the case study
are presented. The experiments were executed in Dell XPS 8940 with Intel(R) Core(TM)
i7-10700 CPU (2.90GHz), 16GB RAM, and Windows 11.

5.2.1 Data and software

Data is from OR-library (<http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files>), con-
taining different markets data, each one containing 291 weekly price data, which results in
290 returns per data set. Table 14 shows the data sets adopted to evaluate the constructed
portfolios and the rebalancing strategies according to the rules induced from each simulated
investor. We considered the values used by Guastaroba & Speranza (2012) for 𝐾.

We consider a rolling window scheme, where the sample size is 𝑇 = 100. Of course that
the sample size affects the strategy in the out-of-sample period, but we consider this 𝑇

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files
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Instance N K

Hang Seng (indtrack1) 31 10
DAX100 (indtrack2) 85 10
FTSE100 (indtrack3) 89 10
S&P100 (indtrack4) 98 10

Nikkei225 (indtrack5) 225 10
S&P500 (indtrack6) 457 40

Table 14 – Information about the considered instances for the index tracking problem

satisfactory for this analysis, which is similar to the value adopted by Filippi, Guastaroba
& Speranza (2016). We considered the size of the out-of-sample period equal to 𝑇𝑜𝑜𝑠 = 100.
After the end of the interaction process, the out-of-sample evaluation begins. In the first
out-of-sample period 𝑡* = 101, the four objectives are estimated using data from 𝑡*−𝑇 + 1
to 𝑡* and the rule violation is checked. If the rule is violated in 𝑡* and an MBH strategy
is used, then the portfolio is rebalanced using data from 𝑡* − 𝑇 + 1 to 𝑡*. This process
is repeated until the end of the data set is reached (𝑡* = 200). A total of 200− 𝑇 = 100
out-of-sample portfolio return observations are obtained at the end of this process.

Rules were induced by the VC-DOMLEM algorithm of the jRS library, which is available
in the software jMAF(BŁASZCZYŃSKI et al., 2013). Concerning the ’nonpar_quant’ data
table generation method, we used the default quantile algorithm from Numpy1, which
uses the quantile definition 7 from (HYNDMAN; FAN, 1996), where ℎ = 1− 𝑝, resulting in
𝑏 = 𝑝(𝑇 − 1).

5.2.2 Multiobjective evolutionary algorithm

NSGA-II (Deb et al., 2002), a non-dominated sorting-based multiobjective algorithm, is
usually adopted to solve constrained multiobjective portfolio selection problems and has
competitive performance (LIAGKOURAS; METAXIOTIS, 2018; KALAYCI; ERTENLICE; AKBAY,
2019). Thus, we consider using it with the hybrid encoding proposed by Streichert, Ulmer
& Zell (2004). The weights of a portfolio are represented by a real-valued vector w =
{𝑤1, 𝑤2, ..., 𝑤𝑁} and the included assets are defined by a binary vector B = {𝑍1, 𝑍2, ..., 𝑍𝑁}.
We adopted a population of size 100. The same genetic operators of (SILVA; FILHO, 2021b)
were adopted.

The selection operator was binary tournament, the uniform crossover was applied
in the binary vector B with 𝑝𝐶 = 1.0 (ANAGNOSTOPOULOS; MAMANIS, 2010; ANAG-

NOSTOPOULOS; MAMANIS, 2011), the bit-flip mutation operator of Sant’Anna et. al
(SANT’ANNA et al., 2017) was applied in B with 𝑝𝐵 = 1

𝑁
, and a gaussian mutation with

𝜎 = 0.15 was applied in each decision variable on w (ANAGNOSTOPOULOS; MAMANIS,
1 https://numpy.org/devdocs/reference/generated/numpy.quantile.html
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2011; Streichert; Ulmer; Zell, 2004). Finally, the constraint handling approach proposed
by Deb (DEB, 2000), which does not require the specification of penalty parameters, was
adopted.

5.2.3 Simulation configurations

The input simulation parameters were: 𝜏1 = 10s, 𝜏𝑦>1 = 20s, 𝑦𝑚𝑎𝑥 = 4, and 𝐷𝑇𝑠𝑖𝑧𝑒 = 6.
For each combination of frontier filters (’frontier_filter’), data table generation methods
(’dt_type’), and investor types (’dm_type’), we run the algorithm presented in Figure 35
30 times. We considered that the optimization time to obtain the initial solution (𝜏1) was
smaller because there is no specific direction to explore in the beginning. To reduce the
computational burden when using MBH strategies, we considered a maximum time budget
𝜏 𝑟𝑒𝑏𝑎𝑙 = 300s. Also, the maximum optimization time to rebalance the portfolio was equal
to 𝜏𝑦>1. Therefore, the maximum number of rebalances per simulation was 𝜏𝑟𝑒𝑏𝑎𝑙

𝜏𝑦>1
= 15.

Finally, it is possible that the evolutionary algorithm finds a unique best solution 𝑥𝑦,
according to a given rule 𝑟𝑦−1, at a given interaction level 𝑦. Thus, it was considered that
a unique solution 𝑥𝑦 is found when the generated 𝐷𝑇 𝑦 contains at least four copies of the
unique best solution. In this case, three copies of 𝑥𝑦 will be classified as ’good’ and at
least one copy of 𝑥𝑦 will be classified as ’other’. Therefore, due to inconsistency, it is not
possible to generate certain rules that classify examples as ’good’. Then, 𝑟𝑦 = 𝑟𝑦−1.

5.3 RESULTS AND DISCUSSION

5.3.1 Comparison between the frontier filters and data table presentation methods
in SBH

Section 2 of Appendix B contains all hypothesis tests for comparisons between frontier
filters, investor types, data table presentation methods, interaction levels, in different
problem instances. Figure 46 shows, for each instance, the behaviour of the preference
function produced by the ’closer’ and ’farther’ frontier filters (rows = frontier_filter)
during the interaction process when optimizing the portfolio for specific types of investors
(columns = dm_type) in an SBH strategy. Although we included the results for the initial
solution set (intrLvl = 1) their function is just to compare the evolution of the preference
function values over the interaction process.

Table 16 show that the differences in the performance of frontier filters are significant
for all variables for the ’visual’ data table presentation method. Tables 17 and 18 show that
for the ’nonpar_quant’ and ’par_quant’ methods there is no difference in performance
between frontier filters in some cases, especially for TE and EQ investors. Observing Figure
46, It can be observed that the ’closer’ frontier filter was able to produce better solutions
in terms of the preference function values for all simulated investors and interaction levels,
depending on the data table presentation method, in most of the instances.
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Figure 47 shows the results on the trajectory of the mean preference function in the
out-of-sample period, where the solid line is the mean and the area is the estimated 95%
confidence interval. It is possible to see that although some of the ’closer’ frontier filter
results are aligned with the results of the in-sample period (Figure 46), the difference
between the performance of the frontier filters is influenced by the interaction level and the
type of investor. As the interaction level grows, the feasible region gets more constrained
and non-dominated solutions associated with this region are less distant from each other,
consequently, the effect of the frontier filter is diluted. We can see in intrLvl=3 and intrLvl
= 4 of indtrack6 that it is even possible that solutions that produced a better preference
function behaviour over time were those associated with the ’farther’ filter.

The learned rules for the ER investor guided the solver for local optima, regardless of
the data table presentation method, in indtrack1-5. Thus, the out-of-sample performance
of the portfolios for the ER investor for different data table presentation methods relative
to preference satisfaction is very similar. But, the solutions produced by the ’closer’ filter
performed better than those produced by the ’farther’ filter at the beginning of the
out-of-sample period in indtrack1-5 and in the overall out-of-sample period in indtrack6.

It can be observed that the only instance in which the ’closer’ and ’farther’ frontier
filters did not differ so much for TE and EQ was indtrack6. By comparing the ranges of
the preference function in the in-sample and out-of-sample period of indtrack6, it can be
observed that the quality of solutions produced by both frontier filters decreases very fast
over time. This happens because the index dynamics in indtrack6 are defined by a relatively
higher number of assets. Thus, at each time step, variations in the index components’
prices have a big impact on the optimized portfolio. The out-of-sample performance can
be enhanced by evaluating other EMO approaches and/or more robust metrics for the
tracking error and the excess return.

Tables 19, 20, and 21 present which pairs of interaction levels contain significant
differences in preference satisfaction for the data table presentation methods combined
with the ’closer’ frontier filter, which was the filter that performed better. It could be
observed that, in indtrack1-5, a unique solution is found almost always for the ER investor
when intrLvl>2. The ’nonpar_quant’ approach performs better than the ’par_quant’
approach with all the investors in all instances in intrLvl=2, as shown in Tables 20 and 21.
This shows that unlike ’par_quant’, the ’nonpar_quant’ method can guide the solver to
a better search region at the beginning of the interaction process for all investors in all
problem instances.

By analyzing Figure 37, it is possible to observe that the ’visual’ and ’nonpar_quant’
approaches can better guide the evolutionary algorithm towards an increase in the prefer-
ence function of the simulated investors along the interaction process.

Figure 47 shows that the ’visual’ approach may produce better portfolios than the
’nonpar_quant’ approach, for simulated TE and QE investors, when intrLvl=2, which
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(a) indtrack1

(b) indtrack2

(c) indtrack3

(d) indtrack4
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(e) indtrack5

(f) indtrack6

Figure 37 – Comparison of the preference function of three simulated investors with the
’closer’ frontier filter and different data table presentation methods in each
simulated interaction for the in-sample period of the six instances of the
problem

was the most significant interaction level for the ’nonpar_quant’ approach. The solutions
produced using the ’visual’ approach appear to be more robust than the solutions pro-
duced by the ’nonpar_quant’ approach for the TE investors in indtrack2-5 and for the
EQ investors in indtrack2 and intrack4-6. For ER simulated investors, the performance
of the ’visual’ and ’nonpar_quant’ approaches is similar, whereas the ’visual’ approach
performed better only in indtrack6. This happens because IMO-DRSA guides the solver
to local optima in indtrack1-5 at the very beginning of the interaction process, regardless
of the data table presentation method, as shown in the in-sample period results for the
ER investor.

More significant differences in preference satisfaction were perceived between sequential
interaction levels for the ’visual’ approach. Thus, it is necessary to analyze what happens
with the out-of-sample performance of the produced portfolios along the interaction process.
Observing Figure 38, more interactions may produce portfolios that perform slightly better
at the very beginning of the out-of-sample period as can be observed for the simulated TE
investors in indtrack1-3, and the simulated EQ investors in indtrack1-3 and indtrack5.

Less interaction can sometimes lead to better portfolio performance during a significant
portion of the out-of-sample period. This is true for simulated TE investors in indtrack1
and indtrack4, and simulated EQ investors in indtrack4 and intrack6. For the ER investor,
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there is not much difference between interaction levels because the solver quickly reaches
local optima during the interaction process.

5.3.2 Importance of attributes along the interactions

Since the ’closer’ frontier filter performed better in the in-sample and out-of-sample period
of the SBH rebalancing strategy, we use it to investigate how the IMO-DRSA approach
detects which attribute is more important for a given type of investor in each step of the
interaction process. Figure 48 shows the frequency of each attribute and its preference
direction in the rules induced during the interaction process.

When analyzing the results of the first interaction of all data table presentation methods,
it is possible to see that attributes related to the excess return objective were prioritized
for ER investors. Also, attributes related to the tracking error objective were prioritized
for TE and EQ investors in the first interaction when considering the ’par_quant’ and
’nonpar_quant’ approaches. Both 𝜇(𝑇𝐸) and 𝑚𝑎𝑥(−𝐸𝑅) criteria were prioritized in the
first interaction for the TE and EQ investors when considering the ’visual’ approach.

It appears that the criteria importance is clear for the VC-DOMLEM algorithm at the
beginning and also that using the ER downside risk attribute in the ’visual’ approach
would optimize preference satisfaction for TE and EQ investors. The strategy learned by
the VC-DOMLEM algorithm in the beginning of the interaction process could guide the
solver to optimize the preference function in a significant way for all investor types and
data table generation approaches in at least half of the instances of the problem, as shown
in Tables 19-21.

For the ER investor, regardless of the data table presentation method, the VC-
DOMLEM algorithm learned, in the second and third interactions, that prioritizing
ER-related attributes for this type of investor was a good strategy. By adopting this ap-
proach, VC-DOMLEM guided the solver to local optima before the end of the interaction
process as shown in Figure 37.

Observing the ’visual’ data table presentation method in the second and third interac-
tions, the attribute prioritized for the TE and EQ investors was mostly the ER downside
risk. By prioritizing this attribute, IMO-DRSA guided the solver to optimize the preference
function significantly along the interaction process when considering the ’visual’ approach.
Looking at the ’par_quant’ and ’nonpar_quant’ data table presentation methods, it can be
observed that there is no specific attribute prioritization, which may lead to non-significant
preference optimization over interactions two and three in the in-sample results, as shown
in Tables 20 and 21.

5.3.3 Comparison between SBH and preference-driven MBH rebalancing

We continue the analysis considering the ’visual’ and ’nonpar_quant’ data table methods
combined with the ’closer’ frontier filter since they obtained the best performance for the



120

(a) indtrack1

(b) indtrack2

(c) indtrack3

(d) indtrack4

(e) indtrack5
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(f) indtrack6

Figure 38 – Comparison of the preference function of three simulated investors with the
’closer’ frontier filter and the ’visual’ data table presentation methods in each
simulated interaction for the out-of-sample period of the six instances of the
problem

SBH rebalancing strategy. Appendix B contains all preference satisfaction evaluations for
the SBH and MBH rebalancing strategies considering all frontier filters, investor types,
data table presentation methods, interaction levels, in different problem instances.

Figure 49 shows the mean trajectory of the preference function evaluation in the
out-of-sample period for the SBH and MBH strategies, where the solid line is the mean
and the area is the estimated 95% confidence interval.

The results show that there is not much difference between the SBH and MBH
rebalancing strategies when considering information obtained at the second interaction
level for TE and EQ investors. This happens because the induced rules in intrLvl=2 are
satisfied more easily in the out-of-sample period. As the interaction level increases the
induced rules are more rigorous, and it is possible to observe the construction of portfolios
that better maintain, or may even increase, the preference function value over time when
adopting MBH. The ’visual’ data table presentation method may induce better rules for
constructing portfolios that better satisfy the investors over time when adopting MBH.
The ’visual’ approach could produce better solutions than the ’nonpar_quant’ approach,
as the interaction level increases, for TE and EQ investors in all instances.

Unlike the other investor types, for the ER investor, there is a difference between the
SBH and MBH at the second interaction level. This is because the produced portfolios are
more volatile and degrade preference satisfaction much faster. Thus, the portfolios of ER
investors are adjusted more frequently at this early interaction stage. It can be seen that
the MBH strategy with the ’visual’ approach produced better portfolios than the MBH
strategy with the ’nonpar_quant’ in all instances at intrLvl=2.

As the interaction level increases for the ER investor, the MBH strategy could produce
better solutions than the SBH strategy in the majority of the instances. The MBH
strategy with the ’visual’ approach could perform better than the MBH strategy with the
’nonpar_quant’ approach in indtrack1, indtrack3 and indtrack6 in the overall out-of-sample
period and at the beginning of the out-of-sample period in indtrack2 and intrack4-5. Thus,
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(a) indtrack1

(b) indtrack2

(c) indtrack3

(d) indtrack4

(e) indtrack5
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(f) indtrack6

Figure 39 – Comparison of the preference function of three simulated investors when using
the MBH strategy for the out-of-sample period of the six instances of the
problem

although the visual approach may produce more rigorous rules, spending the rebalances in
the beginning of the out-of-sample period in some cases, it may produce better portfolios
at the beginning of the out-of-sample period. Thus, it may be necessary to increase the
rebalance budget when dealing with ER investors to manage preference satisfaction as the
interaction level increases.

Figure 39 shows the performance of the MBH strategy with the ’visual’ approach as
the interaction level increases. It is possible to observe that, for the TE investor, the
higher the number of interactions, the better the portfolios, except for indtrack6. For the
EQ investor, it is possible to observe a better performance when more interactions are
performed in indtrack1-3. For the ER investor, higher interactions only generated better
portfolios in indtrack1 and intrack6.

5.3.4 Comparison against NSGA-II with and without preference guidance

What would happen if the simulated investor evaluated all the solutions in a given non-
dominated frontier instead of a subset of non-dominated solutions from this frontier?
Would the performances be similar or different? The results are shown in Table 22 and
Figure 50, where the ’closer’ frontier filter and the ’visual’ data table presentation approach
were adopted for IMO-DRSA and compared with the NSGA-II algorithm without the
rules extracted from the simulated investor through IMO-DRSA, which is identified in
the plot as dt_type = ’none’. The best choice of an investor was simulated based on its
preference function, from interactions with complete non-dominated frontiers generated
with NSGA-II, considering the same maximum optimization time of the IMO-DRSA in
the respective interactions.

It can be observed that in the considered problem instances, the preference function of
the IMO-DRSA approach would be at least as good as those of the NSGA-II from at least
interaction three in all the instances for the TE and EQ investors. There are some cases
where IMO-DRSA performs significantly better than NSGA-II for TE and EQ investors.
For TE investors, IMO-DRSA performs better for intrLvl=3 in indtrack 1-2 and indtrack4-
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5, and for intrLvl=4 in indtrack1-5. For EQ investors, IMO-DRSA performs better for
intrLvl=4 in indtrack 1-2 and intrack5. Concerning the ER investor, the performance of
IMO-DRSA had a similar performance relative to NSGA-II from interaction level three
onwards. Thus, by performing at least three interactions with only six solutions it is
possible to obtain at least the same preference function values of interacting with all the
non-dominated frontier solutions.

5.4 CHAPTER CONCLUSION

This study presented a new application of the IMO-DRSA to a multiobjective index
tracking model. We studied how different factors would affect the IMO-DRSA performance
concerning the satisfaction of the simulated investors’ preferences. First, the frontier filters
and data table generation methods were analyzed for three types of investors. Thus, it was
possible evaluate if different ways to present the candidate portfolios would produce good
or bad constraints to guide the evolutionary algorithm to optimize the candidate portfolios
in a way that maximized their preferences. Also, the capacity of IMO-DRSA in detecting
investor preferences was evaluated. Not only the performance of the evolutionary algorithm
during the interactive process was evaluated, but also in the out-of-sample period, using
the induced rules as SBH and MBH rebalancing strategies. Finally, the performance of the
IMO-DRSA against NSGA-II was compared to evaluate what would be the performance
w.r.t. preference satisfaction, during the interaction process, with and without preference
learning during interactions.

In general, it is possible that the ’farther’ frontier filter majorly produces portfolios
with worse preference function distribution than the ’closer’ frontier filter in the in-sample
and out-of-sample periods. Also, it was possible to observe the difficulties concerning the
optimization (in the in-sample period) and maintenance (in the out-of-sample period) of
the preference function imposed by indexes with a higher number of assets.

The experiments showed that constraints produced by different data table generation
methods affect the performance of the evolutionary algorithm. The constraints produced
by the ’visual’ approach can better guide the evolutionary algorithm towards the most
desirable region for the simulated investors and may provide more robust solutions w.r.t.
the investor’s preference over time. Another advantage of the ’visual’ approach is that the
number of data table features is equal to the number of objectives, while in the stochastic
dominance approaches, the number of features can surpass the number of objectives.
The more the investor aims to achieve higher returns, the harder will be to maintain
(out-of-sample) the preference function evaluation, especially when broader indexes are
considered. Also, when we look at the SBH strategy, the effect of the different data table
presentation methods and frontier filters is generalized for the different types of investors
as the number of interactions increases.

From subsection 2.4 of Appendix B, it was observed that the ’closer’ filter combined
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with the ’visual’ approach produced portfolios with a significantly lower variance of
preference satisfaction relative to the ’farther’ filter combined with the ’visual’ approach.
It was also possible to observe that a significant reduction of the variance of preference
satisfaction occurred mostly when the interaction process shifts from interaction level
1 to interaction level 2 in the considered IMO-DRSA approach. Also, NSGA-II could
only obtain significantly lower preference satisfaction variance compared to the considered
IMO-DRSA approach mostly at interaction level 2.

Although the VC-DOMLEM could balance TE and ER criteria for conservative and
moderate investors, it used a different strategy to satisfy aggressive investors (ER) along
the interaction process, which was to prioritize ER-related attributes only. Thus, combining
TE attributes and ER downside risk attributes along the interaction process was beneficial
for TE and EQ investors in the ’visual’ approach, whereas prioritizing ER attributes only
may guide the solver to local optima during the interaction process, as was the case for ER
investors. Also, when the VC-DOMLEM doesn’t identify the correct attributes to prioritize,
it leads the solver to non-significant preference optimization along the interaction process.

The results comparing SBH and preference-driven MBH show that by performing more
interactions it is possible that preference-driven MBH maintains or even produces better
satisfaction than SBH. Also, the cost to maintain satisfaction is different depending on
the investor type, where an investor that is more tilted to obtain higher risk would require
a higher rebalancing frequency than the conservative (TE) and moderate (EQ) investors.

This study proposes ways to reduce the cognitive effort of investors by using the
simulated IMO-DRSA. First, methods like DRSA, which use decision examples as indirect
preference information, require less cognitive effort from the DM (de Lima Silva; FERREIRA;

de Almeida Filho, 2023; KADZIńSKI; TOMCZYK; SłOWIńSKI, 2020; SILVA; de Almeida-Filho, 2018;
GRECO; MATARAZZO; SLOWINSKI, 2001). Secondly, the simulated IMO-DRSA can reduce
the number of interactions by assessing to what extent the number of interactions becomes
redundant, considering different factors, such as the type of investor and size of the index.
Thirdly, presenting fewer reference solutions to the DM will likely reduce the cognitive
effort (MESQUITA-CUNHA; FIGUEIRA; BARBOSA-PóVOA, 2022; XIN et al., 2018). Frontier
filters present a subset of portfolios from the Pareto frontier to the investor based on his/her
preferences. The comparison with NSGA-II showed that IMO-DRSA can be an effective
way to filter good-quality portfolios from the complete frontier with the progression of the
interaction process.

Another point to be investigated is to measure gains in other variables with experiments
on humans when using different configurations of IMO-DRSA interaction process. Designing
experiments using human decision-makers for this problem poses several challenges, such
as ensuring that the participants can understand the portfolio optimization problem
and designing questionnaires to evaluate preference satisfaction in the in-sample and
out-of-sample periods. Another challenge is to measure and handle distinct cognitive loads
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(SWELLER, 1988; CHANDLER; SWELLER, 1991; SWELLER; MERRIENBOER; PAAS, 1998)
when comparing different data table generation methods.

Experiments with real DMs can be useful to further develop a more complete ’visual’
approach that presents sufficient information to sort the presented portfolios into ’good’
or ’bad’ evaluations. Balancing detail and simplicity is a challenge when developing
visualization tools for this problem. For instance, a low-detail visualization shows cumulative
return trajectories and a detailed visualization would provide more information when the
DM clicks a portfolio’s trajectory.

Finally, future work involving this simulation approach could analyze other multiob-
jective optimization schemes, such as DRSA-EMO or DARWIN (GRECO; MATARAZZO;

SŁOWIŃSKI, 2010), and preferences extracted through pairwise solution comparisons
(GRECO; MATARAZZO; SŁOWIŃSKI, 2010; KADZIńSKI; TOMCZYK; SłOWIńSKI, 2020; BRANKE

et al., 2016), Non-Compensatory Sorting models (TLILI et al., 2022), IEMO (CORRENTE et

al., 2024), and other ways to choose representative sets of the pareto frontier (MESQUITA-

CUNHA; FIGUEIRA; BARBOSA-PóVOA, 2022).
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6 CONCLUSIONS AND FUTURE WORK

Chapter 3 explores the combination of GANs and metaheuristics to obtain more robust
portfolios. This was performed by using the metaheuristics to solve the index tracking model
in multiple market scenarios generated by a GAN to obtain weights less sensitive to the
uncertainty of the model parameters in the out-of-sample period. Two new metaheuristics
were proposed and evaluated for the index tracking model with multiple scenarios in real
data. The results showed that the direct incorporation of uncertainty in the model through
GAN’s market simulations produces more stable portfolios when compared to portfolios
constructed through historical data. Moreover, it was observed that the produced models
trained for a specific rebalancing could perform well in other rebalancing strategies. Also,
potential solutions that mitigate errors relative to simulated markets from GANs were
discussed.

Studies on the practical application of IMO-DRSA in the portfolio optimization context
were performed in Chapters 4 and 5, considering different factors and their influence on
EMO approaches in producing good portfolios for different types of simulated investors. In
chapter 4, a simulated IMO-DRSA was proposed to study the impact of different factors
on the portfolio robustness concerning investor preferences. Ways to filter the approximate
Pareto frontier using the induced rules were proposed. The experiments investigated the
gains of performing more interactions for different types of investors based on one of the
proposed frontier filters. In chapter 5, the simulated IMO-DRSA analysis was extended
and new components were evaluated. More objectives were considered in the model and a
better application generalization was performed by using more problem instances. Not
only the effect of the number of interactions was evaluated, but also the effect of different
frontier filters, data table presentation methods, and the way the portfolio is updated by
the evolutionary algorithm.

This thesis showed the importance of computational intelligence in producing more
robust portfolios and interactively adjusting the portfolio to the preferences of the investor.
A summary of the characteristics of the investigation that was carried out in each chapter
is presented in Table 15.

The answers to the investigated research questions are presented below:

RQ1: How can GAN-generated market scenarios improve the robustness of portfolios
compared to those constructed using historical data? Answer: It was observed that
GANs produced more robust portfolios, contingent on the rebalancing frequency.

RQ2: Are there benefits to using multiobjective metaheuristics in the index tracking model
when addressing multiple market scenarios generated by GANs? Answer: More
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Table 15 – Summary of aspects investigated in each chapter

Aspect Chapter 3 Chapter 4 Chapter 5
Algorithm GANs and GAs IMO-DRSA and GAs IMO-DRSA and GAs

Formulation Index tracking Mean-Variance Multiobjective Index
Tracking

Investor Preferences Not addressed Addressed through in-
teractions

Addressed through in-
teractions

Uncertainty Addressed using sce-
narios

Not addressed Not addressed

Practical Constraints Cardinality and Hold-
ing

Cardinality, Holding
and Investor prefer-
ences

Cardinality, Holding
and Investor prefer-
ences

robust portfolios were achieved using a multi-objective approach, although there is a
trade-off between portfolio robustness and computational cost.

RQ3: Given that a GAN was trained on a specific rebalancing strategy, is it possible to
apply it to other rebalancing strategies without retraining? Answer: The GAN
could be reused for other rebalancing strategies. However, its performance may vary,
potentially being better or worse than for the original rebalancing strategy on which
it was trained.

RQ4: Can the generators learn to produce better market simulations over the training
epochs? Answer: Based on the observed results, it is preferable to train for more
epochs, as generators facilitated the construction of more robust portfolios with
longer training.

RQ5: How does the application of IMO-DRSA influence portfolio optimization in terms
of cognitive effort? Answer: Through a simulated IMO-DRSA approach, it was
observed that IMO-DRSA can potentially reduce cognitive effort, identify and sustain
investor performance, depending on the investor’s type.

RQ6: How do the number of interactions influence the satisfaction of the investor? An-
swer: Increasing the number of iterations and applying effective frontier filtering
significantly enhance the evolutionary algorithm’s ability to align with the investor’s
preferences over time.

RQ7: How do different methods of presenting data tables influence portfolio optimization,
considering that different data presentation methods generate distinct constraints?
Answer: It was observed that certain data table presentation approaches can impact
the performance of the evolutionary algorithm, with the visual approach being the
most effective as it better incorporates constraints into the search space.
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RQ8: How does investor-specific preferences influence the performance of portfolio opti-
mization methods? Answer: It was observed that the IMO-DRSA approach was
better at handling the preferences of conservative and moderate investors compared
to those of aggressive investors.

RQ9: How do frontier filters influence portfolio optimization methods? Answer: IMO-
DRSA frontier filters reduce the cognitive effort of investors by selecting a subset of
available options from the Pareto front and outperform NSGA-II as the number of
iterations increases.

RQ10: How do preference-based update mechanisms impact the adaptability of portfolios
over time? Answer: Depending on the type of investor, IMO-DRSA can identify
their preference model and refine it over interactions, enabling the maintenance of
preferences over time by utilizing this model.

6.0.1 Novel Contributions Relative to Existing Literature

Chapter 3 advances index tracking by combining Generative Adversarial Networks (GANs)
with mathematical programming, enabling a more realistic and robust portfolio con-
struction process. Unlike traditional deep learning and sparse approaches, mathematical
programming handles real-world constraints, such as liquidity requirements, convex MINLP
formulations, multiobjective optimization, and uncertainty through scenario-based models.
GANs capture complex nonlinear relationships between assets and the index while gener-
ating synthetic market scenarios, which can be incorporated into approximate solutions
for NP-hard index tracking models. This allows for addressing uncertainty and enhancing
single and multiobjective pure/hybrid genetic algorithms (GAs).

Chapter 4 presented a simulated approach to interactive multiobjective optimization,
exploring its application within the IMO-DRSA methodology. The study examined the
impact of both the number of interactions and the investor type on the performance of
a Genetic Algorithm (GA) during the optimization process. This work marks the first
simulated approach to focus on designing the interactive process with the goal of enhancing
preference extraction, thereby improving overall optimization results.

Chapter 5 expanded upon the simulation approach introduced in Chapter 4 by in-
corporating additional aspects of the interactive process, addressing a greater number of
objectives, and applying a recent financial optimization model across multiple markets.
Compared to previous studies, this chapter analyzed the impacts of various factors—such
as investor types, frontier filters, the number of interactions, and different methods of
presenting portfolios to investors—on the performance of a Genetic Algorithm (GA) in
identifying investor preferences and sustaining their satisfaction over time. These findings
represent the first comprehensive investigation of such factors in the literature within this
field.
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6.0.2 Future work

Future work may explore more complex models with other types of practical constraints
and objectives, especially those associated with ESG. Also, it is necessary to develop new
metaheuristics to increase the numerical performance of both approaches to portfolio
optimization approaches. Other research directions concern experiments on the effect of
different variables with real decision makers and better ways to handle the preference
constraints in the interactive approach.

Future work could focus on developing robust methods for generating synthetic covari-
ance matrices using advanced generative models, such as GANs or Variational Autoencoders
(VAEs). These synthetic matrices could capture the intricate relationships between assets
more accurately than traditional methods. Also, other index tracking metrics, such as
those discussed in Gaivoronski, Krylov & Wijst (2005) can be adopted. Another future
direction concern the tracking of other types of assets, such as Hedge Funds, to infer their
positions.

In future work, it is important to consider how different training inputs, such as prices,
returns, and sentiment, impact the Generative model performance. The proposed SDM
heuristics should be further studied by considering statistical robustness analysis, a larger
out-of-sample period, other performance metrics (VaR, Turnover, Annualized Volatilty,
and others), and intraday rebalancing.

In addition, visualization tools can be developed to support the visualization of
simulated scenarios to inspect GAN quality and to support preference learning in the
interactive approach. Approaches to detect the convergence of Pareto fronts, particularly
when there are minimal differences between the risk and return of the alternatives, which
can serve as an early stopping criterion for the interaction process, will be analyzed.
Another promising research direction is to evaluate the impact of integrating multiple
decision rules into the preference model using IMO-DRSA.

6.1 RESEARCH DEVELOPMENTS

The developments of this thesis resulted in three articles, which correspond to chapters
3, 4, and 5. The article that constitutes Chapter 3 was published in the Applied Soft
Computing Journal (SILVA; de Almeida Filho, 2023). The second article (Chapter 4) was
published at the IEEE Congress on Evolutionary Computation in 2021 (SILVA; FILHO,
2021b). The last article, that was presented in Chapter 5 was published in the IEEE
Transactions on Evolutionary Computation (SILVA; FILHO, 2023).

Along the PhD studies, other articles have been published. A paper concerning the use
of DRSA in explaining and predicting rating assessments of sovereign bonds was published
in 4OR (SILVA et al., 2021). Papers that presented metaheuristics for index tracking were
published in the International Transactions in Operational Research (SILVA; SILVA; FILHO,
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2022b) and Soft Computing (AMORIM; SILVA; FILHO, 2023). A systematic literature review
concerning index tracking models and associated metaheuristics was published in the IMA
Journal of Management Mathematics (SILVA; FILHO, 2023).

In addition, other parallel works have been developed within the GREEFO research
group. The collaborative efforts of a volunteer-driven data science task force, supported
by Porto Digital and the Prefeitura do Recife, culminated in the publication of significant
research papers in reputable journals. These include a study published in Applied Soft
Computing (SILVA et al., 2023) and another in Sustainable Cities and Society in 2021 (SILVA

et al., 2021). A chapter contribution on preference learning in credit risk has been published
in the book "Intelligent Decision Support Systems - Combining Operations Research and
Artificial Intelligence - Essays in Honor of Roman Słowiński" in 2022 (FILHO et al., 2022).

Works that adopted computational intelligence in quantitative finance problems were
also published in national and international conferences. An article that applied adversarial
autoencoders for multi-class fraud detection was published in the International Joint
Conference in Neural Networks (IJCNN) in 2021 (SILVA et al., 2021). The proposed
simulated IMO-DRSA applied in the classical mean-variance problem was published in
the IEEE Congress on Evolutionary Computation in 2021 (SILVA; FILHO, 2021b). An
article that evaluated the performance of genetic algorithms to optimize tracking portfolios
during the COVID-19 pandemic was published in the IEEE Congress on Evolutionary
Computation in 2021 (AMORIM; SILVA; FILHO, 2021). Another conference article, that
proposed the use of bayesian regression to compare districts to build new residential real
estate developments, was published in IEEE SMC in 2020 (SILVA; FILHO, 2020). Other
works concerning computational intelligence applied to quantitative finance were published
and presented in SBPO (AMORIM; SILVA; FILHO, 2020), CSBC (SILVA; SILVA; FILHO, 2020),
and INFORMS (SILVA; FILHO, 2021a).
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APPENDIX A – FIGURES ASSOCIATED WITH THE GAN-BASED HYBRID
GAS RESULTS

A.1 HYBRID GAS RESULTS

(a) R09-GASAN: 𝑣 = 10 days (b) R09-GASAN: 𝑣 = 20 days

(c) R09-GASAN: 𝑣 = 40 days

Figure 40 – Boxplots for the overall tracking error performance for the R09-GASAN hybrid
GAs in the out-of-sample period.
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(a) R09-GATOR: 𝑣 = 10 days (b) R09-GATOR: 𝑣 = 20 days

(c) R09-GATOR: 𝑣 = 40 days

Figure 41 – Boxplots for the overall tracking error performance for the R09-GATOR hybrid
GAs in the out-of-sample period.

(a) W12-GASAN: 𝑣 = 10 days (b) W12-GASAN: 𝑣 = 20 days

(c) W12-GASAN: 𝑣 = 40 days

Figure 42 – Boxplots for the overall tracking error performance for the W12-GASAN
hybrid GAs in the out-of-sample period.
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(a) W12-GATOR: 𝑣 = 10 days (b) W12-GATOR: 𝑣 = 20 days

(c) W12-GATOR 𝑣 = 40 days

Figure 43 – Boxplots for the overall tracking error performance for the W12-GATOR
hybrid GAs in the out-of-sample period.
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A.2 COMPARISON OF THE FOUR HYBRID GAS BASED ON HISTORICAL DATA FOR
EACH REBALANCING STRATEGY

(a) 𝑣 = 10 days

(b) 𝑣 = 20 days

(c) 𝑣 = 40 days

Figure 44 – Performance of hybrid GAs based on historical data for each rebalancing
strategy.
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A.3 COMPARISON OF THE BEST HYBRID GAS BASED ON SBD AGAINST THE SDM-
SBDGA-GAN

(a) 𝑣 = 10 days

(b) 𝑣 = 20 days

(c) 𝑣 = 40 days

Figure 45 – Performance of the two best SBD hybrid GAs against the SDM-SBDGA-GAN
for each rebalancing strategy.
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APPENDIX B – FIGURES ASSOCIATED WITH IMO-DRSA COMPARISONS

B.1 COMPARISON BETWEEN THE FRONTIER FILTERS AND DATA TABLE PRESEN-
TATION METHODS IN SBH

(a) indtrack1
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(b) indtrack2

(c) indtrack3
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(d) indtrack4

(e) indtrack5
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(f) indtrack6

Figure 46 – Comparison of the preference function of three simulated investors with
different frontier filters and data table presentation methods in each simulated
interaction for the in-sample period of the six instances of the problem
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(a) indtrack1
.
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(b) indtrack2
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(c) indtrack3
.
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(d) indtrack4
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(e) indtrack5
.



160

(f) indtrack6

Figure 47 – Comparison of the preference function of three simulated investors with
different frontier filters and data table presentation methods in each simulated
interaction for the out-of-sample period of the six instances of the problem
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B.1.1 Importance of attributes along the interactions

(a) indtrack1
.

(b) indtrack2
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(c) indtrack3
.

(d) indtrack4
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(e) indtrack5
.

(f) indtrack6

Figure 48 – Objectives contained in rules along the interaction process when considering
different types of investors for the six instances of the problem
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B.1.2 Comparison between SBH and preference-driven MBH rebalancing

(a) indtrack1
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(b) indtrack2
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(c) indtrack3
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(d) indtrack4
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(e) indtrack5
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(f) indtrack6

Figure 49 – Comparison of the preference function of three simulated investors when using
the SBH and MBH strategies for the out-of-sample period of the six instances
of the problem
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B.1.3 Comparison against NSGA-II with and without preference guidance

(a) indtrack1

(b) indtrack2

(c) indtrack3
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(d) indtrack4

(e) indtrack5

(f) indtrack6

Figure 50 – Comparison of the preference function of three simulated investors with and
without the preference information extracted in simulated interactions for the
six instances of the problem
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B.2 STATISTICAL TESTS FOR THE IN-SAMPLE RESULTS

B.2.1 Comparing the preference satisfaction for different frontier filters

The Wilcoxon signed-rank test tests the null hypothesis that the median difference between
two related samples is zero. If the p-value satisfies 𝑝 < 0.05, then the null hypothesis is
rejected at a confidence level of 5%, concluding that there is a difference in the preference
satisfaction between the groups. We use the Wilcoxon signed-rank test to evaluate if there
is a significant difference between the performance of portfolios produced using different
frontier filters in terms of preference satisfaction.

The frontier filters were compared considering different instances of the problem,
investor types, and data table presentation methods. The p-values are presented for the
’visual’, ’par_quant’ and ’nonpar_quant’ data table presentation methods in Tables 16,
17 and 18, respectively. The p-values in bold are those that satisfy 𝑝 < 0.05.

Table 16 shows that the differences in the performance of frontier filters are significant
for all variables for the ’visual’ data table presentation method. Thus it can be observed
from Figure 46 that the ’closer’ frontier filter produces better portfolios, in terms of
preference satisfaction, when combined with the ’visual’ data table presentation method
for all instances, investor types and interaction levels.

Table 17 shows that for the ER investor, the differences in the performance of frontier
filters are significant for all variables for the ’par_quant’ data table presentation method.
Thus it can be observed from Figure 46 that the ’closer’ frontier filter produces better
portfolios, in terms of preference satisfaction, when combined with the ’par_quant’ data
table presentation method, for the ER investor, in all instances and interaction levels.

The difference in performance of the frontier filters for the TE investor are significant
for intrLvl=2 in indtrack1-5, for intrLvl=3 in indtrack1 and indtrack5-6, and for intrLvl=4
in indtrack1. Thus, observing Figure 46, the performance of the ’closer’ filter combined
with the ’par_quant’ data table presentation method for the TE investor is better for
intrLvl=2 in all instances, but is worse for intrLvl>2 in indtrack1, indtrack5 and indtrack6.

The difference in performance of the frontier filters for the EQ investor are significant
for intrLvl=2 in indtrack1-5, for intrLvl=3 in indtrack1-3, and for intrLvl4 in indtrack1-
2. Thus, observing Figure 46, the performance of the ’closer’ filter combined with the
’par_quant’ data table presentation method for the EQ investor is better for intrLvl=2
in indtrack1-5 and for intrLvl>2 in indtrack1-2, but is worse for intrLvl>2 in indtrack3.
Thus, in the majority of significant comparisons, the ’closer’ filter performed better than
the ’farther’ filter in the ’par_quant’ data table presentation method.

Table 18 shows that for the ER investor, the differences in the performance of frontier
filters are significant for all variables for the ’nonpar_quant’ data table presentation
method, except for intrLvl> 2 in indtrack2. Thus it can be observed from Figure 46 that
the ’closer’ frontier filter produces better portfolios, in terms of preference satisfaction,
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when combined with the ’nonpar_quant’ data table presentation method, for the ER
investor, in all instances for intrLvl=2, and in indtrack1 and in indtrack3-6 for intrLvl>2.

The difference in performance of the frontier filters for the TE investor are significant
for intrLvl=2 in all instances, for intrLvl=3 in indtrack1-5, and for intrLvl=4 in indtrack1-2
and in indtrack4. Thus, observing Figure 46, the performance of the ’closer’ filter combined
with the ’nonpar_quant’ data table presentation method for the TE investor is better for
intrLvl=2 in all instances, for intrLvl=3 in indtrack1-5, and for intrLvl=4 in indtrack1-2
and indtrack4.

The difference in performance of the frontier filters for the EQ investor are significant
for intrLvl=2 in all instances, for intrLvl=3 in indtrack1-5, and for intrLvl=4 in indtrack1-
5. Thus, observing Figure 46, the performance of the ’closer’ filter combined with the
’nonpar_quant’ data table presentation method for the EQ investor is better for intrLvl=2
in all instances, for intrLvl=3 in indtrack1-5, and for intrLvl=4 in indtrack1-5. Thus,
in the majority of significant comparisons, the ’closer’ filter performed better than the
’farther’ filter in the ’nonpar_quant’ data table presentation method.

dm_type intrLvl indtrack

1 2 3 4 5 6

TE
2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
3 0.00000 0.00002 0.00000 0.00001 0.00001 0.00036
4 0.00000 0.00000 0.00000 0.00001 0.00001 0.00004

ER
2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
4 0.00000 0.00000 0.00036 0.00000 0.00000 0.00000

EQ
2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001
3 0.00000 0.00000 0.00000 0.00001 0.00014 0.00006
4 0.00000 0.00000 0.00001 0.00002 0.00000 0.00003

Table 16 – Resultant p-values from the comparison between frontier filters for the ’visual’
data table presentation method.
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dm_type intrLvl indtrack

1 2 3 4 5 6

TE
2 0.00258 0.00000 0.00031 0.00004 0.00015 0.53044
3 0.03327 0.99179 0.78126 0.59994 0.02067 0.00083
4 0.00241 0.30861 0.42843 0.50383 0.76552 0.22888

ER
2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
3 0.00000 0.00000 0.00019 0.00000 0.00000 0.00000
4 0.00000 0.00000 0.00003 0.00000 0.00003 0.00000

EQ
2 0.00002 0.00002 0.03683 0.00002 0.01108 0.15286
3 0.00385 0.00019 0.01108 0.27116 0.39333 0.59994
4 0.00077 0.01175 0.92626 0.32857 0.67328 0.41653

Table 17 – Resultant p-values from the comparison between frontier filters for the
’par_quant’ data table presentation method.

dm_type intrLvl indtrack

1 2 3 4 5 6

TE
2 0.00000 0.00001 0.00001 0.00000 0.00148 0.00049
3 0.00008 0.00001 0.00499 0.00171 0.00033 0.22888
4 0.01480 0.00072 0.37094 0.02431 0.16503 0.81302

ER
2 0.00000 0.00002 0.00000 0.00000 0.00000 0.00001
3 0.00000 0.08221 0.00111 0.00011 0.00036 0.00000
4 0.00296 0.13059 0.00039 0.00000 0.00361 0.00003

EQ
2 0.00000 0.00000 0.00111 0.00003 0.00004 0.00642
3 0.00003 0.00111 0.00296 0.00211 0.00053 0.58571
4 0.00001 0.00003 0.00241 0.00296 0.00005 0.64352

Table 18 – Resultant p-values from the comparison between frontier filters for the ’non-
par_quant’ data table presentation method.
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B.2.2 Comparing the preference satisfaction for different interaction levels

We use the Wilcoxon signed-rank test to evaluate if there is a significant difference between
the performance of portfolios produced in sequential interaction levels in terms of preference
satisfaction. The interaction levels were compared considering the ’closer’ frontier filter,
which performed better than the ’farther’ frontier filter, different instances of the problem,
investor types, and data table presentation methods. The p-values are presented for the
’visual’, ’par_quant’ and ’nonpar_quant’ data table presentation methods in Tables 19,
20 and 21, respectively. The p-values in bold are those that satisfy 𝑝 < 0.05.

Table 19 shows that the differences in the performance for all pairs of interaction levels
are significant for the TE investor in indtrack1-4 and indtrack6, and for intrLvl<4 in
indtrack5, when the ’visual’ data table presentation method is adopted. Thus it can be
observed from Figure 46 that the ’visual’ data table presentation method produces better
portfolios, in terms of preference satisfaction, as the number of interactions increases from
1 to 4 in indtrack1-4, and as the number of interactions increases from 1 to 3 in indtrack5
and indtrack6. The results for the EQ investor were very similar.

For the ER investor, the differences in the performance for all pairs of interaction
levels are significant in indtrack1-2 and indtrack4-6, and for intrLvl<4 in indtrack3. But,
observing Figure 46, better portfolios are produced as interaction levels increase from 1
to 2 in indtrack1-5 and from 1 to 4 in indtrack6. It was observed that when intrLvl> 2
the solver arrives in local optima almost always in indtrack 1-5, although there are some
outliers. Thus, for indtrack1-5, the increments were observed only between interaction
levels 1 and 2.

Table 20 shows that the differences in the performance for the first pairs of interaction
levels are significant for the TE investor in indtrack1-3 when the ’par_quant’ data
table presentation method is adopted. Thus it can be observed from Figure 46 that
the ’par_quant’ data table presentation method produces better portfolios, in terms
of preference satisfaction, as the number of interaction levels increases from 1 to 2 in
indtrack1-3. For the EQ investor, the ’par_quant’ data table presentation method produces
better portfolios, with a significant difference, as the number of interactions increases from
1 to 2 in indtrack1 and in indtrack4, and as the number of interactions increases from 1 to
3 in indtrack2.

For the ER investor, the differences in the performance for all pairs of interaction levels
are significant in indtrack1-4 and indtrack6, and for intrLvl<4 in indtrack5. Observing
Figure 46, better portfolios are produced as interaction levels increase from 1 to 2 in
indtrack1-5 and as interaction levels increase from 1 to 4 indtrack6. Similar to the
’visual’ approach, it was observed that when intrLvl> 2 the solver arrives in local optima
almost always in indtrack1-5, although there are some outliers. Thus, for indtrack1-5, the
increments were observed only between interaction levels 1 and 2.

Table 21 shows that the differences in the performance for the first pairs of interaction



176

levels are significant for all types of investor in indtrack1-6 when the ’nonpar_quant’ data
table presentation method is adopted. Thus it can be observed from Figure 46 that the
’nonpar_quant’ data table presentation method produces better portfolios for the TE
and EQ investors, in terms of preference satisfaction, as the number of interaction levels
increases from 1 to 2 in all instances.

For the ER investor, better portfolios are produced as interaction levels increase from
1 to 2 in all instances. Also, the ’nonpar_quant’ method produces better portfolios for the
ER investor, with a significant difference, as the number of interactions increases from 1
to 3 in indtrack6. Similar to the results for the simulated ER investor in the ’visual’ and
’par_quant’ approaches, it was observed that the solver arrives in local optima in indtrack1
and indtrack4 when intrLvl> 2 in the ’nonpar_quant’ approach. Thus, for indtrack1-5,
the increments were observed only between interaction levels 1 and 2.

dm_type (intrLvl-1, intrLvl) indtrack

1 2 3 4 5 6

TE
(1, 2) 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000
(2, 3) 0.00007 0.00005 0.00000 0.00003 0.00026 0.02459
(3, 4) 0.00102 0.00010 0.00014 0.00091 0.10804 0.04951

ER
(1, 2) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
(2, 3) 0.00013 0.00003 0.00007 0.00002 0.00009 0.00044
(3, 4) 0.04311 0.00147 0.07314 0.00769 0.02771 0.00098

EQ
(1, 2) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
(2, 3) 0.00015 0.00045 0.00019 0.00036 0.05446 0.00923
(3, 4) 0.02786 0.00002 0.00322 0.00564 0.00325 0.00061

Table 19 – Resultant p-values from the comparison between interaction levels for the
’visual’ data table presentation method.

dm_type (intrLvl-1, intrLvl) indtrack

1 2 3 4 5 6

TE
(1, 2) 0.02067 0.00004 0.02703 0.06871 0.08972 0.28021
(2, 3) 0.88235 0.00123 0.01108 0.06557 0.11535 0.00313
(3, 4) 0.37577 0.08962 0.17655 0.30437 0.02459 0.07649

ER
(1, 2) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
(2, 3) 0.00013 0.00020 0.00468 0.00006 0.00006 0.00098
(3, 4) 0.00222 0.00044 0.00898 0.00769 0.05046 0.00065

EQ
(1, 2) 0.00045 0.00385 0.25628 0.00024 0.22888 0.00773
(2, 3) 0.39443 0.01412 0.00128 0.13113 0.13535 0.08648
(3, 4) 0.36127 0.29430 0.03186 0.93169 0.92344 0.80776

Table 20 – Resultant p-values from the comparison between interaction levels for the
’par_quant’ data table presentation method.
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dm_type (intrLvl-1, intrLvl) indtrack

1 2 3 4 5 6

TE
(1, 2) 0.00001 0.00013 0.00001 0.00000 0.00241 0.00071
(2, 3) 0.68916 0.11094 0.39486 0.49452 0.36004 0.86116
(3, 4) 0.95443 0.70513 0.53220 0.33948 0.40042 0.66824

ER
(1, 2) 0.00053 0.00114 0.00003 0.00001 0.00001 0.00001
(2, 3) 0.00498 0.70888 0.62660 0.00325 0.52668 0.00236
(3, 4) 0.95935 0.98927 0.20122 0.00573 0.77643 0.27724

EQ
(1, 2) 0.00002 0.00038 0.00316 0.00006 0.00096 0.00120
(2, 3) 0.47505 0.81987 0.06194 0.17655 0.75479 0.63251
(3, 4) 0.30366 0.00947 0.73267 0.48597 0.44550 0.49263

Table 21 – Resultant p-values from the comparison between interaction levels for the
’nonpar_quant’ data table presentation method.
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B.2.3 Comparing NSGA-II and IMO-DRSA

We use the Wilcoxon signed-rank test to evaluate if there is a significant difference between
the performance of portfolios produced by NSGA-II and IMO-DRSA from interaction
levels 2 to 4 in terms of preference satisfaction. The IMO-DRSA uses the closer frontier
filter and the visual data table presentation method, a combination that obtained a good
overall performance. The p-values are presented in Table 22. The p-values in bold are
those that satisfy 𝑝 < 0.05.

For simulated TE investors, there is a significant performance difference between
NSGA-II and IMO-DRSA, in terms of preference satisfaction, for intrLvl=2 in intrack2-4.
Observing Figure 6, it is possible to observe that NSGA-II performed better in these
cases. For intrLvl=3, there is a significant performance difference between the algorithms
in indtrack1-2 and intrack4-5, where IMO-DRSA performed better in these cases. For
intrLVL=4, there is a significant performance difference between the algorithms in indtrack1-
5, where IMO-DRSA performed better in these cases.

For simulated ER investors, there is a significant difference between NSGA-II and
IMO-DRSA in terms of preference satisfaction for intrLvl=2 in intrack1-5. Observing
Figure 6, it is possible to observe that despite some outliers, both algorithms reached local
optima in indtrack1 and indtrack3. NSGA-II achieved better performance in indtrack2,
indtrack4, and indtrack5. For intrLvl=3, there is no evidence supporting a significant
performance difference between the algorithms in any instance. Although there is a
significant performance difference between the algorithms for intrLvl=4 in indtrack2, both
algorithms arrived at local optima.

For simulated EQ investors, there is a significant difference between NSGA-II and
IMO-DRSA in terms of preference satisfaction for intrLvl=2 in intrack2-4. Observing
Figure 6, it is possible to observe that NSGA-II performed better in these cases. For
intrLvl=3, there is no evidence supporting a significant performance difference between
the algorithms in any instance. For intrLvl=4, there is a significant performance difference
between the algorithms in indtrack1-2 and intrack5, where IMO-DRSA performed better
in these cases.
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dm_type (intrLvl) indtrack

1 2 3 4 5 6

TE
2 0.07865 0.02564 0.00096 0.02849 0.05710 0.18462
3 0.00984 0.01566 0.10201 0.01044 0.00727 0.46528
4 0.00083 0.00021 0.00049 0.01657 0.00567 0.81302

ER
2 0.00411 0.00296 0.02703 0.00022 0.03327 0.84508
3 0.67328 0.89364 0.42843 0.76552 0.17791 0.68836
4 0.53044 0.03501 0.70356 0.36004 0.23694 0.79710

EQ
2 0.08221 0.00002 0.00258 0.00026 0.17138 0.11093
3 0.15286 0.42843 0.26230 0.94261 0.16503 0.84508
4 0.04716 0.00277 0.13059 0.47795 0.00066 0.37094

Table 22 – Resultant p-values from the comparison between NSGA-II and IMO-DRSA
with the closer frontier filter and visual approach in each interaction level.
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B.2.4 Evaluating the IMO-DRSA approach further with the ’visual’ data table
presentation method

A more profound evaluation concerning IMO-DRSA with the ’closer’ frontier filter com-
bined with the ’visual’ data table approach since it performed better among all IMO-DRSA
approaches. The Levene test was applied to evaluate if there is a significant difference
between the variance of the preference satisfaction performance of portfolios produced by
the ’closer’ and ’farther’ frontier filters when using the ’visual’ approach, which is repre-
sented here as 𝑓𝜃𝐷𝑀 ,𝑑𝑡𝑡𝑦𝑝𝑒

, where 𝜃𝐷𝑀 = {𝜃𝑇 𝐸, 𝜃𝐸𝑅, 𝜃𝐸𝑄} and 𝑑𝑡𝑡𝑦𝑝𝑒 = {′𝑐𝑙𝑜𝑠𝑒𝑟′,′ 𝑓𝑎𝑟𝑡ℎ𝑒𝑟′}.
The variance differences 𝜎2(𝑓𝜃𝐷𝑀 ,𝑐𝑙𝑜𝑠𝑒𝑟)− 𝜎2(𝑓𝜃𝐷𝑀 ,𝑓𝑎𝑟𝑡ℎ𝑒𝑟) and p-values in parenthesis are
presented in Table 23. The p-values in bold are those that satisfy 𝑝 < 0.05. It is possible
to see that, in the majority of significant cases, the ’closer’ filter produces portfolios with
a lower variance of preference satisfaction.

dm_type intrLvl indtrack

1 2 3 4 5 6

TE
2 -4.26e-07 (0.00000) -1.30e-07 (0.00000) -8.71e-08 (0.00000) -1.76e-07 (0.00000) -9.62e-08 (0.00000) -1.97e-08 (0.00256)
3 -1.85e-07 (0.00014) 5.02e-08 (0.02374) -7.04e-08 (0.00000) -4.61e-08 (0.00973) -7.54e-08 (0.00021) 1.11e-07 (0.58943)
4 -3.11e-07 (0.00000) -1.14e-07 (0.00000) -7.45e-08 (0.00000) -2.61e-08 (0.02355) -6.30e-08 (0.00075) 1.11e-07 (0.60543)

ER
2 -1.94e-07 (0.00000) -4.56e-07 (0.00000) -2.66e-07 (0.00000) -1.54e-06 (0.00000) -9.42e-08 (0.00000) -1.71e-07 (0.22891)
3 -1.66e-07 (0.00000) -4.16e-07 (0.00000) -1.38e-07 (0.00000) -1.50e-06 (0.00000) -7.74e-08 (0.00000) -2.09e-08 (0.79926)
4 -1.53e-07 (0.00000) -3.92e-07 (0.00000) 1.97e-07 (0.14832) -1.33e-06 (0.00000) -7.55e-08 (0.00000) -3.08e-08 (0.65081)

EQ
2 -5.34e-06 (0.00000) -4.19e-06 (0.00000) -3.62e-06 (0.00001) -3.15e-06 (0.00000) -3.55e-06 (0.00000) -5.06e-07 (0.00048)
3 -3.94e-07 (0.01109) 3.28e-07 (0.03243) -1.39e-06 (0.00437) 1.12e-06 (0.20388) 2.47e-06 (0.48275) 1.39e-06 (0.95700)
4 -2.14e-06 (0.00422) -3.92e-06 (0.00000) -2.01e-06 (0.00176) 1.75e-06 (0.29018) -2.51e-06 (0.00000) 1.93e-07 (0.09584)

Table 23 – Resultant p-values of the Levene test from the comparison between frontier
filters for the ’visual’ data table presentation method.

The Levene test was also applied to evaluate if there is a significant difference between
the variance of the preference satisfaction performance of portfolios produced by sequential
interaction levels using the ’closer’ filter combined with the ’visual’ approach, which is
represented here as 𝑓𝜃𝐷𝑀 ,𝑖𝑛𝑡𝑟𝐿𝑣𝑙, where 𝜃𝐷𝑀 = {𝜃𝑇 𝐸, 𝜃𝐸𝑅, 𝜃𝐸𝑄} and 𝑖𝑛𝑡𝑟𝐿𝑣𝑙 = {2, 3, 4}.
The variance differences 𝜎2(𝑓𝜃𝐷𝑀 ,𝑖𝑛𝑡𝑟𝐿𝑣𝑙)−𝜎2(𝑓𝜃𝐷𝑀 ,𝑖𝑛𝑡𝑟𝐿𝑣𝑙−1) and p-values in parenthesis are
presented in Table 24. The p-values in bold are those that satisfy 𝑝 < 0.05. It is possible to
observe that most of the significant cases are associated with interaction level 2. Thus, the
produced portfolios have a significantly lower variance of preference satisfaction mostly
when the interaction process shifts from level 1 to level 2 for all investors.
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dm_type (intrLvl-1, intrLvl) indtrack

1 2 3 4 5 6

TE
(1, 2) -1.18e-07 (0.00013) -1.25e-07 (0.00033) -1.36e-08 (0.03700) -5.10e-08 (0.00145) -4.89e-08 (0.00000) -3.01e-09 (0.68374)
(2, 3) 1.46e-07 (0.48422) 1.79e-07 (0.40778) -3.10e-09 (0.00921) 7.59e-08 (0.54099) 4.39e-08 (0.80303) 1.18e-07 (0.27256)
(3, 4) -1.48e-07 (0.35068) -1.81e-07 (0.31928) -1.16e-09 (0.36535) -1.97e-08 (0.93179) 2.33e-08 (0.87621) -6.41e-10 (0.93888)

ER
(1, 2) -6.66e-08 (0.00000) -1.76e-07 (0.00074) -7.79e-08 (0.00081) -9.56e-07 (0.00005) -6.36e-08 (0.00000) -5.82e-07 (0.00349)
(2, 3) -6.70e-10 (0.05283) -2.90e-09 (0.00001) 8.12e-08 (0.38134) -3.91e-08 (0.00061) -1.45e-09 (0.07328) 1.27e-07 (0.49323)
(3, 4) -2.87e-13 (0.81107) -1.50e-10 (0.13322) 3.15e-07 (0.23417) -1.04e-10 (0.46345) -4.23e-11 (0.33135) -1.35e-08 (0.81722)

EQ
(1, 2) -2.72e-06 (0.00001) -4.18e-06 (0.00001) -8.42e-07 (0.00003) -2.56e-06 (0.00015) -2.21e-06 (0.00006) -1.73e-07 (0.01353)
(2, 3) 4.32e-06 (0.56945) 3.57e-06 (0.15940) 1.12e-06 (0.31001) 3.15e-06 (0.21945) 5.68e-06 (0.07392) 1.72e-06 (0.29875)
(3, 4) -1.90e-06 (0.86770) -3.56e-06 (0.18026) 3.50e-08 (0.97952) 5.22e-07 (0.95151) -5.78e-06 (0.04034) -1.24e-06 (0.38664)

Table 24 – Resultant variance differences and p-values from the comparison between
interaction levels for the ’visual’ data table generation method.
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Finally, the Levene test was applied to evaluate if there is a significant difference between
the variance of the preference satisfaction performance of portfolios produced by the and
NSGA-II and ’IMO-DRSA’ using the ’closer’ filter combined with the ’visual’ approach,
which is represented here as 𝑓𝜃𝐷𝑀 ,𝐺𝐴, where 𝜃𝐷𝑀 = {𝜃𝑇 𝐸, 𝜃𝐸𝑅, 𝜃𝐸𝑄} and 𝐺𝐴 = {𝐼𝑀𝑂 −
𝐷𝑅𝑆𝐴,𝑁𝑆𝐺𝐴 − 𝐼𝐼}. The variance differences 𝜎2(𝑓𝜃𝐷𝑀 ,𝐼𝑀𝑂−𝐷𝑅𝑆𝐴) − 𝜎2(𝑓𝜃𝐷𝑀 ,𝑁𝑆𝐺𝐴−𝐼𝐼)
and p-values in parenthesis are presented in Table 25. The p-values in bold are those that
satisfy 𝑝 < 0.05. It is possible to see that the NSGA-II approach produces portfolios with
a significantly lower variance of preference satisfaction mostly at interaction level 2 for all
investors.

dm_type intrLvl indtrack

1 2 3 4 5 6

TE
2 3.52e-09 (0.00181) 2.45e-09 (0.14866) 3.97e-09 (0.00085) 3.63e-09 (0.04582) 5.97e-09 (0.01451) 3.03e-09 (0.02721)
3 1.49e-07 (0.31236) 1.82e-07 (0.31085) 9.70e-10 (0.44003) 7.97e-08 (0.25333) 4.99e-08 (0.30438) 1.21e-07 (0.16031)
4 6.35e-10 (0.47151) 9.79e-10 (0.52136) -2.74e-10 (0.61072) 6.04e-08 (0.19621) 7.30e-08 (0.32593) 1.20e-07 (0.20054)

ER
2 6.65e-10 (0.06544) 2.78e-09 (0.00013) 4.78e-10 (0.13038) 3.86e-08 (0.00097) 1.50e-09 (0.04605) -7.96e-08 (0.93598)
3 5.12e-14 (0.67722) 9.55e-11 (0.70773) 8.17e-08 (0.32291) 1.39e-10 (0.22847) 4.85e-11 (0.12057) 1.29e-07 (0.36910)
4 3.90e-13 (0.53089) -5.18e-12 (0.10718) 3.97e-07 (0.08094) 4.01e-11 (0.28741) 7.45e-12 (0.12694) -3.15e-07 (0.72039)

EQ
2 1.25e-07 (0.01223) 1.56e-08 (0.60911) 8.37e-08 (0.00715) 6.76e-08 (0.04655) 1.43e-07 (0.00563) 4.00e-08 (0.06728)
3 4.46e-06 (0.32308) 3.59e-06 (0.13911) 1.19e-06 (0.10929) 3.21e-06 (0.13912) 5.82e-06 (0.03074) 1.76e-06 (0.19069)
4 2.54e-06 (0.30975) 3.19e-08 (0.15637) 1.22e-06 (0.15476) 3.72e-06 (0.16825) 3.34e-08 (0.52756) 5.16e-07 (0.56497)

Table 25 – Resultant variance differences and p-values of the Levene test from the com-
parison between NSGA-II and IMO-DRSA combining the ’visual’ data table
generation method and the ’closer’ frontier filter.
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