Skip navigation
Please use this identifier to cite or link to this item: https://repositorio.ufpe.br/handle/123456789/62451

Share on

Title: Unsupervised Feature Selection and Deep Subspace Clustering for Exploratory High-Dimensional Cluster Analysis
Authors: OLIVEIRA, Marcos de Souza
Keywords: Small Data Analysis; Unsupervised feature selection; Subspace clustering.
Issue Date: 3-Feb-2025
Publisher: Universidade Federal de Pernambuco
Citation: OLIVEIRA, Marcos de Souza. Unsupervised Feature Selection and Deep Subspace Clustering for Exploratory High-Dimensional Cluster Analysis. 2024. Tese (Doutorado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2024.
Abstract: With the advancement of information technology, data volume is rapidly increasing, po- sing significant challenges for storage and processing. This growth occurs both in the number of samples and in the number of features, making initial exploratory small data analysis crucial to reducing computational demands and improving data quality for ma- chine learning (ML) training. However, simply reducing the number of samples can in- tensify the “curse of dimensionality,” complicating analysis when a small dataset contains many features. Dimensionality reduction techniques are therefore essential for enabling more efficient and interpretable analyses. Unlike methods such as PCA, which transform the original data, unsupervised feature selection techniques identify the most relevant va- riables without requiring labels, enhancing the interpretability of natural data patterns. However, patterns may emerge only within specific feature subsets, known as subspaces. In some cases, the original features may not be sufficient, requiring the generation of new ones to identify these subspaces. This research explores two strategies for handling high- dimensional data with few samples: (i) a novel unsupervised feature selection method and (ii) a clustering approach based on subspaces. Experiments on real and synthetic datasets showed that the proposed methods outperform state-of-the-art approaches, as evidenced by clustering evaluation metrics and statistical tests.
URI: https://repositorio.ufpe.br/handle/123456789/62451
Appears in Collections:Teses de Doutorado - Ciência da Computação

Files in This Item:
File Description SizeFormat 
TESE Marcos de Souza Oliveira.pdf
  Embargoed Item Until 2026-04-18
7,98 MBAdobe PDFView/Open    Item embargoed


This item is protected by original copyright



This item is licensed under a Creative Commons License Creative Commons