Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.ufpe.br/handle/123456789/59017

Comparte esta pagina

Título : On the generalized fractional Sobolev spaces and applications
Autor : ASSIS, Lazaro Rangel Silva de
Palabras clave : Espaços de Orlicz-Sobolev fracionários; Espaços de Musielak-Sobolev fracionários; Problemas não locais; Método do quociente de Rayleigh não linear; Fórmula do tipo Bourgain-Brezis-Mironescu
Fecha de publicación : 25-oct-2024
Editorial : Universidade Federal de Pernambuco
Citación : ASSIS, Lazaro Rangel Silva de. On the generalized fractional Sobolev spaces and applications. 2024. Tese (Doutorado em Matemática) – Universidade Federal de Pernambuco, Recife, 2024.
Resumen : In this thesis, we study some generalizations of the fractional order Sobolev spaces and applications. Specifically, in the case of the fractional Orlicz-Sobolev spaces, we present an overview of recent developments in the theory, focusing on qualitative properties and embedding results. We then apply these results, along with the nonlinear Rayleigh quotient method and the minimization method on the Nehari manifold, to investigate conditions that ensure the existence of nontrivial solutions to a class of superlinear fractional Φ-Laplacian type problems with two parameters. In the context of fractional Musielak-Sobolev spaces, we extend and complement the existing theoretical results. More precisely, we establish some abstract results, such as uniform convexity, the Radon-Riesz property with respect to the modular function, the (S+)-property, a Brezis-Lieb type lemma for the modular function, and monotonicity results. Moreover, we apply the developed theory to study the existence of solutions to a class of problems involving a general nonlocal nonlinear operator of the fractional Φ-Laplacian type. Finally, we study the asymptotic behavior of modular functions and seminorms associated with fractional Musielak-Sobolev spaces as the fractional parameter approaches 1, without requiring the Δ2-condition on the Musielak function or its complementary function. This investigation culminates in a Bourgain-Brezis-Mironescu type formula for a very general family of functionals. It is important to emphasize that the achieving these results required the introduction of specific assumptions regarding the Musielak functions involved.
URI : https://repositorio.ufpe.br/handle/123456789/59017
Aparece en las colecciones: Teses de Doutorado - Matemática

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
TESE Lazaro Rangel Silva de Assis.pdf1,35 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está protegido por copyright original



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons