Skip navigation
Use este identificador para citar ou linkar para este item: https://repositorio.ufpe.br/handle/123456789/62632

Compartilhe esta página

Título: Estimating human age using machine learning on panoramic radiographs for multi-regional brazilian patients
Autor(es): OLIVEIRA, Willian Farias Carvalho
Palavras-chave: Ciências forenses; Rede neural profunda; Estimativa de idade; Métodos radiológicos
Data do documento: 10-Dez-2024
Editor: Universidade Federal de Pernambuco
Citação: OLIVEIRA, Willian Farias Carvalho. Estimating human age using machine learning on panoramic radiographs for multi-regional brazilian patients. 2024. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Pernambuco, Recife, 2024.
Abstract: This study addresses the challenge of developing machine learning models for age estima- tion based on panoramic radiographs of patients from different regions of Brazil. Using two geographically diverse datasets — one from UFPE (Northeast) and another from Unicamp (Southeast) — we investigated the limitations of artificial intelligence models in predicting age across distinct regional contexts. We designed an experimental protocol to evaluate the behavior of machine learning models in various scenarios. In the first experiment, the model trained exclusively on UFPE data showed limitations when tested on Unicamp patients, re- sulting in a mean absolute error (MAE) of 3.10 years on the UFPE dataset and 4.97 years on the Unicamp dataset, highlighting challenges in generalization.In the second experiment, fine- tuning approaches were explored, which, while improving the model’s performance on regional data, did not completely eliminate biases. In the third experiment, training the model from scratch on a mixed dataset achieved the best balance between accuracy and generalization, with an MAE of 3.25 years for UFPE and 3.69 years for Unicamp, indicating greater robust- ness compared to previous approaches. The fourth experiment introduced data augmentation techniques to enhance the model’s robustness against outliers and extreme cases. Despite marginal improvements, high-magnitude errors persisted, suggesting the need for additional strategies, such as more advanced data augmentation techniques and more complex archi- tectures. The results of this study reinforce the importance of diverse datasets and rigorous experimental protocols to address regional variability and distinct demographic characteristics. The model trained on a mixed dataset proved to be the most effective approach, emphasizing that integrating diverse populations is crucial to improving model generalization. Thus, the study provides concrete evidence for the development of more robust systems capable of being reliably applied in clinical and forensic scenarios.
URI: https://repositorio.ufpe.br/handle/123456789/62632
Aparece nas coleções:Dissertações de Mestrado - Ciência da Computação

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
DISSERTAÇÃO Willian Farias Carvalho Oliveira.PDF9,94 MBAdobe PDFThumbnail
Visualizar/Abrir


Este arquivo é protegido por direitos autorais



Este item está licenciada sob uma Licença Creative Commons Creative Commons