Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.ufpe.br/handle/123456789/62451

Comparte esta pagina

Título : Unsupervised Feature Selection and Deep Subspace Clustering for Exploratory High-Dimensional Cluster Analysis
Autor : OLIVEIRA, Marcos de Souza
Palabras clave : Small Data Analysis; Unsupervised feature selection; Subspace clustering.
Fecha de publicación : 3-feb-2025
Editorial : Universidade Federal de Pernambuco
Citación : OLIVEIRA, Marcos de Souza. Unsupervised Feature Selection and Deep Subspace Clustering for Exploratory High-Dimensional Cluster Analysis. 2024. Tese (Doutorado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2024.
Resumen : With the advancement of information technology, data volume is rapidly increasing, po- sing significant challenges for storage and processing. This growth occurs both in the number of samples and in the number of features, making initial exploratory small data analysis crucial to reducing computational demands and improving data quality for ma- chine learning (ML) training. However, simply reducing the number of samples can in- tensify the “curse of dimensionality,” complicating analysis when a small dataset contains many features. Dimensionality reduction techniques are therefore essential for enabling more efficient and interpretable analyses. Unlike methods such as PCA, which transform the original data, unsupervised feature selection techniques identify the most relevant va- riables without requiring labels, enhancing the interpretability of natural data patterns. However, patterns may emerge only within specific feature subsets, known as subspaces. In some cases, the original features may not be sufficient, requiring the generation of new ones to identify these subspaces. This research explores two strategies for handling high- dimensional data with few samples: (i) a novel unsupervised feature selection method and (ii) a clustering approach based on subspaces. Experiments on real and synthetic datasets showed that the proposed methods outperform state-of-the-art approaches, as evidenced by clustering evaluation metrics and statistical tests.
URI : https://repositorio.ufpe.br/handle/123456789/62451
Aparece en las colecciones: Teses de Doutorado - Ciência da Computação

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
TESE Marcos de Souza Oliveira.pdf
  Artículo embargado hasta 2026-04-18
7,98 MBAdobe PDFVisualizar/Abrir     Item embargoed


Este ítem está protegido por copyright original



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons