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Não se perturbar com a grandeza das dores e problemas é um teste da
nossa resiliência interior. A adversidade é uma parte inerente da vida, e
nossa atitude perante ela define nosso caráter. Ao encarar as dificuldades
com serenidade, fortalecemos nossa alma e nos tornamos mais capazes
de enfrentar os desafios. Lembre-se de que a magnitude das dores é
uma oportunidade para o crescimento e o autodomínio, permitindo-nos
transcender as dificuldades e emergir mais fortes (AURÉLIO et al., 2023, p.
29).



RESUMO

Nesta tese, estudamos algumas generalizações dos espaços de Sobolev de ordem
fracionária e aplicações. Especificamente, no caso dos espaços de Orlicz-Sobolev fracionários,
apresentamos uma visão geral dos desenvolvimentos recentes na teoria, com foco em
propriedades qualitativas e resultados de imersão. Em seguida, aplicamos esses resultados,
juntamente com o método do quociente de Rayleigh não linear e o método de minimização
na variedade de Nehari, para investigar condições que garantem a existência de soluções
não triviais para uma classe de problemas do tipo Φ-Laplaciano fracionário superlinear com
dois parâmetros. No contexto dos espaços de Musielak-Sobolev fracionários, estendemos e
complementamos os resultados teóricos existentes. Mais precisamente, estabelecemos alguns
resultados abstratos, como convexidade uniforme, a propriedade Radon-Riesz com relação à
função modular, a propriedade (𝑆+), um lema do tipo Brezis-Lieb para a função modular
e resultados de monotonicidade. Além disso, aplicamos a teoria desenvolvida para estudar
a existência de soluções para uma classe de problemas envolvendo um operador não local
e não linear geral do tipo Φ-Laplaciano fracionário. Por fim, estudamos o comportamento
assintótico de funções modulares e seminormas associadas a espaços fracionários de Musielak-
Sobolev quando o parâmetro fracionário se aproxima de 1, sem exigir a condição Δ2 na função
de Musielak ou em sua função complementar. Esta investigação culmina em uma fórmula
do tipo Bourgain-Brezis-Mironescu para uma família muito geral de funcionais. É importante
enfatizar que a obtenção desses resultados exigiu a introdução de hipóteses específicas sobre
as funções de Musielak envolvidas.

Palavras-chaves: Espaços de Orlicz-Sobolev fracionários. Espaços de Musielak-Sobolev
fracionários. Problemas não locais. Método do quociente do Rayleigh não linear. Fórmula
do tipo Bourgain-Brezis-Mironescu.



ABSTRACT

In this thesis, we study some generalizations of the fractional order Sobolev spaces and
applications. Specifically, in the case of the fractional Orlicz-Sobolev spaces, we present
an overview of recent developments in the theory, focusing on qualitative properties and
embedding results. We then apply these results, along with the nonlinear Rayleigh quotient
method and the minimization method on the Nehari manifold, to investigate conditions that
ensure the existence of nontrivial solutions to a class of superlinear fractional Φ-Laplacian
type problems with two parameters. In the context of fractional Musielak-Sobolev spaces,
we extend and complement the existing theoretical results. More precisely, we establish
some abstract results, such as uniform convexity, the Radon-Riesz property with respect
to the modular function, the (𝑆+)-property, a Brezis-Lieb type lemma for the modular
function, and monotonicity results. Moreover, we apply the developed theory to study the
existence of solutions to a class of problems involving a general nonlocal nonlinear operator
of the fractional Φ-Laplacian type. Finally, we study the asymptotic behavior of modular
functions and seminorms associated with fractional Musielak-Sobolev spaces as the fractional
parameter approaches 1, without requiring the Δ2-condition on the Musielak function or its
complementary function. This investigation culminates in a Bourgain-Brezis-Mironescu type
formula for a very general family of functionals. It is important to emphasize that the achieving
these results required the introduction of specific assumptions regarding the Musielak functions
involved.

Keywords: Fractional Orlicz-Sobolev spaces. Fractional Musielak-Sobolev spaces. Nonlocal
problems. Nonlinear Rayleigh quotient method. Bourgain-Brezis-Mironescu type formula.
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1 INTRODUCTION

The evolution of Banach function spaces theory over the last century has seen a fascinating
broadening of spaces beyond the classical Lebesgue spaces 𝐿𝑝. This journey began in the 1930s
with the pioneering work of Birnbaum and Orlicz (1931), who laid down the initial framework
for generalizing Lebesgue spaces. The foundation for these advancements was already being set
by Young (1911), whose work on convex functions provided essential tools for the development
of these new spaces.

In the second half of 1930, the concept of variable exponent Lebesgue spaces was
introduced by Orlicz (1931), marking an important step in expanding the theory. Shortly
thereafter, Orlicz (1932) shifted focus from variable exponent spaces to develop the theory
of what are now known as Orlicz spaces, with an additional condition called Δ2-condition. A
few years later, Orlicz (1936) presents your spaces in full generality. This theory was further
developed and systematized in the influential book by Krasnosel’skii and Rutickii (1961),
which treated Orlicz spaces in connection with 𝑁 -functions and Lebesgue measurable subsets
in R𝑁 . The general framework for Young functions and arbitrary non-atomic measures was
later formalized in the book by Rao and Ren (1985), providing a comprehensive understanding
of these spaces and their applications.

The Orlicz spaces and Lebesgue variable exponent spaces have different nature, and neither
of them is a subset of the other. In general terms, the former are obtained by replacing the
function 𝑡𝑝 by a function 𝑡𝑝(𝑥), where the exponent 𝑝(·) is allowed to depend on the spatial
variable 𝑥. The latter arise when the role of the power 𝑡𝑝 is played by a more general Young
function Φ(·), that is, a non-negative convex function that vanishes at 0. However, Nakano
(1950) succeeds in encompassing these two spaces by abstracting certain central properties of
the Young function, one is led to a more general class of so-called modular spaces.

Following the work of Nakano, a generalization of modular spaces were formalized by
Musielak and Orlicz (1959). In this paper, the authors also presented some example of
modular spaces generated by special functions, what would later be called Musielak-Orlicz
spaces (also known as generalized Orlicz spaces). Somewhat later, the theory of these spaces
were systematically presented in the comprehensive monograph by Musielak (1983), playing a
key role in the functional analysis of modular spaces.

These notable spaces are built upon measure space (Ω, Σ, 𝜇) and generalized Young
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functions Φ : Ω × [0, ∞) → [0, ∞), also known as Musielak function, namely, are measurable
functions in the variable 𝑥 ∈ Ω for each 𝑡 ∈ [0, ∞) fixed, and Young functions in the variable
𝑡 for 𝜇-a.e. 𝑥 ∈ Ω fixed. In precisely terms, the Musielak-Orlicz space 𝐿Φ𝑥 is defined as

𝐿Φ𝑥(Ω, 𝜇) = {𝑢 : Ω → R 𝜇-measurable : 𝐽Φ(𝜆𝑢) < ∞ for some 𝜆 > 0}

and equipped with the Luxemburg norm

‖𝑢‖Φ𝑥 = inf
{︂

𝜆 > 0: 𝐽Φ

(︂
𝑢

𝜆

)︂
≤ 1

}︂

associated to modular function 𝐽Φ given by

𝐽Φ(𝑢) =
∫︁

Ω
Φ(𝑥, |𝑢(𝑥)|) 𝑑𝑥.

At this point, two possible extensions of the classical Sobolev spaces could be considered.
The first one is the Orlicz-Sobolev spaces. A systematic study of these spaces in connection
with the analysis of nonlinear partial differential equations without a polynomial growth was
initiated by important works by Donaldson (1971), Donaldson and Trudinger (1971) and
Adams (1977). A second possible extension is Sobolev spaces with variable exponent, which
began only in the nineties with the work of Kováčik and Rákosník (1991), where some basic
properties are proved. On the other hand, the Musielak–Orlicz setting unifies both spaces, but
inherit technical difficulties resulting from general growth and inhomogeneity.

For convenience of the reader, when Ω is an open set in R𝑁 , the Musielak-Orlicz-Sobolev
spaces 𝑊 1,Φ𝑥(Ω) generalize the standard Sobolev spaces and consist of those functions whose
weak derivatives belong to 𝐿Φ𝑥(Ω). More precisely, they are defined as

𝑊 1,Φ𝑥(Ω) =
{︁
𝑢 ∈ 𝑊 1,1

𝑙𝑜𝑐 (Ω) : 𝑢, |∇𝑢| ∈ 𝐿Φ𝑥(Ω)
}︁

and endowed with the norm

‖𝑢‖1,Φ𝑥 = ‖𝑢‖Φ𝑥 + ‖∇𝑢‖Φ𝑥 .

The first systematic approach on general Musielak-Orlicz-Sobolev spaces appeared in the
seventies with a series of the papers by H. Hudzik (HUDZIK, 1976a; HUDZIK, 1976b; HUDZIK,
1976c).

In parallel with the research on Muselak-Orlicz Sobolev spaces, those with variable
exponents have received significant interest. Over the past 30 years, these spaces have been
studied in more than a thousand papers. One of the reasons for this comes from the fact
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that they have a direct application to the study of differential equations associated with fluid
mechanics models, image restoration processing and elasticity theory. For a good theoretical
basis on this topic, we cite only the monographs of Rădulescu and Repovš (2015) and Diening
et al. (2017).

Now we turn our attention to the nonlocal problems, which received great attention in the
last decades, a fundamental tool to treat these type of problems is the so-called fractional
order Sobolev spaces. The interest in these spaces is especially motivated by applications
to the study of nonlocal problems driven by the fractional operators that arises naturally
in different context, such as thin obstacle problem, flame propagation, anomalous diffusion,
chemical reactions of liquids, population and fluid dynamics, water waves, crystal dislocations,
nonlocal phase transitions, nonlocal minimal surfaces and many others. For more information
and comprehensive applications, we refer the reader to works (LASKIN, 2000; LASKIN, 2002;
DI NEZZA; PALATUCCI; VALDINOCI, 2012; BISCI; RĂDULESCU; SERVADEI, 2016) and references
therein.

Several definitions of fractional Sobolev have been proposed in the literature. Recently, a
natural fractional version of Orlicz-Sobolev spaces were introduced by Fernández Bonder and
Salort (2019), where some basic properties of this space are analyzed under the Δ2-condition
on Φ and its conjugate. The first results referring to fractional version of Sobolev spaces with
variable exponents were obtained by Kaufmann, Rossi and Vidal (2017).

Using the same spirit of local Sobolev spaces, a natural question can be posed. Can we
encompass all the previous spaces in one definition? As far as we know, the first answers
about the previous question are obtained in Azroul et al. (2020), by introducing the fractional
version of the Musielak-Sobolev spaces. To be more precise, for a given Musielak function
Φ : Ω × Ω × [0, ∞) → [0, ∞), the fractional Musielak-Sobolev space of order 𝑠 ∈ (0, 1) is
defined as

𝑊 𝑠,Φ𝑥,𝑦(Ω) =
{︂

𝑢 ∈ 𝐿
̂︀Φ𝑥(Ω) : 𝐽𝑠,Φ(𝜆𝑢) < ∞ for some 𝜆 > 0

}︂
, (1.1)

where 𝐿̂︀Φ𝑥 is the usual Musielak-Orlicz space associated with the function ̂︀Φ(𝑥, 𝑡) := Φ(𝑥, 𝑥, 𝑡),

(𝑥, 𝑡) ∈ Ω × [0, ∞), and the modular 𝐽𝑠,Φ is determined in the following form

𝐽𝑠,Φ(𝑢) =
∫︁

Ω

∫︁
Ω

Φ
(︃

𝑥, 𝑦,
|𝑢(𝑥) − 𝑢(𝑦)|

|𝑥 − 𝑦|𝑠

)︃
𝑑𝑥𝑑𝑦

|𝑥 − 𝑦|𝑁
.

These spaces are endowed with the norm

‖𝑢‖𝑠,Φ𝑥,𝑦 = ‖𝑢‖̂︀Φ𝑥
+ [𝑢]𝑠,Φ𝑥,𝑦 ,
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where [·]𝑠,Φ is the Luxemburg type seminorm given by

[𝑢]𝑠,Φ𝑥,𝑦 = inf
{︂

𝜆 > 0: 𝐽Φ𝑥,𝑦

(︂
𝑢

𝜆

)︂
≤ 1

}︂
.

Due to the above definitions, when Φ is independent of spatial variable (𝑥, 𝑦), the
corresponding space is the fractional Orlicz-Sobolev space. In particular, when Φ(𝑡) = 𝑡𝑝,

for some 𝑝 ∈ [1, ∞), these definitions recover the classical fractional Sobolev spaces

𝑊 𝑠,𝑝(Ω) =

⎧⎨⎩𝑢 ∈ 𝐿𝑝(Ω) : 𝑢(𝑥) − 𝑢(𝑦)
|𝑥 − 𝑦|𝑠+ 𝑁

𝑝

∈ 𝐿𝑝(Ω × Ω)

⎫⎬⎭
equipped with norm ‖𝑢‖𝑠,𝑝 = ‖𝑢‖𝑝 + [𝑢]𝑠,𝑝, where

[𝑢]𝑠,𝑝 =
(︃∫︁

Ω

∫︁
Ω

|𝑢(𝑥) − 𝑢(𝑦)|𝑝
|𝑥 − 𝑦|𝑠𝑝+𝑁

𝑑𝑥𝑑𝑦

)︃ 1
𝑝

.

is the (𝑠, 𝑝)-Gagliardo seminorm. For more details and applications on fractional
Orlicz-Soboleve spaces, we refer the readers to papers (BAHROUNI; OUNAIES, 2020;
BAHROUNI; OUNAIES; TAVARES, 2020; ALBERICO et al., 2021a; SILVA et al., 2021; DE NÁPOLI;

FERNÁNDEZ BONDER; SALORT, 2021) and references therein. The common goal in those
researches is to extend and complement the theory of the fractional Sobolev spaces.
More specifically, topological and qualitative properties were proved, such as completeness,
reflexivity, density and embedding theorems.

In the case that Φ depends on (𝑥, 𝑦), the theory considers also fractional Sobolev spaces
with variable exponents 𝑊 𝑠,𝑝(·,·)(Ω), which is defined by function Φ(𝑥, 𝑦, 𝑡) = 𝑡𝑝(𝑥,𝑦) where
𝑝 : Ω × Ω → R is a measurable function lower and upper bounded by constants such that
1 ≤ 𝑝− ≤ 𝑝(𝑥, 𝑦) ≤ 𝑝+ < ∞. Other results that complement this theory were obtained in
(DEL PEZZO; ROSSI, 2017; BAHROUNI; RĂDULESCU, 2018; HO; KIM, 2020) and (BAHROUNI;

OUNAIES, 2021), where is proved some further qualitative properties and continuous and
compact embedding theorems.

On the other hand, a natural direction to relaxes power-type growth is considering functions
that has double-phase growth, namely, Φ(𝑥, 𝑦, 𝑡) = 𝑡𝑞 + 𝑎(𝑥, 𝑦)𝑡𝑝, with 1 ≤ 𝑞 < 𝑝 < ∞ and
𝑎 ∈ 𝐿∞(Ω×Ω) a non-negative function. The main feature of the associated modular function
𝐽𝑠,Φ is the change of ellipticity and growth properties on the set where the weight function
𝑎(·, ·) vanishes. Another particular scenario where the space does not coincide with any of the
aforementioned cases can be taken into account when Φ(𝑥, 𝑦, 𝑡) = 𝑡𝑝(𝑥,𝑦) log(1 + 𝑡), where
𝑝(·, ·) is as in the variable exponent case. These examples are special cases of functions with
non-standard growth conditions, according to the terminology introduced by Marcellini (1989).
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These examples suggest that the fractional Musielak-Sobolev space extends and unifies
the standard fractional Sobolev space, the fractional Sobolev space with variable exponents
and the fractional Orlicz-Sobolev space. In this sense, it is natural to study if the known
results in the classical cases can be extended to this new setting. As far as we know, the
only results on these spaces were obtained by Azroul et al. (2020) and Azroul et al. (2021).
In summary, the authors proved some qualitative properties and embedding results for the
fractional Musielak-Sobolev space in the case bounded domain.

Motivated by the above reasons and by a very recent trend in the fractional framework,
the main goal in this thesis is extend and complement the previous results on the perspective
of the generalized fractional Sobolev spaces. For this purpose, we perform a survey of some
recent results and advances in the theory concerning these spaces.

The organization of the thesis is as follows. The Chapter 2 is dedicated to a survey of
some recent results on the theory of Orlicz–Sobolev fractional spaces. They concern qualitative
properties and Sobolev type embeddings for these spaces with an optimal Orlicz target and
criteria for compact embeddings on the weighted fractional Orlicz-Sobolev. These results are
based on recent papers by Fernández Bonder and Salort (2019), Alberico et al. (2021a), Silva
et al. (2021) and references therein, where additional properties and proofs can be found.

In the Chapter 3, we apply the results from Chapter 2 together with a general method to
analyze a wide class of nonlocal elliptic problems driven by the fractional Φ-Laplacian defined
in the whole space, where the nonlinearity has growth superlinear at infinity and at the origin.
More specifically, we study the following nonlinear fractional elliptic problem⎧⎪⎪⎨⎪⎪⎩

(−ΔΦ)𝑠𝑢 + 𝑉 (𝑥)𝜙(|𝑢|)𝑢 = 𝜈𝑎(𝑥)|𝑢|𝑞−2𝑢 − 𝜆|𝑢|𝑝−2𝑢 in R𝑁 ,

𝑢 ∈ 𝑊 𝑠,Φ(R𝑁),
(1.2)

where 𝑠 ∈ (0, 1), 1 < ℓ ≤ 𝑚 < 𝑞 < 𝑝 < ℓ*
𝑠 = 𝑁ℓ/(𝑁 − ℓ𝑠), 𝑁 ≥ 2 and

𝜆, 𝜈 > 0. Furthermore, we assume that the potential 𝑉 : R𝑁 → R fulfills the Bartsch-Wang
conditions and 𝑎 : R𝑁 → R is non-negative measurable function satisfying some suitable
hypotheses. Here, (−ΔΦ)𝑠 denoted the nonlinear fractional Φ-Laplacian operator introduced
by Fernández Bonder and Salort (2019) and defined as follows

(−ΔΦ)𝑠𝑢(𝑥) := p.v.
∫︁
R𝑁

𝜙(|𝐷𝑠𝑢(𝑥, 𝑦)|)𝐷𝑠𝑢(𝑥, 𝑦) 𝑑𝑦

|𝑥 − 𝑦|𝑁+𝑠
,

where 𝜙(|𝑡|)𝑡 = Φ′(𝑡), 𝑡 ∈ R, and Φ is an 𝑁 -function that satisfies some suitable assumptions.
This operator can be identified as the Fréchet derivative of modulars functions defined in the
appropriated fractional Orlicz-Sobolev type space 𝑊 𝑠,Φ(R𝑁).
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It is worth emphasizing that many special types of nonlinear elliptic problems with general
nonlinearities have also studied by several authors. In this line of research, the seminal work
of Ambrosetti and Rabinowitz (1973) was the trigger for the development of an extensive
literature related to existence, nonexistence and multiplicity results about it is class of problems.

In their celebrated work, Rabinowitz (1986) studied the equation (1.2) in bounded domains
Ω ⊂ R𝑁 for the Laplacian operator, that is, for the local case 𝑠 = 1 and 𝜙 ≡ 1. To be more
precise, the author used the Mountain Pass Theorem combined with minimization arguments
and some truncation techniques in nonlinearities, proving the existence of at least two weak
solutions whenever the parameters 𝜈 = 𝜆 and 𝜆 > 0 are large enough. In the important works
(BARTSCH; WANG, 1995; BERESTYCKI; LIONS, 1983a; BERESTYCKI; LIONS, 1983b), the authors
studied the previous equation with general nonlinearities, taking into account the superlinear
case 𝜆 = 0 and 𝜈 > 0. For more results on this subject, we refer the interested reader to
papers by Silva (2020) and Faraci and Silva (2021).

We also point out that several results regarding the solvability of local elliptic problems
involving non-standard growth operators and a more general class of nonlinear terms has made
great progress in the last years. For instance, Carvalho, Silva and Goulart (2017), Silva et al.
(2019) and Silva et al. (2024b) considered quasilinear problems driven by the Φ-Laplacian
operator with concave-convex nonlinearities. In the papers of Carvalho, Silva and Goulart
(2021), Silva, Rocha and Silva (2024), Carvalho et al. (2024), semilinear and superlinear
problems defined in the whole space R𝑁 were studied, considering subcritical and nonlocal
nonlinearities with some parameters. We also refer to the works of Il’yasov (2005), Silva and
Macedo (2018) and Mishra, Silva and Tripathi (2023)

Similar results for nonlocal elliptic problems defined in bounded domains and in the whole
space R𝑁 have also been widely studied by several researchers in recent years. In the works
(FELMER; QUAAS; TAN, 2012; CHANG; WANG, 2013; DIPIERRO; PALATUCCI; VALDINOCI, 2013;
SECCHI, 2013; SECCHI, 2016), the authors employed the Mountain Pass Theorem, the Nehari
manifold, and other appropriate minimization techniques to establish various results concerning
the existence, nonexistence, multiplicity, and asymptotic behavior of solutions to fractional
Laplacian type problems, under some appropriate conditions on the powers 𝑝, 𝑞, and the
parameters 𝜆 and 𝜈.

Regarding the study of problem (1.2) involving the classical fractional operator (𝜙 ≡ 1), we
would like to present the very recent work of Silva et al. (2024a). More precisely, the authors
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considered the following class of problem⎧⎪⎪⎨⎪⎪⎩
(−Δ)𝑠𝑢 + 𝑉 (𝑥)𝑢 = 𝜈𝑎(𝑥)|𝑢|𝑞−2𝑢 − 𝜆|𝑢|𝑝−2𝑢 in R𝑁 ,

𝑢 ∈ 𝐻1(R𝑁),
(1.3)

where 𝑠 ∈ (0, 1), 𝑠 < 𝑁/2, 𝑁 ≥ 2 and 𝜈, 𝜆 > 0. By considering suitable assumptions on
the potentials 𝑉, 𝑎 : R𝑁 → R and following the approaches of Nehari method and nonlinear
Rayleigh quotient employed by Il’yasov (2017), the authors found sharp conditions on the
parameters 𝜆 and 𝜈 such that the problem (1.3) admits at least two nontrivial solutions.
Furthermore, they proved a nonexistence result under some appropriate conditions on 𝜆 > 0

and 𝜈 > 0.
Additionally, a great attention has been devoted to the study of solutions for equations

driven by fractional (𝑝, 𝑞)-Laplacian type operator. For example, the existence and multiplicity
of nontrivial solutions, ground state and nodal solutions, and among other qualitative properties
of solutions were investigated by Alves, Ambrosio and Isernia (2019), Ambrosio and Rădulescu
(2020), Zhang, Tang and Rădulescu (2021) and Silva, Oliveira and Goulart (2023) by using
some topological and variational arguments. In the context of the fractional Φ-Laplacian type
problems, we mention the interesting works (AZROUL; BENKIRANE; SHIMI, 2020; BAHROUNI;

BAHROUNI; XIANG, 2020a; SALORT, 2020; FERNÁNDEZ BONDER; PÉREZ-LLANOS; SALORT, 2022;
SALORT; VIVAS, 2022; MISSAOUI; OUNAIES, 2023) and (OCHOA; SILVA; MARZIANI, 2024).

Given this research scenario, we are directed to the following natural question: How
the appearance of fractional Φ-Laplacian operator will affect the existence, multiplicity, and
asymptotic behavior of solutions for problem (1.2)?

Motivated by the above question, the main goal in the Chpater 3 is to investigate the
existence and multiplicity of solutions for problem (1.2). To this end, we use the Nehari method
together with the Nonlinear Rayleigh quotient employed by recent works of Silva et al. (2024a)
to find sharp conditions on the parameters 𝜆 and 𝜈 in order to guarantee the existence of weak
solutions in the 𝒩 −

𝜆,𝜈 and 𝒩 +
𝜆,𝜈 . Since we are taking into account the existence and multiplicity

of solutions to superlinear elliptic problems with two parameters involving the fractional Φ-
Laplacian operator that, to our knowledge, it is was not considered in the literature before,
our work extends and complements the aforementioned results.

The Chapter 4 is dedicated to review of some recent results and advances on the general
Musielak-Orlicz and fractional Musielak-Sobolev spaces. We also filled some gaps in the theory
of fractional Musielak–Sobolev spaces. The gaps were mainly related to some details in respect
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to proof of basic results that seem to have missed in the previous works. Moreover, we establish
some abstract results on the perspective of the fractional Musielak-Sobolev spaces, such as:
uniform convexity, Radon-Riesz property with respect to the modular function, (𝑆+)-property,
Brezis-Lieb type Lemma to the modular function and monotonicity results. Finally, we apply
the theory developed to study the existence of solutions to a wide class of nonlocal problems.

In Chapter 5 and last, we study the asymptotic behavior for anisotropic nonlocal non-
standard growth seminorms and modulars as the fractional parameter goes to 1 without
requiring the Δ2-condition on the Musielak function or its complementary function. This kind
of result provides a so-called Bourgain-Brezis-Mironescu type formula for a very general family
of functionals. In the classical fractional Sobolev space, this result allows recovering classical
𝐿𝑝 norms for the gradientes from limits of nonlocal energie functionals.

The analysis of the limit of the fractional parameter in fractional-order Sobolev type spaces
has received some attention in the last years. The seminal work of Bourgain, Brezis and
Mironescu (2001) paved the way to the development of an extensive literature related with
the limit study of fractional parameters in several functional spaces. In this work, the authors
consider the classical fractional Sobolev spaces 𝑊 𝑠,𝑝(R𝑁), 𝑠 ∈ (0, 1), 𝑝 ∈ [1, ∞) and study
the behavior of the corresponding Gagliardo-Slobodeckij seminorm as 𝑠 approaches 1. More
precisely, they prove that, if 𝑢 ∈ 𝑊 1,𝑝(R𝑁), 𝑝 ∈ [1, ∞), then

lim
𝑠→1−

(1 − 𝑠)
∫︁
R𝑁

∫︁
R𝑁

|𝑢(𝑥) − 𝑢(𝑦)|𝑝
|𝑥 − 𝑦|𝑁+𝑠𝑝

𝑑𝑥𝑑𝑦 = 𝐾(𝑛, 𝑝)
∫︁
R𝑁

|∇𝑢|𝑝 𝑑𝑥,

where 𝐾(𝑁, 𝑝) = 1
𝑝

∫︀
S𝑁−1 |𝑤𝑁 |𝑝 𝑑ℋ𝑁−1(𝑤), being S𝑁−1 the (𝑁 − 1)-dimensional unit sphere

in R𝑁 , ℋ𝑁−1 the (𝑁 − 1)-dimensional Hausdorff measure and 𝑤𝑁 is the 𝑁 -th coordinate of
𝑤 ∈ S𝑁−1.

The case in which R𝑁 is replaced by a bounded regular domain was considered by Bourgain,
Brezis and Mironescu (2001) and Dávila (2002). The case of bounded extension domains was
treated by Bal, Mohanta and Roy (2020), while Drelichman and Durán (2022) deals with
arbitrary bounded domains. Similar results were proved to hold in more general fractional
Sobolev spaces. The extension to the so-called magnetic fractional Sobolev spaces was dealt
by Squassina and Volzone (2016) and Pinamonti, Squassina and Vecchi (2019), and the case
of spaces with anisotropic structure was studied by Fernández Bonder and Salort (2022) and
Fernández Bonder and Dussel (2023).

Recently, these types of results have been extended to a broader class of functionals allowing
a behavior more general behavior than a power associated with fractional Orlicz-Sobolev space
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𝑊 𝑠,𝐺(R𝑁) defined in terms of a Young function 𝐺, namely, a convex function from [0, ∞)

into [0, ∞] vanishing at 0. When both Young function 𝐺 and its complementary function
satisfy an appropriated growth behavior known as the Δ2-condition and 𝑢 ∈ 𝑊 1,𝐺(R𝑁), in
Fernández Bonder and Salort (2019) the following limit behavior of the modulars was proved:

lim
𝑠→1−

(1 − 𝑠)
∫︁
R𝑁

∫︁
R𝑁

𝐺

(︃
|𝑢(𝑥) − 𝑢(𝑦)|

|𝑥 − 𝑦|𝑠

)︃
𝑑𝑥𝑑𝑦

|𝑥 − 𝑦|𝑁
=
∫︁
R𝑁

𝐺0(|∇𝑢|) 𝑑𝑥,

where, for 𝑡 ≥ 0, 𝐺0(𝑡) =
∫︀ 1

0
∫︀
S𝑁−1 𝐺(𝑡|𝑤𝑁 |𝑟) 𝑑ℋ𝑁−1(𝑤)𝑑𝑟

𝑟
is a Young function equivalent to

𝐺. The case of 𝐺 with a general growth behavior was covered by Alberico et al. (2020) and
Alberico et al. (2021a), where the same result was obtained without assuming the Δ2- condition
on 𝐺. A further extension to Carnot groups can be found in the work of Capolli et al. (2021).
The case of the magnetic fractional Orlicz-Sobolev spaces was studied by Fernández Bonder
and Salort (2021).

It is important to stress that Young functions include as typical examples power functions,
i.e. 𝐺(𝑡) = 𝑡𝑝, 𝑝 ≥ 1, and logarithmic perturbation of powers such as 𝐺(𝑡) = 𝑡𝑝 log(1 + 𝑡),
𝑝 ≥ 1. Nevertheless, anisotropic and double-phase behaviors are not contemplated in this class.
Likewise, functions of the type 𝑡𝑝(𝑥,𝑦) with a suitable function 𝑝(·, ·), which are related with
the fractional Sobolev spaces with variable exponent, are not covered by the previous results.
In this line of research, in the work of Kim (2023) is answered whether a Bourgain-Brezis-
Mironescu (hereinafter BBM) type result is true in the fractional Sobolev spaces with variable
exponent 𝑊 𝑠,𝑝(·,·)(R𝑁), when 𝑝 : R𝑁 × R𝑁 → R is such that 𝑝(𝑥, ·) is log-Hölder continuous
for any fixed 𝑥 ∈ R𝑁 and there are constants 𝑝± such that 1 < 𝑝− ≤ 𝑝(𝑥, 𝑦) ≤ 𝑝+ < ∞.
The main result in Kim (2023) establishes that for sufficiently smooth functions, let us say
𝑢 ∈ 𝐶2

0(R𝑁), it holds that

lim
𝑠→1−

𝑠(1 − 𝑠)
∫︁
R𝑁

∫︁
R𝑁

|𝑢(𝑥) − 𝑢(𝑦)|𝑝(𝑥,𝑦)

|𝑥 − 𝑦|𝑁+𝑠𝑝(𝑥,𝑦) 𝑑𝑥𝑑𝑦 =
∫︁
R𝑛

𝐾𝑁,𝑝(𝑥)|∇𝑢(𝑥)|𝑝(𝑥) 𝑑𝑥,

where 𝑝(𝑥) := 𝑝(𝑥, 𝑥) and 𝐾𝑁,𝑝(𝑥) = 1
𝑝(𝑥)

∫︀
S𝑁−1 |𝑤𝑁 |𝑝(𝑥) 𝑑ℋ𝑁−1(𝑤).

Although the previous result holds for smooth functions, Kim (2023) proves that it does
not hold for all functions in 𝑊 1,𝑝(·)(R𝑁), even when the variable exponent 𝑝 is smooth. This
is in sharp contrast to the case when 𝑝 is constant. The reason for this is that the target space
𝑊 1,𝑝(·) is too large for the previous BBM type expression to be true in general.

Motivated by the above discussion, the aim of the Chapter 5 is to study the asymptotic
behavior, as 𝑠 → 1−, of modular functions and seminorms related to general fractional
Musielak-Sobolev space 𝑊 𝑠,Φ𝑥,𝑦(R𝑁), where 𝑠 ∈ (0, 1) and Φ : R𝑁×R𝑁×[0, ∞) → [0, ∞) is a
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Musielak function fulfilling some structural hypotheses. These spaces include fractional Orlicz-
Sobolev spaces and fractional Sobolev spaces with variable exponents, which are examples of
the aforementioned case.

The dependence of the energy functional 𝐽𝑠,Φ on both 𝑥 and 𝑦 adds an extra level of
difficulty when dealing with the limit behavior on the fractional parameter 𝑠. Given that our
results include the case of fractional Sobolev spaces with variable exponents, we cannot expect
to obtain a BBM type formula beyond 𝐶2

0 functions. Keeping these considerations in mind,
our main result states that for any 𝑢 ∈ 𝐶2

0(R𝑁), there exists 𝜆0 > 0 such that

lim
𝑠→1−

(1 − 𝑠)𝐽𝑠,Φ

(︂
𝑢

𝜆

)︂
=
∫︁
R𝑁

𝐻

(︃
𝑥,

|∇𝑢(𝑥)|
𝜆

)︃
𝑑𝑥, for all 𝜆 ≥ 𝜆0,

where the function 𝐻0 is given by

𝐻(𝑥, 𝑡) =
∫︁ 1

0

∫︁
S𝑁−1

Φ(𝑥, 𝑥, 𝑡|𝑤𝑁 |𝑟) 𝑑ℋ𝑁−1(𝑤)𝑑𝑟

𝑟

and 𝑤𝑁 is the 𝑁 -th coordinate of any point in S𝑁−1. Furthermore, it is proved that the
limit function 𝐻(𝑥, 𝑡) is in fact a Musielak function equivalent to ̂︀Φ(𝑥, 𝑡) := Φ(𝑥, 𝑥, 𝑡). As
a consequence, we obtain a BBM type inequality for seminorms. It is worthwhile to mention
that we do not require that neither Φ nor its conjugate function fulfill the Δ2-condition.

More recently, there has been consideration of fractional anisotropic spaces where the
functions have different fractional regularity and integrability in each coordinate direction, as
seen by Chaker, Kim and Weidner (2023) and Fernández Bonder and Dussel (2023). The
techniques used in our main result enable us to study energy functionals where the 𝑠-Hölder
quotient depends solely on a direction, that is,

𝐷𝑘
𝑠 𝑢(𝑥, ℎ) := 𝑢(𝑥 − ℎ𝑒𝑘) − 𝑢(𝑥)

|ℎ|𝑠
, with 𝑘 ∈ {1, . . . , 𝑁},

being 𝑒𝑘 the 𝑘-th canonical vector in R𝑁 . More precisely, we prove that, for any 𝑢 ∈ 𝐶2
0(R𝑁),

there exists 𝜆0 > 0 such that

lim
𝑠→1−

(1 − 𝑠)
∫︁
R𝑁

∫︁
R

Φ
(︃

𝑥, 𝑥 − ℎ𝑒𝑘,
|𝐷𝑘

𝑠 𝑢(𝑥, 𝑦)|
𝜆

)︃
𝑑ℎ𝑑𝑥

|ℎ|
=
∫︁
R𝑁

𝐻0

(︃
𝑥,

1
𝜆

⃒⃒⃒⃒
⃒𝜕𝑢(𝑥)

𝜕𝑥𝑘

⃒⃒⃒⃒
⃒
)︃

𝑑𝑥,

for all 𝜆 ≥ 𝜆0, where in this case the limit function 𝐻0 is given by

𝐻0(𝑥, 𝑡) = 2
∫︁ 1

0
Φ(𝑥, 𝑥, 𝑡𝑟)𝑑𝑟

𝑟
.
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2 A SURVEY ON FRACTIONAL ORLICZ-SOBOLEV SPACES

In this chapter, we collect preliminary concepts of the theory of Orlicz spaces and fractional
Orlicz-Sobolev spaces, which will be used throughout the Chapter 3. For a more complete
discussion on this subject, we refer the readers to (KRASNOSEL’SKII; RUTICKII, 1961; RAO;

REN, 1985; ADAMS; FOURNIER, 2003; PICK et al., 2012) and (FUKAGAI; ITO; NARUKAWA, 2006).
The starting point of the theory of these spaces is the notions of a 𝑁 -function.

2.1 𝑁 -FUNCTIONS

Definition 2.1.1. A function Φ : R → R is said to be an 𝑁 -function (or Orlicz function) if

satisfies the following conditions:

(i) Φ is even and convex.

(iv) Φ(𝑡) = 0 if and only if 𝑡 = 0.

(iii) lim
𝑡→0

Φ(𝑡)
𝑡

= 0.

(iv) lim
𝑡→∞

Φ(𝑡)
𝑡

= ∞.

Equivalently, an 𝑁 -function can be represented as follows

Φ(𝑡) =
∫︁ |𝑡|

0
𝜑(𝜏) 𝑑𝜏,

where 𝜑 : [0, ∞) → [0, ∞) is the right-hand derivative of Φ satisfying

(i) 𝜑(0) = 0 and 𝜑(𝑡) > 0 for all 𝑡 > 0.

(ii) 𝜑 is non-decreasing.

(iii) 𝜑 is right-continuous and lim𝑡→∞ 𝜑(𝑡) = ∞.

See for instance Lemma 4.2.2 in Pick et al. (2012).

Definition 2.1.2. Let Φ be an 𝑁 -function. The function ̃︀Φ : R → [0, ∞) defined by the

following Legendre’s transformation

̃︀Φ(𝑡) := sup
𝑠≥0

{𝑡𝑠 − Φ(𝑠)}, for 𝑡 ∈ R, (2.1)

is called the conjugate function of Φ in the sense of Young.
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It is not hard to see that ̃︀Φ is well-defined, it is also an 𝑁 -function and can be represented
as follows: ̃︀Φ(𝑡) =

∫︁ 𝑡

0
̃︀𝜑(𝜏) d𝜏,

where ̃︀𝜑(𝑡) = sup{𝑠 : 𝜑(𝑠) ≤ 𝑡}, for 𝑡 ∈ R

If 𝜑 is continuous and strictly increasing in [0, ∞), then ̃︀𝜑 is the inverse of 𝜑. Furthermore,
in view of (2.1) one may deduce that ̃︀̃︀Φ = Φ a and the Young’s type inequality

𝑠𝑡 ≤ Φ(𝑠) + ̃︀Φ(𝑡), for all 𝑠, 𝑡 ≥ 0. (2.2)

where equality holds (Young’s equality) if, and only if, 𝑠 = ̃︀𝜑(𝑡) or 𝑡 = ̃︀𝜑(𝑠).

Example 2.1.3. The following are examples of 𝑁 -functions and it is conjugate functions:

(i) Let Φ(𝑡) = |𝑡|𝑝
𝑝

, 𝑝 ∈ (1, ∞). Then, ̃︀Φ(𝑡) = |𝑡|𝑞
𝑞

, with 1
𝑝

+ 1
𝑞

= 1.

(ii) Let Ψ(𝑡) = 𝑒|𝑡| − |𝑡| − 1. Then, ̃︀Ψ(𝑡) = (1 + |𝑡|) ln(1 + |𝑡|) − |𝑡|.

In the sequel, we recall some growth conditions related to 𝑁 -function.

Definition 2.1.4. We say that an 𝑁 -function Φ satisfies the Δ2-condition if there exists a

constant 𝐾 > 0 such that

Φ(2𝑡) ≤ 𝐾Φ(𝑡), for all 𝑡 ≥ 0.

When this inequality holds only for 𝑡 ≥ 𝑡0 and some 𝑡0 > 0, Φ is said to satisfy the Δ2(∞)-

condition near infinity.

According to Theorem 4.4.4 present in Pick et al. (2012), an 𝑁 -function Φ satisfies the
Δ2-condition if, and only if,

sup
𝑡̸=0

𝜑(𝑡)𝑡
Φ(𝑡) < ∞.

Proceeding similarly as in Lemma 2.5 obtained by Fukagai, Ito and Narukawa (2006), if
there exist constants 𝑚 ≥ ℓ > 1 such that

ℓ ≤ 𝜑(𝑡)𝑡
Φ(𝑡) ≤ 𝑚 for all 𝑡 ̸= 0,

we deduce that
𝑚

𝑚 − 1 ≤
̃︀𝜑(𝑡)𝑡̃︀Φ(𝑡)

≤ ℓ

ℓ − 1 , for all 𝑡 ̸= 0.
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Thus, ̃︀Φ also satisfies the Δ2-condition if, and only if, ℓ > 1.
Arguing as in the proof of Lemma 2.1 in Azroul et al. (2020), one can prove that Φ and̃︀Φ satisfy the following inequality

̃︀Φ(𝜑(𝑡)) ≤ Φ(2𝑡), for all 𝑡 ∈ R. (2.3)

Next, we present some inequalities involving an 𝑁 -function and it is conjugate.

Lemma 2.1.5. (FUKAGAI; ITO; NARUKAWA, 2006, Lemma 2.1 and Lemma 2.5) Assume that

1 < ℓ := inf
𝑡̸=0

𝜑(𝑡)𝑡
Φ(𝑡) ≤ sup

𝑡̸=0

𝜑(𝑡)𝑡
Φ(𝑡) =: 𝑚 < ∞. (2.4)

Henceforth, we use the following notation:

𝜉−
0 (𝑡) = min{𝑡ℓ, 𝑡𝑚}, 𝜉+

0 (𝑡) = max{𝑡ℓ, 𝑡𝑚},

𝜉−
1 (𝑡) = min{𝑡

̃︀ℓ, 𝑡̃︀𝑚}, 𝜉+
1 (𝑡) = max{𝑡

̃︀ℓ, 𝑡̃︀𝑚}, 𝑡 ≥ 0,

where ̃︀ℓ = ℓ
ℓ−1 and ̃︁𝑚 = 𝑚

𝑚−1 . Then, Φ and ̃︀Φ satisfy the following estimates:

(i) 𝜉−
0 (𝜎)Φ(𝑡) ≤ Φ(𝜎𝑡) ≤ 𝜉+

0 (𝜎)Φ(𝑡), for all 𝜎, 𝑡 ∈ R.

(ii) 𝜉−
1 (𝜎)̃︀Φ(𝑡) ≤ ̃︀Φ(𝜎𝑡) ≤ 𝜉+

1 (𝜎)̃︀Φ(𝑡), for all 𝜎, 𝑡 ∈ R.

2.2 ORLICZ SPACES

In this section, we introduce the basic concepts and some results of Orlicz spaces on
arbitrary measure spaces. Such spaces are more general than the classical Lebesgue spaces,
the topological vector space properties depended both on the 𝑁 -function and the measure
space.

We start by recalling some concepts on measure theory. Hereafter, (Ω, Σ, 𝜇) usually denotes
an abstract complete measure space. Namely, Σ is a 𝜎-algebra of subsets on a nonempty set
Ω and 𝜇 : Σ → [0, ∞] is a measure, that is, a 𝜎-additive set function satisfying 𝜇(∅) = 0. We
denote by 𝐿0(Ω, 𝜇) the set of 𝜇-measurable functions on Ω. We also assume that (Ω, Σ, 𝜇)

satisfy the natural assumption that our measure 𝜇 is not identically zero or infinity.

Definition 2.2.1. Let (Ω, Σ, 𝜇) be a complete measure space. The measure 𝜇 is called atom-

less or diffuse if, for any measurable set 𝐴 ∈ Σ with 𝜇(𝐴) > 0, there exists 𝐵 ∈ Σ such that

𝐵 ⊂ 𝐴 and 𝜇(𝐴) > 𝜇(𝐵) > 0.

A measure space (Ω, Σ, 𝜇) is said to be
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(i) 𝜎-finite if there exists an increasing sequence (Ω𝑘)𝑘∈N ∈ Σ such that 𝜇(Ω𝑘) < ∞ for all

𝑘 ∈ N and Ω = ⋃︀∞
𝑘=1 Ω𝑘.

(ii) separable if there exists a sequence (𝐴𝑘)𝑘∈N ⊂ Σ, with 𝜇(𝐴𝑘) < ∞ for all 𝑘 ∈ N,

such that for every 𝐴 ∈ Σ with 𝜇(𝐴) < ∞ and 𝜀 > 0, there exists 𝑘0 satisfying

𝜇(𝐴Δ𝐴𝑘0) < 𝜀, where Δ denotes the symmetric difference 𝐴Δ𝐵 = (𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴).

Given an 𝑁 -function Φ, the Orlicz class associated to Φ and (Ω, Σ, 𝜇) is defined by

𝐾Φ(Ω, 𝜇) =
{︂

𝑢 ∈ 𝐿0(Ω, 𝜇) :
∫︁

Ω
Φ(|𝑢(𝑥)|) 𝑑𝜇 < ∞

}︂
,

We point out that if Φ satisfies the Δ2(∞)-condition (Δ2-condition), then 𝐾Φ(Ω, 𝜇) is a
vector space when 𝜇(Ω) < ∞ (𝜇(Ω) = ∞).The converse holds if 𝜇 is diffuse on a set of
positive measure

The Orlicz space is defined as follows:

𝐿Φ(Ω, 𝜇) =
{︃

𝑢 ∈ 𝐿0(Ω, 𝜇) :
∫︁

Ω
Φ
(︃

|𝑢(𝑥)|
𝜆

)︃
𝑑𝜇 < ∞ for some 𝜆 > 0

}︃
.

Now, we introduce the called modular function 𝐽Φ : 𝐿0(Ω, 𝜇) → R defined by

𝐽Φ(𝑢) =
∫︁

Ω
Φ(|𝑢(𝑥)|) 𝑑𝜇.

The space 𝐿Φ(Ω, 𝜇) is a Banach space when endowed with the called Luxemburg norm

‖𝑢‖Φ := inf
{︂

𝜆 > 0 : 𝐽Φ

(︂
𝑢

𝜆

)︂
≤ 1

}︂
,

or the equivalent norm (the Orlicz norm) given by

‖𝑢‖(Φ) = sup
{︂⃒⃒⃒⃒∫︁

Ω
𝑢(𝑥)𝑣(𝑥) 𝑑𝜇

⃒⃒⃒⃒
: 𝑣 ∈ 𝐿

̃︀Φ(Ω, 𝜇) and 𝐽̃︀Φ(𝑣) ≤ 1
}︂

.

Using the Young’s type inequality (2.2) for Φ and ̃︀Φ, one may deduce the following Hölder’s
type inequality ⃒⃒⃒⃒∫︁

Ω
𝑢(𝑥)𝑣(𝑥) 𝑑𝜇

⃒⃒⃒⃒
≤ 2‖𝑢‖Φ‖𝑣‖̃︀Φ,

for all 𝑢 ∈ 𝐿Φ(Ω, 𝜇) and 𝑣 ∈ 𝐿̃︀Φ(Ω, 𝜇).

Definition 2.2.2. Given an Orlicz space 𝐿Φ(Ω, 𝜇), the 𝑁 -function Φ is determined Δ2-regular

if either:

(i) Φ satisfies Δ2(∞)-condition when 𝜇(Ω) < ∞, or
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(ii) Φ satisfies Δ2-condition when 𝜇(Ω) = ∞.

Remark 2.2.3. The Fatou’s lemma give us

𝐽Φ

(︃
|𝑢(𝑥)|
‖𝑢‖Φ

)︃
≤ 1,

for all 0 ̸= 𝑢 ∈ 𝐿Φ(Ω, 𝜇). The equality holds if Φ is Δ2-regular. In general, we have that

𝐽Φ(𝑢) ≤ 1 is equivalent to ‖𝑢‖Φ ≤ 1. Therefore,

‖𝑢‖Φ ≤ 𝐽Φ(𝑢) + 1.

for all 𝑢 ∈ 𝐿Φ(Ω, 𝜇).

In order to analyze the linear structure of 𝐿Φ(Ω, 𝜇), we introduce the Morse-Transue space

defined as follows:

𝐸Φ(Ω, 𝜇) =
{︁
𝑢 ∈ 𝐿0(Ω, 𝜇) : 𝜆𝑢 ∈ 𝐾Φ(Ω, 𝜇) for all 𝜆 > 0

}︁
.

We would like to mention that 𝐸Φ(Ω, 𝜇) is a maximal closed subspace of 𝐿Φ(Ω, 𝜇) which
is contained in 𝐾Φ(Ω, 𝜇). Precisely, the interrelations between the spaces above are given by

𝐸Φ(Ω, 𝜇) ⊆ 𝐾Φ(Ω, 𝜇) ⊆ 𝐿Φ(Ω, 𝜇).

The equality holds between the first two if Φ is Δ2-regular, and the converse holding when
𝜇 is diffuse on a set of positive measure. Moreover, there exists the equality between the last
two if, and only if, Φ is Δ2-regular.

The following properties of this space are also required.

Proposition 2.2.4. Let (Ω, Σ, 𝜇) be a measure space and Φ an 𝑁 -function. Then,

(i) 𝐸Φ(Ω, 𝜇) is separable if and only if (Ω, Σ, 𝜇) is separable.

(ii) 𝐿Φ(Ω, 𝜇) is separable if and only if 𝐿Φ(Ω, 𝜇) = 𝐸Φ(Ω, 𝜇). In particular, if Φ is Δ2-

regular, then 𝐿Φ(Ω, 𝜇) is separable if and only if (Ω, Σ, 𝜇) is separable.

Remark 2.2.5. When Ω is an open set of R𝑁 and 𝜇 is the Lebesgue measure on the Borel

𝜎-algebra of subsets of Ω, we omit 𝜇 in the above definitions. Namely, we use the notations

𝐸Φ(Ω), 𝐾Φ(Ω) and 𝐿Φ(Ω). In this case, 𝐿Φ(Ω) is separable if and only if Φ is Δ2-regular.
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The next result is a generalization of the well known Riesz’s representation theorem of
the classical Lebesgue spaces. Its proof for the particular case in which Ω is an open set of
R𝑁 and 𝜇 is the Lebesgue measure can be found in (ADAMS; FOURNIER, 2003) and (PICK et

al., 2012). We emphasize that in the general case can found in (RAO; REN, 1985, Theorem 7,
section 4.1).

Proposition 2.2.6. (Riesz’s representation theorem) Let (Ω, Σ, 𝜇) be a measure space and

Φ a N-function. If 𝑣 ∈ 𝐿̃︀Φ(Ω, 𝜇), then the linear functional 𝑇𝑣 : 𝐸Φ(Ω, 𝜇) → R defined by

𝑇𝑣(𝑢) =
∫︁

Ω
𝑢𝑣 𝑑𝜇 (2.5)

is bounded and

‖𝑣‖̃︀Φ ≤ ‖𝑇𝑣‖(𝐿Φ(Ω))* ≤ 2‖𝑣‖̃︀Φ.

Conversely, every bounded linear functional in (𝐸Φ(Ω, 𝜇))* is of the form (2.5). In other words,

the map 𝑣 ↦→ 𝑇𝑣 defines an isomorphism of 𝐿̃︀Φ(Ω, 𝜇) onto (𝐸Φ(Ω, 𝜇))*.

In particular, the following assertions hold:

(i) 𝐿̃︀Φ(Ω, 𝜇) ∼= (𝐿Φ(Ω, 𝜇))* if and only if Φ is Δ2-regular.

(ii) 𝐿Φ(Ω, 𝜇) ∼= (𝐿̃︀Φ(Ω, 𝜇))* if and only if ̃︀Φ is Δ2-regular.

Consequently, 𝐿Φ(Ω, 𝜇) is a reflexive space if and only if Φ and ̃︀Φ are Δ2-regular.

We end this section by presenting an important result that relates the norm and modular
function.

Lemma 2.2.7. Let (Ω, Σ, 𝜇) be a measure space and Φ a N-function. Assume that (2.4)
holds. Then, the following estimates hold:

(i) 𝜉−
0 (‖𝑢‖Φ) ≤ 𝐽Φ(𝑢) ≤ 𝜉+

0 (‖𝑢‖Φ), for all 𝑢 ∈ 𝐿Φ(Ω, 𝜇).

(ii) 𝜉−
1 (‖𝑢‖̃︀Φ) ≤ 𝐽̃︀Φ(𝑢) ≤ 𝜉+

1 (‖𝑢‖̃︀Φ), for all 𝑢 ∈ 𝐿̃︀Φ(Ω, 𝜇).

2.3 FRACTIONAL ORLICZ-SOBOLEV SPACES

We consider an open set Ω ⊂ R𝑁 , an 𝑁 -function Φ and a parameter 𝑠 ∈ (0, 1). The
fractional Orlicz-Sobolev space is defined as follows:

𝑊 𝑠,Φ(Ω) =
{︂

𝑢 ∈ 𝐿Φ(Ω) : 𝐽𝑠,Φ

(︂
𝑢

𝜆

)︂
< ∞ for some 𝜆 > 0

}︂
,
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where the semimodular function 𝐽𝑠,Φ is defined by

𝐽𝑠,Φ(𝑢) :=
∫︁

Ω

∫︁
Ω

Φ (|𝐷𝑠𝑢(𝑥, 𝑦)|) 𝑑𝜇, for 𝑠 ∈ (0, 1),

and the 𝑠-Hölder quotient 𝐷𝑠𝑢 and the measure 𝜇 are defined as

𝐷𝑠𝑢(𝑥, 𝑦) := 𝑢(𝑥) − 𝑢(𝑦)
|𝑥 − 𝑦|𝑠

and 𝑑𝜇 := 𝑑𝑥𝑑𝑦

|𝑥 − 𝑦|𝑁
.

The space 𝑊 𝑠,Φ(Ω) is endowed with the norm

‖𝑢‖𝑠,Φ := ‖𝑢‖Φ + [𝑢]𝑠,Φ,

where the term [·]𝑠,Φ𝑥,𝑦 is the so called (𝑠, Φ)-Gagliardo seminorm defined by

[𝑢]𝑠,Φ := inf
{︂

𝜆 > 0 : 𝐽𝑠,Φ

(︂
𝑢

𝜆

)︂
≤ 1

}︂
.

Remark 2.3.1. Let 𝑢 ∈ 𝐿Φ(Ω). Note that 𝑢 ∈ 𝑊 𝑠,Φ(Ω) if and only if 𝐷𝑠𝑢 ∈ 𝐿Φ(𝑑𝜇) :=

𝐿Φ(Ω × Ω, 𝑑𝜇) and [𝑢]𝑠,Φ = ‖𝐷𝑠𝑢‖𝐿Φ(𝑑𝜇). Namely, we have that

𝑊 𝑠,Φ(Ω) =
{︁
𝑢 ∈ 𝐿Φ(Ω) : 𝐷𝑠𝑢 ∈ 𝐿Φ(Ω × Ω, 𝑑𝜇)

}︁
.

Next, we list some remarks about the measure 𝜇.

Remark 2.3.2. It is important to emphasize that 𝜇 is not a regular Borel measure on the

set R𝑁 × R𝑁 . In fact, let (𝑥0, 𝑥0) be a fixed point on the diagonal of R𝑁 × R𝑁 . For each

𝑦 ∈ 𝐵𝑅(𝑥0) with 𝑅 > 0, consider 𝜀 > 0 small enough such that 𝐵𝜀(𝑦) ⊂ 𝐵𝑅(𝑥0). Thus,∫︁
𝐵𝑅(𝑥0)

𝑑𝑥

|𝑥 − 𝑦|𝑁
≥
∫︁

𝐵𝜀(𝑦)

𝑑𝑥

|𝑥 − 𝑦|𝑁
= 𝑁𝜔𝑁

∫︁ 𝜀

0

𝑑𝑟

𝑟
= ∞.

This implies that for every closed ball 𝐵𝑅(𝑥0) ⊂ R𝑁 with 𝑅 > 0, we have

𝜇(𝐵𝑅(𝑥0) × 𝐵𝑅(𝑥0)) =
∫︁

𝐵𝑅(𝑥0)

∫︁
𝐵𝑅(𝑥0)

𝑑𝑥𝑑𝑦

|𝑥 − 𝑦|𝑁
= ∞.

Therefore, even within a compact set containing (𝑥0, 𝑥0) as an interior point, the measure 𝜇

is infinite. This shows that 𝜇 is not Borel regular.

On the other hand, if 𝐾 ⊂ (R𝑁 × R𝑁) ∖ 𝐷 is a compact set, where 𝐷 ⊂ R𝑁 × R𝑁 is a

diagonal 𝐷 = {(𝑥, 𝑥) : 𝑥 ∈ R𝑁}, then 𝜇(𝐾) < ∞.

Moreover, we do not know whether the measure 𝜇 is 𝜎-finite. This phenomenon presents

certain challenges regarding the application of standard arguments and results from real

analysis. Fortunately, any subset of a set of measure zero will also be measurable and have

measure zero, which guarantees that the measure is complete. For this reason, we can apply

the results for Orlicz spaces given in Section 2.2.
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It is also worthwhile to recall that if Φ and ̃︀Φ satisfy the Δ2-condition, then 𝐿Φ(Ω) and
𝐿Φ(Ω×Ω, 𝑑𝜇) are reflexive Banach spaces. For this reason, 𝑊 𝑠,Φ(Ω) is also a reflexive Banach
space. Moreover, the space 𝐶∞

0 (R𝑁) is dense in 𝑊 𝑠,Φ(R𝑁) if Φ satisfies the Δ2-condition.
For further details on this property, we refer the readers to (DE NÁPOLI; FERNÁNDEZ BONDER;

SALORT, 2021, Proposition 2.9).
We also emphasize that the fractional Orlicz-Sobolev space is the appropriated one for

studying nonlocal elliptic problems driven by fractional Φ-Laplacian operator,

(−ΔΦ)𝑠𝑢(𝑥) = 2 p.v.
∫︁
R𝑁

∫︁
R𝑁

𝜑(𝐷𝑠𝑢(𝑥, 𝑦)) 𝑑𝑦

|𝑥 − 𝑦|𝑁+𝑠
,

where p.v. is a general abbreviation used in the principle value sense. Indeed, according
to Fernández Bonder and Salort (2019), if Φ satisfies Δ2-condition, this operator is well-
defined between 𝑊 𝑠,Φ(R𝑁) and it is topological dual space 𝑊 −𝑠,̃︀Φ(R𝑁) and the following
representation formula holds

⟨(−ΔΦ)𝑠𝑢, 𝑣⟩ = 𝐽 ′
𝑠,Φ(𝑢)𝑣 =

∫︁
R𝑁

∫︁
R𝑁

𝜑 (𝐷𝑠𝑢) 𝐷𝑠𝑣 𝑑𝜇, for all 𝑢, 𝑣 ∈ 𝑊 𝑠,Φ(R𝑁),

where ⟨·, ·⟩ denote the duality pairing between 𝑊 𝑠,Φ(R𝑁) and 𝑊 −𝑠,̃︀Φ(R𝑁).
In the sequel, we present some definition and results that play a key role when dealing with

embedding results of fractional Orlicz-Sobolev spaces.

Definition 2.3.3. Let Φ an 𝑁 -function satisfying

∫︁ 1

0

(︃
𝑡

Φ(𝑡)

)︃ 𝑠
𝑁−𝑠

𝑑𝑡 < ∞ and
∫︁ ∞

1

(︃
𝑡

Φ(𝑡)

)︃ 𝑠
𝑁−𝑠

𝑑𝑡 = ∞. (2.6)

The optimal 𝑁 -function (or Sobolev’s critical function of Φ) is defined as follows:

Φ*(𝑡) = (Φ ∘ 𝐻−1)(𝑡), for all 𝑡 ≥ 0,

where

𝐻(𝑡) =
⎛⎝∫︁ 𝑡

0

(︃
𝜏

Φ(𝜏)

)︃ 𝑠
𝑁−𝑠

𝑑𝜏

⎞⎠
𝑁−𝑠

𝑁

, for all 𝑡 ≥ 0.

We consider Φ* extended to R by Φ*(𝑡) = Φ*(−𝑡) for 𝑡 < 0.

Remark 2.3.4. The condition (2.6) amounts to requiring that Φ has subcritical growth with

respect to the fractional parameter 𝑠. For instance, if Φ(𝑡) = |𝑡|𝑝, 1 < 𝑝 < ∞, then (2.6)
holds if 𝑝 < 𝑁/𝑠. Hence, it generalizes the condition required for classical fractional Sobolev

embedding.
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Definition 2.3.5. Let Ψ, Φ be two 𝑁 -functions. We say that Ψ is stronger than Φ near

infinity, and we write Φ < Ψ, if

Φ(𝑡) ≤ Ψ(𝑘𝑡), for all 𝑡 ≥ 𝑡0,

for some 𝑘 > 0 and 𝑡0 > 0 fixed.

If for each 𝑘 > 0, there exists 𝑡𝑘 > 0 depending on 𝑘 such that

Φ(𝑡) ≤ Ψ(𝑘𝑡), for all 𝑡 ≥ 𝑡𝑘,

we say that Ψ is essentially stronger than Φ or equivalently that Φ grows essentially more

slowly near infinity than Ψ, and we write Φ ≪ Ψ.

Remark 2.3.6. It is important to mention that Φ ≪ Ψ is equivalent to the following condition:

lim
𝑡→∞

Φ(𝑘𝑡)
Ψ(𝑡) = 0, for all 𝑘 > 0.

See section 8.5 in Adams and Fournier (2003). Moreover, if Φ ≪ Ψ and Ω ⊂ R𝑁 has finite

measure, then 𝐿Ψ(Ω) →˓ 𝐿Φ(Ω).

Under the condition (2.6), we have the following optimal fractional Orlicz-Sobolev
embedding proved by Alberico et al. (2021a) (Theorem 6.1).

Proposition 2.3.7. Assume that Φ is an 𝑁 -function satisfying the condition (2.6). Then,

𝑊 𝑠,Φ(R𝑁) →˓ 𝐿Φ*(R𝑁), (2.7)

and 𝐿Φ*(R𝑁) is the optimal Orlicz target space such that (2.7) holds. Moreover, there exists

a constant 𝐶 := 𝐶(𝑛, 𝑠) > 0 such that

‖𝑢‖Φ* ≤ 𝐶[𝑢]𝑠,Φ,

for all 𝑢 ∈ 𝑊 𝑠,Φ(R𝑁).

Remark 2.3.8. The above embedding is optimal in the sense that if the embedding holds for

an 𝑁 -function Ψ, then the space 𝐿Φ*(R𝑁) is continuously embedded into 𝐿Ψ(R𝑁).

The next result is a criterion for the compactness of a fractional Orlicz–Sobolev embedding
into an Orlicz space, as established by Alberico et al. (2021b) (Theorem 3.5).

Proposition 2.3.9. Let Φ be an 𝑁 -function satisfying the condition (2.6). Assume that Ψ is

an 𝑁 -function. The following properties are equivalent:
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(i) Ψ ≪ Φ*.

(ii) The embedding 𝑊 𝑠,Φ(R𝑁) →˓ 𝐿Ψ
𝑙𝑜𝑐(R𝑁) is compact.

(iii) The embedding 𝑊 𝑠,Φ(Ω) →˓ 𝐿Ψ(Ω) is compact for each bounded Lipschitz domain Ω

in R𝑁 .

Remark 2.3.10. The claim that the embedding 𝑊 𝑠,Φ(R𝑁) →˓ 𝐿Ψ
𝑙𝑜𝑐(R𝑁) is compact means

that every bounded sequence in 𝑊 𝑠,Φ(R𝑁) has a subsequence whose restriction to any bounded

measurable set 𝐾 converges in 𝐿Φ(𝐾).

According to Missaoui and Ounaies (2023) (Lemmas 4.3 and 4.5), we obtain the following
growth behavior:

Lemma 2.3.11. Assume that the conditions (2.4) and (2.6) hold and let

𝜉−
* (𝑡) = min{𝑡ℓ*

𝑠 , 𝑡𝑚*
𝑠 } and 𝜉+

* (𝑡) = max{𝑡ℓ*
𝑠 , 𝑡𝑚*

𝑠 }, for 𝑡 ≥ 0,

where ℓ, 𝑚 ∈ (1, 𝑁/𝑠), ℓ*
𝑠 = 𝑁ℓ

𝑁−𝑠ℓ
and 𝑚*

𝑠 = 𝑁𝑚
𝑁−𝑠𝑚

. Then, Φ* satisfies the following estimates:

(i) ℓ*
𝑠 ≤ 𝜑′

*(𝑡)𝑡
Φ*(𝑡)

≤ 𝑚*
𝑠, for all 𝑡 > 0, where Φ*(𝑡) =

∫︁ 𝑡

0
𝜑*(𝜏) 𝑑𝜏 . Namely, Φ* satisfies

Δ2-condition.

(ii) 𝜉−
* (𝑡)Φ*(𝜌) ≤ Φ*(𝜌𝑡) ≤ 𝜉+

* (𝑡)Φ(𝜌), for all 𝜌, 𝑡 > 0.

(iii) 𝜉−
* (‖𝑢‖Φ*) ≤ 𝐽Φ*(𝑢) ≤ 𝜉+

* (‖𝑢‖Φ*), for all 𝑢 ∈ 𝐿Φ*(R𝑁).

In the paper by Bahrouni and Ounaies (2020), the continuous embedding in Orlicz spaces
defined on R𝑁 for functions with subcritical growth is discussed. However, it is not clear that
the embedding 𝐿Φ*(R𝑁) →˓ 𝐿Ψ(R𝑁) holds for any Ψ ≪ Φ*. In order to state a continuous
embedding between these Orlicz spaces an additional hypothesis is needed besides the condition
of growth at infinity.

Proposition 2.3.12. Let Φ be an 𝑁 -function satisfying the condition (2.6). Assume that Ψ

is an 𝑁 -function satisfying Ψ ≪ Φ* and

lim sup
𝑡→0

Ψ(𝑡)
Φ(𝑡) < ∞. (2.8)

Then, the embedding 𝑊 𝑠,Φ(R𝑁) →˓ 𝐿Ψ(R𝑁) is continuous.
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Proof. Let 𝑢 ∈ 𝑊 𝑠,Φ(R𝑁) with ‖𝑢‖𝑠,Φ = 1. In particular, 𝑢 ∈ 𝐿Φ(R𝑁) and ‖𝑢‖Φ ≤ 1.
Moreover, by Proposition 2.3.7, 𝑢 ∈ 𝐿Φ*(R𝑁) and ‖𝑢‖Φ* ≤ 𝐶0‖𝑢‖𝑠,Φ ≤ 𝐶0. Without loss of
generality, assume that 𝐶0 > 1. These assertions and Remark 2.2.3, we have that

𝐽Φ(𝑢) ≤ 1 and 𝐽Φ*

(︂
𝑢

𝐶0

)︂
≤ 1. (2.9)

On the other hand, by using Ψ ≪ Φ* and (2.8), there exist 𝐶, 𝑇 > 0 and 𝛿 > 0 such that

Ψ(𝑡) ≤ Φ*(𝑡), for all 𝑡 ≥ 𝑇

and
Ψ(𝑡) ≤ 𝐶Φ(𝑡), for all 0 ≤ 𝑡 ≤ 𝛿.

Hence, by using convexity of Φ and (2.9), we infer that
∫︁
R𝑛

Ψ
(︃

|𝑢(𝑥)|
𝐶0

)︃
𝑑𝑥 ≤ 𝐶

∫︁{︁
|𝑢(𝑥)|

𝐶0
≤𝛿

}︁Φ
(︃

|𝑢(𝑥)|
𝐶0

)︃
𝑑𝑥 +

∫︁{︁
𝛿<

|𝑢(𝑥)|
𝐶0

<𝑇

}︁Ψ
(︃

|𝑢(𝑥)|
𝐶0

)︃
𝑑𝑥

+
∫︁{︁

|𝑢(𝑥)|
𝐶0

≥𝑇

}︁Φ*

(︃
|𝑢(𝑥)|

𝐶0

)︃
𝑑𝑥

≤ 𝐶

𝐶0

∫︁
R𝑁

Φ(|𝑢(𝑥)|) 𝑑𝑥 +
∫︁
R𝑁

Φ*

(︃
|𝑢(𝑥)|

𝐶0

)︃
𝑑𝑥

+ Ψ(𝑇 )
⃒⃒⃒⃒
⃒
{︃

𝛿 <
|𝑢(𝑥)|

𝐶0
< 𝑇

}︃⃒⃒⃒⃒
⃒ .

≤ 𝐶

𝐶0
+ 1 + Ψ(𝑇 )

⃒⃒⃒⃒
⃒
{︃

𝛿 <
|𝑢(𝑥)|

𝐶0
< 𝑇

}︃⃒⃒⃒⃒
⃒ .

Now, using the monotonicity and convexity of Φ and (2.9), we have that⃒⃒⃒⃒
⃒
{︃

𝛿 <
|𝑢(𝑥)|

𝐶0
< 𝑇

}︃⃒⃒⃒⃒
⃒ ≤ 1

Φ(𝛿)

∫︁
R𝑛

Φ
(︃

|𝑢(𝑥)|
𝐶0

)︃
𝑑𝑥 ≤ 1

Φ(𝛿)𝐶0

∫︁
R𝑛

Φ(|𝑢(𝑥)|) 𝑑𝑥 ≤ 1
Φ(𝛿)𝐶0

.

Thereby, ∫︁
R𝑛

Ψ
(︃

|𝑢(𝑥)|
𝐶0

)︃
𝑑𝑥 ≤ 𝐶

𝐶0
+ Ψ(𝑇 )

Φ(𝛿)𝐶0
+ 1 < ∞.

This yields that 𝑢 ∈ 𝐿Ψ(R𝑁).
In order to complete the proof, we consider 𝑢 ∈ 𝑊 𝑠,Φ(R𝑁) arbitrary and 𝑣 = 𝑢

‖𝑢‖𝑠,Φ
.

Therefore, by Remark 2.2.3, we obtain that

‖𝑣‖Ψ ≤
∫︁
R𝑁

Ψ(|𝑣(𝑥)|) 𝑑𝑥 + 1 ≤ 𝐶 + 1,

which implies that ‖𝑢‖Ψ ≤ (𝐶 + 1)‖𝑢‖𝑠,Φ. This ends the proof.
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Another functional space to study variationally problems involving the fractional Φ-
Laplacian operator is the weighted fractional Orlicz-Sobolev space defined as follows

𝑋 :=
{︂

𝑢 ∈ 𝑊 𝑠,Φ(R𝑁) :
∫︁
R𝑁

𝑉 (𝑥)Φ(|𝑢|) 𝑑𝑥 < ∞
}︂

,

equipped with the following norm

‖𝑢‖𝑠,Φ,𝑉 = ‖𝑢‖Φ,𝑉 + [𝑢]𝑠,Φ,

where
‖𝑢‖Φ,𝑉 = inf

{︃
𝜆 > 0:

∫︁
R𝑁

𝑉 (𝑥)Φ
(︃

|𝑢(𝑥)|
𝜆

)︃
𝑑𝑥 ≤ 1

}︃
,

and the potential 𝑉 : R𝑁 → R is continuous function and satisfies the following Bartsch and
Wang (1995) type assumptions:

(𝑉0) There exists a constant 𝑉0 > 0 such that 𝑉 (𝑥) ≥ 𝑉0 for all 𝑥 ∈ R𝑁 .

(𝑉1) For each 𝑀 > 0, it holds that the set {𝑥 ∈ R𝑁 : 𝑉 (𝑥) ≤ 𝑀} has finite Lebesgue
measure.

It is important to mention that if Φ and ̃︀Φ satisfy the Δ2-condition, then 𝑋 is a reflexive
Banach space, and it is a closed subset of 𝑊 𝑠,Φ(R𝑁), see (BAHROUNI; OUNAIES, 2020).
Furthermore, ‖ · ‖𝑠,Φ,𝑉 is equivalent to Luxemburg’s norm given by

‖𝑢‖ := inf
{︂

𝜆 > 0 : 𝒥𝑠,Φ,𝑉

(︂
𝑢

𝜆

)︂
≤ 1

}︂
,

where 𝒥𝑠,Φ,𝑉 : 𝑋 → R is defined by

𝒥𝑠,Φ,𝑉 (𝑢) =
∫︁
R𝑁

∫︁
R𝑁

Φ(|𝐷𝑠𝑢|) 𝑑𝜇 +
∫︁
R𝑁

𝑉 (𝑥)Φ(|𝑢|) 𝑑𝑥.

In light of Lemma 13 obtained by Bahrouni and Ounaies (2020), a corresponding version
of Lemma 2.2.7 for 𝒥𝑠,Φ,𝑉 can be stated as follows:

Lemma 2.3.13. Assume that Φ satisfies Δ2-condition and (𝑉0)-(𝑉1) hold. Then,

𝜉−
0 (‖𝑢‖) ≤ 𝒥𝑠,Φ,𝑉 (𝑢) ≤ 𝜉+

0 (‖𝑢‖), 𝑢 ∈ 𝑋.

Recently, Silva et al. (2021) established some continuous and compact embedding results
for the space 𝑋. These results are summarized in the following propositions:

Proposition 2.3.14. Assume that Φ satisfies Δ2-condition and (𝑉0)-(𝑉1) hold. Then, the

embedding 𝑋 →˓ 𝐿Φ(R𝑁) is compact.
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Proposition 2.3.15. Assume that Φ satisfies Δ2-condition and (𝑉0)-(𝑉1) hold. Suppose also

that Φ < Ψ ≪ Φ* and at least one of the following conditions are satisfied:

(i) The following limit holds

lim sup
|𝑡|→0

Ψ(|𝑡|)
Φ(|𝑡|) < ∞.

(ii) The function Ψ satisfies Δ2-condition and there exist an 𝑁 -function 𝑅 and 𝑏 ∈ (0, 1)

such that Ψ ∘ 𝑅 < Φ* and

Ψ( ̃︀𝑅(|𝑡|1−𝑏)) ≤ 𝐶Φ(|𝑡|) for |𝑡| ≤ 1,

where ̃︀𝑅 is the conjugate function of 𝑅.

Then, the space 𝑋 is compactly embedded into 𝐿Ψ(R𝑁).

As a consequence of Propositions 2.3.12 and 2.3.15, we can prove the following result:

Lemma 2.3.16. Assume that Φ satisfies the condition (2.4) and (𝑉0)-(𝑉1) hold. Then, the

embedding 𝑋 →˓ 𝐿𝑟(R𝑛) is continuous for all 𝑟 ∈ [𝑚, ℓ*
𝑠) and compact for all 𝑟 ∈ (𝑚, ℓ*

𝑠).

Proof. Firstly, using the assumption (𝑉0), we have that 𝐽Φ(𝑢) ≤ 𝑉 −1
0 𝐽Φ,𝑉 (𝑢) for all 𝑢 ∈ 𝑋.

Without loss of generality, we can assume that 𝑉0 < 1. Then, by convexity of Φ and definition
of the Luxemburg’s norm, we obtain that

𝐽Φ

(︃
𝑉0𝑢

‖𝑢‖Φ,𝑉

)︃
≤ 𝑉 −1

0 𝐽Φ,𝑉

(︃
𝑉0𝑢

‖𝑢‖Φ,𝑉

)︃
≤ 𝑉 −1

0 𝑉0𝐽Φ,𝑉

(︃
𝑢

‖𝑢‖Φ,𝑉

)︃
≤ 1,

for all 𝑥 ∈ 𝑋 ∖ {0}. This yields that ‖𝑢‖Φ ≤ 1
𝑉0

‖𝑢‖Φ,𝑉 . Thereby, 𝑋 →˓ 𝑊 𝑠,Φ(R𝑁).
We will now verify that the hypotheses of the Proposition 2.3.12 and Theorem 2.3.15 are

satisfied for the 𝑁 -function Ψ(𝑡) = |𝑡|𝑟 for all 𝑟 ∈ [𝑚, ℓ*
*). In fact, It follows from Lemma

2.1.5 that
Φ(𝑡) ≤ Φ(1)|𝑡|𝑚 ≤ Φ(1)|𝑡|𝑟 = Φ(1)Ψ(𝑡), for all |𝑡| ≥ 1,

which implies that Φ < Ψ. Moreover, by using Lemma 2.1.5 and Lemma 2.3.11, we obtain
that

lim
𝑡→∞

Ψ(𝑘𝑡)
Φ*(𝑡)

≤ 𝑘𝑟

Φ*(1) lim
𝑡→∞

𝑡𝑟

𝑡ℓ*
𝑠

= 0, for all 𝑘 > 0,

and
lim
𝑡→0

Ψ(𝑡)
Φ(𝑡) ≤ 1

Φ(1) lim
𝑡→0

𝑡𝑟

𝑡𝑚
< ∞.

This concludes the proof.



36

Finally, proceeding as in Theorem 3.14 of Albuquerque et al. (2023), we have that 𝒥 ′
𝑠,Φ,𝑉

is of type (𝑆+). The proof of this result, including a more general operator, will be presented
in Section 4.5.

Proposition 2.3.17. Assume that Φ satisfies Δ2-condition and (𝑉0)-(𝑉1) hold. Then,

𝒥 ′
𝑠,Φ,𝑉 : 𝑋 → 𝑋 ′ satisfies the (𝑆+)-property, that is, if for a given (𝑢𝑘)𝑛∈N ⊂ 𝑋 satisfying

𝑢𝑘 ⇀ 𝑢 weakly in 𝑋 and

lim sup
𝑘→∞

⟨𝒥 ′
𝑠,Φ,𝑉 (𝑢𝑘), 𝑢𝑘 − 𝑢⟩ ≤ 0,

then 𝑢𝑘 → 𝑢 strongly in 𝑋.
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3 ON A SUPERLINEAR FRACTIONAL Φ-LAPLACIAN TYPE PROBLEM

In the present chapter, we study the following nonlinear fractional elliptic problem⎧⎪⎪⎨⎪⎪⎩
(−ΔΦ)𝑠𝑢 + 𝑉 (𝑥)𝜙(|𝑢|)𝑢 = 𝜈𝑎(𝑥)|𝑢|𝑞−2𝑢 − 𝜆|𝑢|𝑝−2𝑢 in R𝑁 ,

𝑢 ∈ 𝑊 𝑠,Φ(R𝑁),
(𝒫𝜆,𝜈)

where 𝑠 ∈ (0, 1), 1 < ℓ ≤ 𝑚 < 𝑞 < 𝑝 < ℓ*
𝑠 = 𝑁ℓ/(𝑁 − ℓ𝑠), 𝑁 ≥ 2 and 𝜆, 𝜈 > 0. The

potential 𝑉 : R𝑁 → R is continuous and 𝑎 : R𝑁 → R is a non-negative measurable function
satisfying some additional hypotheses. Furthermore, Φ : R → R is an 𝑁 -function defined by

Φ(𝑡) =
∫︁ |𝑡|

0
𝜙(𝜏)𝜏 𝑑𝜏,

where 𝜙 : (0, ∞) → (0, ∞) fulfills some structural assumptions.
The main goal in the present chapter is to investigate the existence and multiplicity of

solutions for problem (𝒫𝜆,𝜈). Specifically, we find sharp conditions on the parameters 𝜆 and 𝜈

in order to guarantee the existence of weak solutions in the Nehari sets 𝒩 −
𝜆,𝜈 and 𝒩 +

𝜆,𝜈 .
It is important to emphasize that when we deal to these types of problems via variational

methods, some difficulties arise. The first one come from loss of homogeneity on the left
side of the equation (𝒫𝜆,𝜈) inherited from the fractional Φ-Laplacian operator, which implies
that we cannot explicitly establish the critical point for fibering map of the nonlinear Rayleigh
quotient. Furthermore, an extra level of difficulty arises when dealing with the coercivity of the
energy functional associated to the problem restricted to the Nehari sets 𝒩 ±

𝜆,𝜈 . These kinds of
difficulties are overcome by using some precisely properties and some extra assumptions on Φ,
the powers ℓ, 𝑚, 𝑞, 𝑝, and the weight function involved.

The second difficulty arises from the fact that the nonlinearity

𝑓𝜆,𝜈(𝑥, 𝑡) = 𝜈𝑎(𝑥)|𝑡|𝑞−2𝑡 − 𝜆|𝑡|𝑝−2𝑡, 𝑥 ∈ R𝑁 , 𝑡 ∈ R,

is a sign-changing function which does not satisfy the well-known Ambrosetti-Rabinowitz
condition. This fact does permit us to conclude in general that any Palais-Smale sequence
is bounded. However, using the Nehari method, we are able to prove some fine estimates
showing that a suitable minimization problem has a solution. Here, the main difficulty is
to prove that there exists a real number 𝜈𝑛(𝜆) > 0 such that the Nehari manifold 𝒩𝜆,𝜈 is
empty for each 𝜈 < 𝜈𝑛(𝜆) and 𝜆 > 0. Another factor inherent to our work environment is
that the Nehari manifold can splited as 𝒩𝜆,𝜈 = 𝒩 +

𝜆,𝜈 ∪ 𝒩 0
𝜆,𝜈 ∪ 𝒩 −

𝜆,𝜈 with 𝒩 0
𝜆,𝜈 nonempty for
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each 𝜈 ≥ 𝜈𝑛(𝜆) and 𝜆 > 0. In addition, we have that 𝒩 ±
𝜆,𝜈 ⊆ 𝒩 ±

𝜆,𝜈 ∪ 𝒩 0
𝜆,𝜈 (see Lemma

3.2.24), that is, the Nehari sets 𝒩 −
𝜆,𝜈 and 𝒩 +

𝜆,𝜈 are not necessarily closed. Consequently, the
minimizing sequences for the energy functional associated to the problem (𝒫𝜆,𝜈) restricted to
𝒩 ±

𝜆,𝜈 can strongly converge to a function which belongs to 𝒩 0
𝜆,𝜈 where the Lagrange Multipliers

Theorem does not apply anymore. The strategy to overcome such difficulties it is based on
arguments employed by Silva et al. (2024a). More precisely, we use the Nehari method (NEHARI,
1960; NEHARI, 1961) combined with the Pohozhaev fibering method (POHOZAEV, 1990) and
nonlinear Rayleigh Quotient method (IL’YASOV, 2017; IL’YASOV, 2005) to prove the existence
of the parameters 𝜆*, 𝜆* > 0 in such a way that, for each 𝜈 > 𝜈𝑛(𝜆) and 𝜆 ∈ (0, 𝜆*) or
𝜆 ∈ (0, 𝜆*), the minimizing functions for the energy functional restricted to 𝒩 ±

𝜆,𝜈 does not
belong to 𝒩 0

𝜆,𝜈 . Therefore, this statement provides us two weak solutions, since the Nehari
sets 𝒩 ±

𝜆,𝜈 are natural constraints for the Problem (𝒫𝜆,𝜈).
The remainder of this chapter is organized as follows: In the forthcoming section, we

present our assumptions and the main results of this chapter. In Section 3.2, we establish
some results concerning on the Nehari method and nonlinear Rayleigh Quotient method for
our main problem. In Section 3.3 is proved our main results by analyzing the energy levels for
each minimizer in the Nehari manifolds 𝒩 ±

𝜆,𝜈 . The Section 3.4 is devoted to the asymptotic
behavior of solutions obtained in the Theorems 3.1.1 and 3.1.2. Finally, in Section 3.5 is studied
the cases in which the parameters 𝜆 and 𝜈 are equal to 𝜆*, 𝜆* and 𝜈𝑛, respectively.

3.1 ASSUMPTIONS AND STATEMENT OF THE MAIN THEOREMS

As mentioned in the introduction, following Silva et al. (2024a), we consider existence and
multiplicity of nontrivial weak solutions for the Problem (𝒫𝜆,𝜈) for suitable parameters 𝜆 > 0

and 𝜈 > 0. The main idea is to ensure sharp conditions on the parameters 𝜆 and 𝜈 such that
the Nehari method can be applied. For this purpose, throughout this chapter, we assume we
assume the following hypotheses:

(𝜙1) 𝜙 : (0, +∞) → (0, +∞) is a 𝐶2-function, lim𝑡→0+ 𝑡𝜙(𝑡) = 0 and lim𝑡→∞ 𝑡𝜙(𝑡) = ∞.

(𝜙2) 𝑡 ↦→ 𝑡𝜙(𝑡) is strictly increasing in (0, ∞).

(𝜙3) There exist ℓ, 𝑚 ∈ (1, 𝑁/𝑠) such that

ℓ − 2 := inf
𝑡>0

(𝜙(𝑡)𝑡)′′𝑡

(𝜙(𝑡)𝑡)′ ≤ sup
𝑡>0

(𝜙(𝑡)𝑡)′′𝑡

(𝜙(𝑡)𝑡)′ =: 𝑚 − 2.
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(𝜙4) The following embedding conditions hold

∫︁ 1

0

(︃
𝑡

Φ(𝑡)

)︃ 𝑠
𝑁−𝑠

𝑑𝑡 < ∞ and
∫︁ ∞

1

(︃
𝑡

Φ(𝑡)

)︃ 𝑠
𝑁−𝑠

𝑑𝑡 = ∞.

In order to apply the nonlinear Rayleigh quotient method in our framework, we also suppose
the following hypotheses:

(𝐻1) It holds that 𝜈, 𝜆 > 0, ℓ ≤ 𝑚 < 𝑞 < 𝑝 < ℓ*
𝑠 = 𝑁ℓ/(𝑁 − ℓ𝑠) and 𝑚(𝑞 − ℓ) < 𝑝(𝑞 − 𝑚).

(𝐻2) It holds that 𝑎 ∈ 𝐿𝑟(R𝑁) with 𝑟 = (𝑝/𝑞)′ = 𝑝/(𝑝 − 𝑞) and 𝑎(𝑥) > 0 a.e. in 𝑥 ∈ R𝑁 .

Furthermore, since we study (𝒫𝜆,𝜈) by using variational methods in the spirit of Bartsch and
Wang (1995), we assume that the potential 𝑉 : R𝑁 → R is a continuous function satisfying
the following conditions:

(𝑉0) There exists a constant 𝑉0 > 0 such that 𝑉 (𝑥) ≥ 𝑉0 for all 𝑥 ∈ R𝑁 .

(𝑉1) For each 𝑀 > 0, it holds that the set {𝑥 ∈ R𝑁 : 𝑉 (𝑥) ≤ 𝑀} has finite Lebesgue
measure.

Due to the presence of the potential 𝑉 , our working space is give by

𝑋 :=
{︂

𝑢 ∈ 𝑊 𝑠,Φ(R𝑁) :
∫︁
R𝑁

𝑉 (𝑥)Φ(|𝑢|) 𝑑𝑥 < ∞
}︂

,

endowed with the Luxemburg’s norm as follows:

‖𝑢‖ := inf
{︂

𝜆 > 0 : 𝒥𝑠,Φ,𝑉

(︂
𝑢

𝜆

)︂
≤ 1

}︂
,

where 𝑊 𝑠,Φ(R𝑁) is the fractional Orlicz-Sobolev type space and the modular function
𝒥𝑠,Φ,𝑉 : 𝑋 → R is determined in the following form:

𝒥𝑠,Φ,𝑉 (𝑢) :=
∫︁
R𝑁 ×R𝑁

Φ(|𝐷𝑠𝑢|) 𝑑𝜇 +
∫︁
R𝑁

𝑉 (𝑥)Φ(|𝑢|) 𝑑𝑥,

being the measure 𝜇 defined by 𝑑𝜇 = 𝑑𝑥𝑑𝑦
|𝑥−𝑦|𝑁 .

It is important to mention that 𝑋 is a reflexive Banach space, see (BAHROUNI; OUNAIES,
2020). Moreover, the energy functional ℐ𝜆,𝜈 : 𝑋 → R associated to Problem (𝒫𝜆,𝜈) is given
by

ℐ𝜆,𝜈(𝑢) = 𝒥𝑠,Φ,𝑉 (𝑢) − 𝜈

𝑞
‖𝑢‖𝑞

𝑞,𝑎 + 𝜆

𝑝
‖𝑢‖𝑝

𝑝, 𝑢 ∈ 𝑋, (3.1)
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where
‖𝑢‖𝑞

𝑞,𝑎 =
∫︁
R𝑁

𝑎(𝑥)|𝑢|𝑞𝑑𝑥 and ‖𝑢‖𝑝
𝑝 =

∫︁
R𝑁

|𝑢|𝑝𝑑𝑥, 𝑢 ∈ 𝑋.

Under our hypotheses, usual computations and the Sobolev embedding show that ℐ𝜆,𝜈 belongs
to 𝐶2(𝑋,R) for all 𝜆 > 0 and 𝜈 > 0, and their Fréchet derivative ℐ ′

𝜆,𝜈 : 𝑋 → 𝑋* is given by

ℐ ′
𝜆,𝜈(𝑢)𝑣 = 𝒥 ′

𝑠,Φ,𝑉 (𝑢)𝑣 − 𝜈
∫︁
R𝑁

𝑎(𝑥)|𝑢|𝑞−2𝑢𝑣 𝑑𝑥 + 𝜆
∫︁
R𝑁

|𝑢|𝑝−2𝑢𝑣 𝑑𝑥, for all 𝑢, 𝑣 ∈ 𝑋,

where

𝒥 ′
𝑠,Φ,𝑉 (𝑢)𝑣 =

∫︁
R𝑁

∫︁
R𝑁

𝜙(|𝐷𝑠𝑢|)𝐷𝑠𝑢𝐷𝑠𝑣 𝑑𝜇 +
∫︁
R𝑁

𝜙(|𝑢|)𝑢𝑣 𝑑𝑥, for all 𝑢, 𝑣 ∈ 𝑋.

Furthermore, a function 𝑢 ∈ 𝑋 is a critical point for the functional ℐ𝜆,𝜈 if and only if 𝑢 is a
weak solution to the elliptic Problem (𝒫𝜆,𝜈). Precisely, a function 𝑢 ∈ 𝑋 is said to be a weak
solution for Problem (𝒫𝜆,𝜈) if and only if

𝒥 ′
𝑠,Φ,𝑉 (𝑢)𝑣 − 𝜈

∫︁
R𝑁

𝑎(𝑥)|𝑢|𝑞−2𝑢𝑣 𝑑𝑥 + 𝜆
∫︁
R𝑁

|𝑢|𝑝−2𝑢𝑣 𝑑𝑥 = 0 for all 𝑣 ∈ 𝑋.

Now, by using the same ideas introduced by Nehari (NEHARI, 1960; NEHARI, 1961), we
consider the Nehari set associated to our main Problem (𝒫𝜆,𝜈) as follows

𝒩𝜆,𝜈 := {𝑢 ∈ 𝑋 ∖ {0} : ℐ ′
𝜆,𝜈(𝑢)𝑢 = 0} =

{︁
𝑢 ∈ 𝑋 ∖ {0} : 𝒥 ′

𝑠,Φ,𝑉 (𝑢)𝑢 + 𝜆‖𝑢‖𝑝
𝑝 = 𝜈‖𝑢‖𝑞

𝑞,𝑎

}︁
.

(3.2)
Under these conditions, by using the same ideas employed by Tarantello (1992), we can split
the Nehari set 𝒩𝜆,𝜈 into three disjoint subsets in the following way:

𝒩 +
𝜆,𝜈 = {𝑢 ∈ 𝒩𝜆,𝜈 : ℐ ′′

𝜆,𝜈(𝑢)(𝑢, 𝑢) > 0},

𝒩 −
𝜆,𝜈 = {𝑢 ∈ 𝒩𝜆,𝜈 : ℐ ′′

𝜆,𝜈(𝑢)(𝑢, 𝑢) < 0},

𝒩 0
𝜆,𝜈 = {𝑢 ∈ 𝒩𝜆,𝜈 : ℐ ′′

𝜆,𝜈(𝑢)(𝑢, 𝑢) = 0}.

The main feature in the present chapter is to find weak solutions for our main problem using
for the following minimization problems

ℰ−
𝜆,𝜈 := inf{ℐ𝜆,𝜈(𝑢) : 𝑢 ∈ 𝒩 −

𝜆,𝜈} (3.3)

and
ℰ+

𝜆,𝜈 := inf{ℐ𝜆,𝜈(𝑢) : 𝑢 ∈ 𝒩 +
𝜆,𝜈}. (3.4)

Namely, we prove that ℰ−
𝜆,𝜈 and ℰ+

𝜆,𝜈 are attained by some specific functions.
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In order to apply the nonlinear Rayleigh quotient, we also need to consider others definitions.
Firstly, we define the following set

ℰ𝜆,𝜈 = {𝑢 ∈ 𝑋 ∖ {0} : ℐ𝜆,𝜈(𝑢) = 0} . (3.5)

In the sequel, we introduce the nonlinear generalized Rayleigh quotients which have been
extensively explored in the last years, see (IL’YASOV, 2005; IL’YASOV, 2017; IL’YASOV; SILVA,
2018; CARVALHO; SILVA; GOULART, 2021; SILVA; OLIVEIRA; GOULART, 2023; CARVALHO et

al., 2024; SILVA; ROCHA; SILVA, 2024). More specifically, we define the functionals 𝑅𝑛, 𝑅𝑒 :

𝑋 ∖ {0} → R associated with the parameter 𝜈 > 0 in the following form:

𝑅𝑛(𝑢) := 𝑅𝑛,𝜆(𝑢) =
𝒥 ′

𝑠,Φ,𝑉 (𝑢)𝑢 + 𝜆||𝑢||𝑝𝑝
||𝑢||𝑞𝑞,𝑎

, for 𝑢 ∈ 𝑋 ∖ {0}, 𝜆 > 0 (3.6)

and
𝑅𝑒(𝑢) := 𝑅𝑒,𝜆(𝑢) =

𝒥𝑠,Φ,𝑉 (𝑢) + 𝜆
𝑝
||𝑢||𝑝𝑝

1
𝑞
||𝑢||𝑞𝑞,𝑎

, for 𝑢 ∈ 𝑋 ∖ {0}, 𝜆 > 0. (3.7)

The sets given in (3.2) and (3.5) is linked to the nonlinear generalized Rayleigh quotients.
Precisely, given 𝑢 ∈ 𝑋 ∖ {0}, we have the following assertions:

𝑢 ∈ 𝒩𝜆,𝜈 if and only if 𝜈 = 𝑅𝑛(𝑢) (3.8)

and
𝑢 ∈ ℰ𝜆,𝜈 if and only if 𝜈 = 𝑅𝑒(𝑢). (3.9)

We also define the extremal values:

𝜈𝑛(𝜆) := inf
𝑢∈𝑋∖{0}

inf
𝑡>0

𝑅𝑛(𝑡𝑢) and 𝜈𝑒(𝜆) := inf
𝑢∈𝑋∖{0}

inf
𝑡>0

𝑅𝑒(𝑡𝑢). (3.10)

It is worthwhile to mention that under our assumptions, the functionals 𝑅𝑛 and 𝑅𝑒 belong
to 𝐶2(𝑋 ∖ {0},R) for each 𝜆 > 0. This can be verified using standard arguments and the
Sobolev embeddings, together with the fact that 𝑚 < 𝑞 < 𝑝 < ℓ*

𝑠.
Now we are in position to present our main results. Firstly, taking into account that ℐ𝜆,𝜈 is

bounded from below in 𝒩 −
𝜆,𝜈 , we can consider the minimization problem given in (3.3). Thus,

our first main theorem can be stated as follows:

Theorem 3.1.1. Assume that (𝜙1)-(𝜙4), (𝐻1)-(𝐻2) and (𝑉0)-(𝑉1) hold. Then, for each 𝜆 > 0

we have that 0 < 𝜈𝑛(𝜆) < 𝜈𝑒(𝜆) < ∞ and there exists 𝜆* > 0 such that the Problem (𝒫𝜆,𝜈)
admits at least one weak solution 𝑢𝜆,𝜈 ∈ 𝒩 −

𝜆,𝜈 for each 𝜆 ∈ (0, 𝜆*) and 𝜈 > 𝜈𝑛(𝜆). Moreover,

the following statements are satisfied:
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(i) ℰ−
𝜆,𝜈 = ℐ𝜆(𝑢𝜆,𝜈) = inf𝑤∈𝒩 −

𝜆,𝜈
ℐ𝜆,𝜈(𝑤).

(ii) There exists 𝐷𝜈 > 0 such that ℰ−
𝜆,𝜈 ≥ 𝐷𝜈 .

Next, we consider the minimization problem given in (3.4). It is worthwhile to mention
that a ground state solution is a nontrivial solution which has the minimal energy level among
any other nontrivial solutions. Hence, we stated our next main result in the following form:

Theorem 3.1.2. Assume that (𝜙1)-(𝜙4), (𝐻1)-(𝐻2) and (𝑉0)-(𝑉1) hold. Then, there exists

𝜆* > 0 such that the Problem (𝒫𝜆,𝜈) admits at least one weak solution 𝑣𝜆,𝜈 ∈ 𝒩 +
𝜆,𝜈 if one of

the following conditions is satisfied:

(i) 𝜆 ∈ (0, 𝜆*) and 𝜈 ∈ (𝜈𝑛(𝜆), 𝜈𝑒(𝜆)).

(ii) 𝜆 > 0 and 𝜈 ∈ [𝜈𝑒(𝜆), ∞).

(iii) 𝜆 > 0 and 𝜈 ∈ (𝜈𝑒(𝜆) − 𝜀, 𝜈𝑒(𝜆)), where 𝜀 > 0 is small enough.

Furthermore, the weak solution 𝑣𝜆,𝜈 is a ground state solution with the following properties:

(i) For each 𝜈 ∈ (𝜈𝑛(𝜆), 𝜈𝑒(𝜆)) we obtain that ℐ𝜆,𝜈(𝑣𝜆,𝜈) > 0.

(ii) For 𝜈 = 𝜈𝑒(𝜆) we have that ℐ𝜆(𝑣𝜆,𝜈) = 0.

(iii) For each 𝜈 > 𝜈𝑒(𝜆) we have also that ℐ𝜆(𝑣𝜆,𝜈) < 0.

As a consequence, by using Theorems 3.1.1 and 3.1.2, we obtain the following result:

Corollary 3.1.3. Assume that (𝜙1)-(𝜙4), (𝐻1)-(𝐻2) and (𝑉0)-(𝑉1) hold. Suppose also that

𝜆 ∈ (0, min(𝜆*, 𝜆*)) and 𝜈 > 𝜈𝑛(𝜆). Then, the Problem (𝒫𝜆,𝜈) admits at least two weak

solutions.

Finally, we prove a nonexistence result for Problem (𝒫𝜆,𝜈).

Theorem 3.1.4. Assume that (𝜙1)-(𝜙4), (𝐻1)-(𝐻2) and (𝑉0)-(𝑉1) hold. Suppose also that

𝜆 > 0 and 𝜈 ∈ (−∞, 𝜈𝑛(𝜆)). Then, the Problem (𝒫𝜆,𝜈) does not admit any nontrivial solution.

Next, we present some examples of functions Φ for which the previous results may be
applied.
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Example 3.1.5. The 𝑁 -function Φ(𝑡) = |𝑡|𝑟
𝑟

, which produces the well-known fractional 𝑟-

Laplacian operator (−Δ𝑟)𝑠 with 1 < 𝑟 < 𝑁/𝑠, is a relevant example of how our assumptions

are satisfied. In this case, we have 𝜙(𝑡) = 𝑡𝑟−2, and it satisfies the assumptions (𝜙1)-(𝜙4) with

ℓ = 𝑚 = 𝑟. Moreover, the hypothesis (𝐻1) is trivially verified for any 1 < 𝑟 < 𝑞 < 𝑝 < 𝑟*
𝑠 .

As a second example, we can consider the function 𝜙(𝑡) = 𝑡𝑟1−2 + 𝑡𝑟2−2, with 1 < 𝑟2 <

𝑟2 < 𝑁/𝑠. For this function, the problem (𝒫𝜆,𝜈) read as⎧⎪⎪⎨⎪⎪⎩
(−Δ𝑟1)𝑠𝑢 + (−Δ𝑟2)𝑠𝑢 + 𝑉 (𝑥)(|𝑢|𝑟1−2𝑢 + |𝑢|𝑟2−2𝑢) = 𝜈𝑎(𝑥)|𝑢|𝑞−2𝑢 − 𝜆|𝑢|𝑝−2𝑢 in R𝑁 ,

𝑢 ∈ 𝑊 𝑠,𝑟1(R𝑁) ∩ 𝑊 𝑠,𝑟2(R𝑁).

This problem is named in the literature as fractional (𝑟1, 𝑟2)-Laplacian type problem. We

observe that 𝜙 satisfies the hypotheses (𝜙1)-(𝜙4) with ℓ = 𝑟1 e 𝑚 = 𝑟2. Furthermore, (𝐻1) is

verified whenever 𝑟2(𝑞−𝑟1)
𝑞−𝑟2

< 𝑝 < 𝑁𝑟1
𝑁−𝑠𝑟1

= (𝑟1)*
𝑠.

Example 3.1.6. Another special case that can be considered is the function 𝜙(𝑡) = log(1+𝑡),

𝑡 ≥ 0. In this case, by direct computations, we obtain the following 𝑁 -function:

Φ(𝑡) =
∫︁ 𝑡

0
𝜙(𝜏)𝜏 𝑑𝜏 = 𝑡2

2 log(1 + 𝑡) − 𝑡2

4 + 𝑡

2 − 1
2 log(1 + 𝑡), 𝑡 ≥ 0.

It is clear that 𝜙 satisfies the assumptions (𝜙1) and (𝜙2). In addition, using the elementary

inequality 𝑡
1+𝑡

≤ log(1 + 𝑡), 𝑡 ≥ 0 we obtain that

(𝜙(𝑡)𝑡)′ = log(1 + 𝑡) + 𝑡

1 + 𝑡
≥ 2𝑡

1 + 𝑡
,

and

(𝜙(𝑡)𝑡)′′𝑡 = 2𝑡

1 + 𝑡
− 𝑡2

(1 + 𝑡)2 =
(︂

2 − 𝑡

1 + 𝑡

)︂
𝑡

1 + 𝑡
> 0.

As a result, we deduce that

0 <
(𝜙(𝑡)𝑡)′′𝑡

(𝜙(𝑡)𝑡)′ ≤ 1
2

(︂
2 − 𝑡

1 + 𝑡

)︂
< 1, 𝑡 > 0.

Hence, the assumption (𝜙3) is satisfied for ℓ = 2 and 𝑚 = 3. Moreover, (𝐻1) holds whenever
3(𝑞−2)

𝑞−3 < 𝑝 < 2𝑁
𝑁−2𝑠

= 2*
𝑠.

Remark 3.1.7. Under the assumptions (𝜙1)-(𝜙3), we prove that the function

𝑡 ↦→ (2 − 𝑞)𝜙(𝑡) + 𝜙′(𝑡)𝑡
𝑡𝑝−2

is strictly increasing for all 𝑡 > 0. This fact implies that we can apply the nonlinear Raleigh

quotient due to the fact that the map 𝑡 ↦→ 𝑅𝑛(𝑡𝑢), 𝑢 ̸= 0 has a unique critical point, see

Proposition 3.2.3 ahead. Under these conditions, we are able to prove that any function in a

cone set has projection in the Nehari set.
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Remark 3.1.8. The hypotheses (𝐻1) and (𝐻2) play a crucial role in the development of the

main results. They ensure the necessary conditions for applying variational methods and tools,

as well as compactness results.

The condition 𝑚(𝑞 − ℓ) < 𝑝(𝑞 − 𝑚) in (𝐻1) is used for the first time to establish the

positivity of the energy level ℰ−
𝜆,𝜈 for each 𝜆 > 0 and 𝜈 > 𝜈𝑛(𝜆). This condition also guarantees

the existence of parameters 𝜆*, 𝜆* > 0 in Theorem 3.1.1 and 3.1.2, respectively. Furthermore, it

is utilized to obtain qualitative properties of the solution for problem (𝒫𝜆,𝜈), such as continuity

and asymptotic behavior with respect to parameters 𝜆 and 𝜈. As for hypothesis (𝐻2), it is used

to derive the lower bound for the function Λ𝑛 and to establish the coercivity of the functional

ℐ𝜆,𝜈 restricted to Nehari manifold.

3.2 THE NEHARI AND NONLINEAR RAYLEIGH QUOTIENT METHODS

In this section, we follow some ideas discusse by Silva et al. (2024a). The main goal here is
to ensure existence of weak solutions for our main problem using the Nehari method together
with the nonlinear Rayleigh quotient. In order to do that, we also consider the fibration method
described below.

The Nehari manifold has an intrinsic connection with the behavior of the so-called fibering
map 𝛾𝑢 : [0, ∞) → R defined by

𝛾𝑢(𝑡) = ℐ𝜆,𝜈(𝑡𝑢),

for each 𝑢 ∈ 𝑋 ∖ {0} fixed. Under our assumptions, 𝛾𝑢 ∈ 𝐶2(0, ∞) and 𝑢 ∈ 𝒩𝜆,𝜈 if and only
if 𝛾′

𝑢(1) = 0. More generally, we have that 𝑡𝑢 ∈ 𝒩𝜆,𝜈 if and only if 𝛾′
𝑢(𝑡) = 0 where 𝑡 > 0.

Therefore, the geometric analysis of the fibering maps plays a key role in our arguments. For
further details on this subject, we refer the reader to the important works (POHOZAEV, 1990;
DRÁBEK; POHOZAEV, 1997; BROWN; WU, 2007; BROWN; WU, 2009).

Next, we present some useful results related to the energy functional ℐ𝜆,𝜈 and the nonlinear
Rayleigh quotient. Firstly, we mention that the functional ℐ𝜆,𝜈 is in 𝐶2 class due to the fact
that 𝑚 < 𝑞 < 𝑝 < ℓ*

𝑠. Furthermore, we obtain that

ℐ ′′
𝜆,𝜈(𝑢)(𝑢, 𝑢) = 𝒥 ′′

𝑠,Φ,𝑉 (𝑢)(𝑢, 𝑢) − 𝜈(𝑞 − 1)‖𝑢‖𝑞
𝑎,𝑞 + 𝜆(𝑝 − 1)‖𝑢‖𝑝

𝑝, 𝑢 ∈ 𝑋, (3.11)

where
𝒥 ′′

𝑠,Φ,𝑉 (𝑢)(𝑢, 𝑢) =
∫︁
R𝑁

∫︁
R𝑁

[︁
𝜑′(|𝐷𝑠𝑢|)|𝐷𝑠𝑢|3 + 𝜑(|𝐷𝑠𝑢|)|𝐷𝑠𝑢|2

]︁
𝑑𝜇

+
∫︁
R𝑁

𝑉 (𝑥)
[︁
𝜑′(|𝑢|)|𝑢|3 + 𝜑(|𝑢|)|𝑢|2

]︁
𝑑𝑥.
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Observe that when 𝑢 ∈ 𝒩𝜆,𝜈 , using 3.2, we have

ℐ ′′
𝜆,𝜈(𝑢)(𝑢, 𝑢) =

∫︁
R𝑁

∫︁
R𝑁

[︁
𝜙′(|𝐷𝑠𝑢|)|𝐷𝑠𝑢|3 + (2 − 𝑞)𝜙(|𝐷𝑠𝑢|)|𝐷𝑠𝑢|2

]︁
𝑑𝜇

+
∫︁
R𝑁

𝑉 (𝑥)
[︁
𝜙′(|𝑢|)|𝑢|3 + (2 − 𝑞)𝜙(|𝑢|)|𝑢|2

]︁
𝑑𝑥 + 𝜆(𝑝 − 𝑞)‖𝑢‖𝑝

𝑝

(3.12)

or equivalently

ℐ ′′
𝜆,𝜈(𝑢)(𝑢, 𝑢) =

∫︁
R𝑁

∫︁
R𝑁

[︁
𝜙′(|𝐷𝑠𝑢|)|𝐷𝑠𝑢|3 + (2 − 𝑝)𝜙(|𝐷𝑠𝑢|)|𝐷𝑠𝑢|2

]︁
𝑑𝜇

+
∫︁
R𝑁

𝑉 (𝑥)
[︁
𝜙′(|𝑢|)|𝑢|3 + (2 − 𝑝)𝜙(|𝑢|)|𝑢|2

]︁
𝑑𝑥 + (𝑝 − 𝑞)𝜈‖𝑢‖𝑞

𝑎,𝑞.
(3.13)

From now on, we study the behavior of the fibering maps associated to the functionals
𝑅𝑛 and 𝑅𝑒. It is important to emphasize that, in the spirit of the works (CARVALHO; SILVA;

GOULART, 2021; SILVA et al., 2024a), a major challenge in the present chapter is to consider
implicitly the critical values of the fibering maps due to the non-homogeneity of the functionals
𝑅𝑛 and 𝑅𝑒. In order to overcome this obstacle, we will employ the assumption (𝜙3) to prove
that the functions 𝑡 ↦→ 𝑅𝑛(𝑡𝑢) and 𝑡 ↦→ 𝑅𝑒(𝑡𝑢) admits exactly one critical point for each
𝑢 ∈ 𝑋 ∖ {0} fixed. This property is described by the following results:

Lemma 3.2.1. Assume that (𝜙1)-(𝜙3) hold. Then, the following assertions hold:

(i) It holds that

−1 < ℓ − 2 := inf
𝑡>0

𝜙′(𝑡)𝑡
𝜙(𝑡) ≤ sup

𝑡>0

𝜙′(𝑡)𝑡
𝜙(𝑡) =: 𝑚 − 2.

Consequently, we have that

1 < ℓ ≤ 𝜙(𝑡)𝑡2

Φ(𝑡) ≤ 𝑚 < ∞, 𝑡 > 0.

(ii) The function

𝑡 ↦→ (2 − 𝑞)𝜙(𝑡) + 𝜙′(𝑡)𝑡
𝑡𝑝−2

is strictly increasing for all 𝑡 > 0.

Proof. Firstly, by using (𝜙3), we have that (ℓ − 2)(𝜙(𝑡)𝑡)′ ≤ (𝜙(𝑡)𝑡)′′𝑡 ≤ (𝑚 − 2)(𝜙(𝑡)𝑡)′.
Then, by using integration by parts, we obtain that

(ℓ − 2)𝜙(𝑡)𝑡 ≤ 𝑡(𝜙(𝑡)𝑡)′ −
∫︁ 𝑡

0
(𝜙(𝑠)𝑠)′𝑑𝑠 ≤ (𝑚 − 2)𝜙(𝑡)𝑡.

This implies that
(ℓ − 1)𝜙(𝑡)𝑡 ≤ 𝑡(𝜙(𝑡)𝑡)′ ≤ (𝑚 − 1)𝜙(𝑡)𝑡 (3.14)



46

Since 𝑡(𝜙(𝑡)𝑡)′ = 𝜙′(𝑡)𝑡2 + 𝜙(𝑡)𝑡, it follows from (3.14) that

(ℓ − 2)𝜙(𝑡)𝑡 ≤ 𝜙′(𝑡)𝑡2 ≤ (𝑚 − 2)𝜙′(𝑡)𝑡.

This shows that (𝑖) holds.
Now, we will prove that (𝑖𝑖) holds. Indeed, we define the auxiliary function

Θ(𝑡) = (2 − 𝑞)𝜙(𝑡) + 𝜙′(𝑡)𝑡
𝑡𝑝−2 .

Note that 𝜙′(𝑡)𝑡 = (𝜙(𝑡)𝑡)′ − 𝜙(𝑡). Then, we can rewrite Θ(𝑡) as

Θ(𝑡) = (1 − 𝑞)𝜙(𝑡)𝑡 + (𝜙(𝑡)𝑡)′𝑡

𝑡𝑝−1 , 𝑡 > 0.

By differentiating Θ and using (𝜙3), we deduce that

Θ′(𝑡) = 𝑡𝑝−1 [(1 − 𝑞)(𝜙(𝑡)𝑡)′ + (𝜙(𝑡)𝑡)′′𝑡 + (𝜙(𝑡)𝑡)′] − (𝑝 − 1)𝑡𝑝−2 [(1 − 𝑞)𝜙(𝑡)𝑡 + (𝜙(𝑡)𝑡)′𝑡]
𝑡2(𝑝−1)

= 𝑡𝑝−1

𝑡2(𝑝−1) [(2 − 𝑞)(𝜙(𝑡)𝑡)′ + (𝜙(𝑡)𝑡)′′𝑡 + (𝑝 − 1)(𝑞 − 1)𝜙(𝑡) − (𝑝 − 1)(𝜙(𝑡)𝑡)′]

≥ 𝑡𝑝−1

𝑡2(𝑝−1) [(ℓ − 𝑞)(𝜙(𝑡)𝑡)′ + (𝑝 − 1)(𝑞 − 1)𝜙(𝑡) − (𝑝 − 1)(𝜙(𝑡)𝑡)′] .

Since 1 < ℓ ≤ 𝑚 < 𝑞 < 𝑝, we conclude from inequality (3.14) that

Θ′(𝑡) ≥ 𝑡𝑝−1

𝑡2(𝑝−1) [(ℓ − 𝑞)(𝑚 − 1)𝜙(𝑡) + (𝑝 − 1)(𝑞 − 1)𝜙(𝑡) − (𝑝 − 1)(𝑚 − 1)𝜙(𝑡)]

≥ 𝑡𝑝−1

𝑡2(𝑝−1) [(ℓ − 𝑞)(𝑝 − 1)𝜙(𝑡) + (𝑝 − 1)(𝑞 − 1)𝜙(𝑡) − (𝑝 − 1)(𝑚 − 1)𝜙(𝑡)]

= 𝑡𝑝−1

𝑡2(𝑝−1) [(𝑞 − 𝑚)(𝑝 − 𝑚)]𝜙(𝑡) > 0.

Here, we used that (ℓ − 𝑞)(𝑝 − 1) + (𝑝 − 1)(𝑞 − 1) − (𝑝 − 1)(𝑚 − 1) = (𝑞 − 𝑚)(𝑝 − 𝑚) > 0.
Therefore, Θ is strictly increasing, which proves (𝑖𝑖).

Proposition 3.2.2. Assume that (𝜙1)-(𝜙3), (𝐻1)-(𝐻2) and (𝑉0) hold. Let 𝑢 ∈ 𝑋 ∖ {0} be

fixed. Then, the function 𝑡 ↦→ 𝑅𝑛(𝑡𝑢) satisfies the following properties:

(i) It holds that

lim
𝑡→0+

𝑅𝑛(𝑡𝑢)
𝑡𝑚−𝑞

> 0 and lim
𝑡→0+

𝑑
𝑑𝑡

𝑅𝑛(𝑡𝑢)
𝑡𝑚−𝑞−1 < 0.

(ii) It holds that

lim
𝑡→∞

𝑅𝑛(𝑡𝑢)
𝑡𝑝−𝑞

> 0 and lim
𝑡→∞

𝑑
𝑑𝑡

𝑅𝑛(𝑡𝑢)
𝑡𝑝−𝑞−1 > 0.
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Proof. (𝑖) First, since

𝑅𝑛(𝑡𝑢) =
𝑡2−𝑞 (

∫︀
R𝑁

∫︀
R𝑁 𝜙(𝑡|𝐷𝑠𝑢|)|𝐷𝑠𝑢|2 𝑑𝜇 +

∫︀
R𝑁 𝑉 (𝑥)𝜙(𝑡|𝑢|)|𝑢|2 𝑑𝑥) + 𝜆𝑡𝑝−𝑞‖𝑢‖𝑝

𝑝

‖𝑢‖𝑞
𝑞,𝑎

,

we infer that

𝑅𝑛(𝑡𝑢)
𝑡𝑚−𝑞

=
𝑡2−𝑚 (

∫︀
R𝑁

∫︀
R𝑁 𝜙(𝑡|𝐷𝑠𝑢|)|𝐷𝑠𝑢|2 𝑑𝜇 +

∫︀
R𝑁 𝜙(𝑡|𝑢|)|𝑢|2 𝑑𝑥) + 𝜆𝑡𝑝−𝑚‖𝑢‖𝑝

𝑝

‖𝑢‖𝑞
𝑞,𝑎

.

This implies that

lim
𝑡→0+

𝑅𝑛(𝑡𝑢)
𝑡𝑚−𝑞

≥ lim
𝑡→0+

𝑡2−𝑚 (
∫︀
R𝑁

∫︀
R𝑁 𝜙(𝑡|𝐷𝑠𝑢|)|𝐷𝑠𝑢|2 𝑑𝜇 +

∫︀
R𝑁 𝑉 (𝑥)𝜙(𝑡|𝑢|)|𝑢|2 𝑑𝑥)

‖𝑢‖𝑞
𝑞,𝑎

.

The last inequality together with Lemma 3.2.1 and Lemma 2.1.5 imply that

lim
𝑡→0+

𝑅𝑛(𝑡𝑢)
𝑡𝑚−𝑞

≥ lim
𝑡→0+

𝑡−𝑚 (
∫︀
R𝑁

∫︀
R𝑁 Φ(𝑡|𝐷𝑠𝑢|) 𝑑𝜇 +

∫︀
R𝑁 𝑉 (𝑥)Φ(𝑡|𝑢|) 𝑑𝑥)

‖𝑢‖𝑞
𝑞,𝑎

≥ lim
𝑡→0+

𝒥𝑠,Φ,𝑉 (𝑢)
‖𝑢‖𝑞

𝑞,𝑎
> 0.

Now, we observe that
𝑑

𝑑𝑡
𝑅𝑛(𝑡𝑢) = (2 − 𝑞)𝑡1−𝑞 (

∫︀
R𝑁

∫︀
R𝑁 𝜙(𝑡|𝐷𝑠𝑢|)|𝐷𝑠𝑢|2 𝑑𝜇 +

∫︀
R𝑁 𝑉 (𝑥)𝜙(𝑡|𝑢|)|𝑢|2 𝑑𝑥)

‖𝑢‖𝑞
𝑞,𝑎

+ 𝑡2−𝑞 (
∫︀
R𝑁

∫︀
R𝑁 𝜙′(𝑡|𝐷𝑠𝑢|)|𝐷𝑠𝑢|3𝑑𝜇 +

∫︀
R𝑁 𝑉 (𝑥)𝜙′(𝑡|𝑢|)|𝑢|3 𝑑𝑥)

‖𝑢‖𝑞
𝑞,𝑎

+
𝜆(𝑝 − 𝑞)𝑡𝑝−𝑞−1‖𝑢‖𝑝

𝑝

‖𝑢‖𝑞
𝑞,𝑎

.

(3.15)

Then,
𝑑
𝑑𝑡

𝑅𝑛(𝑡𝑢)
𝑡𝑚−𝑞−1 = (2 − 𝑞)𝑡2−𝑚 (

∫︀
R𝑁

∫︀
R𝑁 𝜙(𝑡|𝐷𝑠𝑢|)|𝐷𝑠𝑢|2 𝑑𝜇 +

∫︀
R𝑁 𝑉 (𝑥)𝜙(𝑡|𝑢|)|𝑢|2 𝑑𝑥)

‖𝑢‖𝑞
𝑞,𝑎

+ 𝑡3−𝑚 (
∫︀
R𝑁

∫︀
R𝑁 𝜙′(𝑡|𝐷𝑠𝑢|)|𝐷𝑠𝑢|3𝑑𝜇 +

∫︀
R𝑁 𝑉 (𝑥)𝜙′(𝑡|𝑢|)|𝑢|3 𝑑𝑥)

‖𝑢‖𝑞
𝑞,𝑎

+𝜆(𝑝 − 𝑞)𝑡𝑝−𝑚‖𝑢‖𝑝
𝑝

‖𝑢‖𝑞
𝑞,𝑎

.

By using Lemma 3.2.1, we deduce that
𝑑
𝑑𝑡

𝑅𝑛(𝑡𝑢)
𝑡𝑚−𝑞−1 ≤ (2 − 𝑞)𝑡2−𝑚 (

∫︀
R𝑁

∫︀
R𝑁 𝜙(𝑡|𝐷𝑠𝑢|)|𝐷𝑠𝑢|2 𝑑𝜇 +

∫︀
R𝑁 𝑉 (𝑥)𝜙(𝑡|𝑢|)|𝑢|2 𝑑𝑥)

‖𝑢‖𝑞
𝑞,𝑎

+ 𝑡2−𝑚(𝑚 − 2) (
∫︀
R𝑁

∫︀
R𝑁 𝜙(𝑡|𝐷𝑠𝑢|)|𝐷𝑠𝑢|2 𝑑𝜇 +

∫︀
R𝑁 𝑉 (𝑥)𝜙(𝑡|𝑢|)|𝑢|2 𝑑𝑥)

‖𝑢‖𝑞
𝑞,𝑎

+
𝜆(𝑝 − 𝑞)𝑡𝑝−𝑚‖𝑢‖𝑝

𝑝

‖𝑢‖𝑞
𝑞,𝑎

≤ ℓ(𝑚 − 𝑞)𝑡−𝑚 (
∫︀
R𝑁

∫︀
R𝑁 Φ(𝑡|𝐷𝑠𝑢|) 𝑑𝜇 +

∫︀
R𝑁 𝑉 (𝑥)Φ(𝑡|𝑢|) 𝑑𝑥)

‖𝑢‖𝑞
𝑞,𝑎

+𝜆(𝑝 − 𝑞)𝑡𝑝−𝑚‖𝑢‖𝑝
𝑝

‖𝑢‖𝑞
𝑞,𝑎

.
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Therefore, the last inequality jointly with Lemma 2.1.5 and (𝐻1) give us

lim
𝑡→0+

𝑑
𝑑𝑡

𝑅𝑛(𝑡𝑢)
𝑡𝑚−𝑞−1 ≤ ℓ(𝑚 − 𝑞)𝒥𝑠,Φ,𝑉 (𝑢)

‖𝑢‖𝑞
𝑞,𝑎

+ lim
𝑡→0+

𝜆(𝑝 − 𝑞)𝑡𝑝−𝑚‖𝑢‖𝑝
𝑝

‖𝑢‖𝑞
𝑞,𝑎

= ℓ(𝑚 − 𝑞)𝒥𝑠,Φ,𝑉 (𝑢)
‖𝑢‖𝑞

𝑞,𝑎
< 0.

This ends the proof of item (𝑖).
(𝑖𝑖) Similarly, taking into account Lemma 3.2.1, we obtain that

lim
𝑡→∞

𝑅𝑛(𝑡𝑢)
𝑡𝑝−𝑞

≥ lim
𝑡→∞

𝑡−𝑝 (
∫︀
R𝑁

∫︀
R𝑁 Φ(𝑡|𝐷𝑠𝑢|) 𝑑𝜇 +

∫︀
R𝑁 𝑉 (𝑥)Φ(𝑡|𝑢|) 𝑑𝑥)

‖𝑢‖𝑞
𝑞,𝑎

+
𝜆‖𝑢‖𝑝

𝑝

‖𝑢‖𝑞
𝑞,𝑎

.

Then, by Lemma 2.1.5 and (𝐻1), we conclude that

lim
𝑡→∞

𝑅𝑛(𝑡𝑢)
𝑡𝑝−𝑞

≥
𝜆‖𝑢‖𝑝

𝑝

‖𝑢‖𝑞
𝑞,𝑎

+ lim
𝑡→∞

𝑡ℓ−𝑝𝒥𝑠,Φ,𝑉 (𝑢)
‖𝑢‖𝑞

𝑞,𝑎
=

𝜆‖𝑢‖𝑝
𝑝

‖𝑢‖𝑞
𝑞,𝑎

> 0.

Finally, using the expression (3.15), (𝜙3) and proceeding as above, we infer that

lim
𝑡→∞

𝑑
𝑑𝑡

𝑅𝑛(𝑡𝑢)
𝑡𝑝−𝑞−1 ≥

𝜆(𝑝 − 𝑞)‖𝑢‖𝑝
𝑝

‖𝑢‖𝑞
𝑞,𝑎

+ lim
𝑡→∞

(ℓ − 𝑞)𝑡ℓ−𝑞𝒥𝑠,Φ,𝑉 (𝑢)
‖𝑢‖𝑞

𝑞,𝑎
=

𝜆(𝑝 − 𝑞)‖𝑢‖𝑝
𝑝

‖𝑢‖𝑞
𝑞,𝑎

> 0.

This finishes the proof.

Now, by using the previous proposition, we prove the following result:

Proposition 3.2.3. Assume that (𝜙1)-(𝜙3), (𝐻1)-(𝐻2) and (𝑉0)-(𝑉1) hold. Then, for each

𝑢 ∈ 𝑋 ∖ {0} and 𝜆 > 0, there exists and unique t(𝑢) := t𝜆(𝑢) > 0 satisfying

𝑑

𝑑𝑡
𝑅𝑛(𝑡𝑢) = 0 for 𝑡 = t(𝑢). (3.16)

Proof. First, according to Proposition 3.2.2 and Bolzano’s theorem, there exists at least one
real value t(𝑢) > 0 such that the equation (3.16) is verified. Furthermore, by expression (3.15),
we have that

𝑑

𝑑𝑡
𝑅𝑛(𝑡𝑢) = 0 for 𝑡 > 0

is equivalent to following identity

−𝜆(𝑝 − 𝑞)‖𝑢‖𝑝
𝑝 =

∫︁
R𝑁

∫︁
R𝑁

[(2 − 𝑞)𝜙(𝑡|𝐷𝑠𝑢|) + 𝜙′(𝑡|𝐷𝑠𝑢|)|𝑡𝐷𝑠𝑢|] |𝐷𝑠𝑢|2

𝑡𝑝−2 𝑑𝜇

+
∫︁
R𝑁

𝑉 (𝑥) [(2 − 𝑞)𝜙(𝑡|𝑢|) + 𝜙′(𝑡|𝑢|)|𝑡𝑢|] |𝑢|2

𝑡𝑝−2 𝑑𝑥,

which is also equivalent to

−𝜆(𝑝 − 𝑞)‖𝑢‖𝑝
𝑝 =

∫︁
R𝑁

∫︁
R𝑁

(2 − 𝑞)𝜙(𝑡|𝐷𝑠𝑢|) + 𝜙′(𝑡|𝐷𝑠𝑢|)|𝑡𝐷𝑠𝑢|
|𝑡𝐷𝑠𝑢|𝑝−2 |𝐷𝑠𝑢|𝑝𝑑𝜇

+
∫︁
R𝑁

𝑉 (𝑥)(2 − 𝑞)𝜙(𝑡|𝑢|) + 𝜙′(𝑡|𝑢|)|𝑡𝑢|
|𝑡𝑢|𝑝−2 |𝑢|𝑝𝑑𝑥.

(3.17)
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On the other side, the Lemma 3.2.1 and (𝑉0) guarantee us that the function 𝒦𝑢 : (0, ∞) → R

defined by

𝒦𝑢(𝑡) =
∫︁
R𝑁

∫︁
R𝑁

(2 − 𝑞)𝜙(|𝑡𝐷𝑠𝑢|) + 𝜙′(|𝑡𝐷𝑠𝑢|)|𝑡𝐷𝑠𝑢|
|𝑡𝐷𝑠𝑢|𝑝−2 |𝐷𝑠𝑢|𝑝𝑑𝜇

+
∫︁
R𝑁

𝑉 (𝑥)(2 − 𝑞)𝜙(|𝑡𝑢|) + 𝜙′(|𝑡𝑢|)|𝑡𝑢|
|𝑡𝑢|𝑝−2 |𝑢|𝑝𝑑𝑥

(3.18)

is strictly increasing for each 𝑢 ∈ 𝑋 ∖ {0} fixed. Moreover, it is not difficult to verify that the
hypotheses (𝜙1)-(𝜙3) and (𝐻1) imply that

lim
𝑡→0+

𝒦𝑢(𝑡) = −∞ and lim
𝑡→∞

𝒦𝑢(𝑡) = 0.

Therefore, the equation 3.17 admits only one root t(𝑢) > 0 for each 𝑢 ∈ 𝑋 ∖ {0}.

Remark 3.2.4. In the paper (SILVA et al., 2024a), the function 𝑢 ↦→ t(𝑢) is obtained explicitly,

which allows to prove the continuity directly. However, in the present work, this function is

obtained only implicitly, which requires a more delicate approach. In this case, we shall prove

the continuity by taking into account the Implicit Function Theorem.

Proposition 3.2.5. Assume that (𝜙1)-(𝜙3), (𝐻1)-(𝐻2) and (𝑉0)-(𝑉1) hold. Let 𝑢 ∈ 𝑋 ∖ {0}

be fixed. Then, the following properties are verified:

(i) There exists a constant 𝑐 := 𝑐(ℓ, 𝑚, 𝑝, 𝑞, 𝑁, 𝑠, 𝑉0, 𝜆) > 0 such that ‖t(𝑢)𝑢‖ > 𝑐 for all

𝑢 ∈ 𝑋 ∖ {0}.

(ii) The functional t : 𝑋 ∖ {0} → (0, ∞) is of class 𝐶1.

Proof. (𝑖) Firstly, we will prove that ‖t(𝑢)𝑢‖ ≥ 𝑐 for some positive constant 𝑐. By using
Proposition 3.2.3, we have that

0 = ‖t(𝑢)𝑢‖𝑞
𝑞,𝑎t(𝑢)𝑅′

𝑛(t(𝑢)𝑢)𝑢

=
∫︁
R𝑁

∫︁
R𝑁

[(2 − 𝑞)𝜙(|t(𝑢)𝐷𝑠𝑢|) + 𝜙′(|t(𝑢)𝐷𝑠𝑢|)|t(𝑢)𝐷𝑠𝑢|] |t(𝑢)𝐷𝑠𝑢|2 𝑑𝜇

+
∫︁
R𝑁

𝑉 (𝑥) [(2 − 𝑞)𝜙(|t(𝑢)𝑢|) + 𝜙′(|t(𝑢)𝑢|)|t(𝑢)𝑢|] |t(𝑢)𝑢|2 𝑑𝑥

+ 𝜆(𝑝 − 𝑞)‖t(𝑢)𝑢‖𝑝
𝑝.

(3.19)

The identity (3.19) combined with (𝜙3) yield that

0 ≤ (𝑚 − 𝑞)
(︂∫︁

R𝑁

∫︁
R𝑁

𝜙(|t(𝑢)𝐷𝑠𝑢|)|t(𝑢)𝐷𝑠𝑢|2 𝑑𝜇 +
∫︁
R𝑁

𝑉 (𝑥)𝜙(|t(𝑢)𝑢|)|t(𝑢)𝑢|2 𝑑𝑥
)︂

+ 𝜆(𝑝 − 𝑞)‖t(𝑢)𝑢‖𝑝
𝑝

= (𝑚 − 𝑞)𝒥 ′
𝑠,Φ,𝑉 (t(𝑢)𝑢)(t(𝑢)𝑢) + 𝜆(𝑝 − 𝑞)‖t(𝑢)𝑢‖𝑝

𝑝.
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Combining this inequality with the embedding 𝑋 →˓ 𝐿𝑝(R𝑁), (𝜙3) and Lemma 2.3.13, we
obtain that

‖t(𝑢)𝑢‖𝑝 ≥ ℓ(𝑞 − 𝑚)
𝜆(𝑝 − 𝑞)𝑆𝑝

𝑝
min{‖t(𝑢)𝑢‖ℓ, ‖t(𝑢)𝑢‖𝑚}. (3.20)

Since 𝜆 > 0, the assumption (𝐻1) and estimates (3.20) gives us the desired.
(𝑖𝑖𝑖) Now let us prove that t : 𝑋∖{0} → (0, ∞) is of class 𝐶1. For this end, let 𝑢0 ∈ 𝑋∖{0}

be fixed. Then, t(𝑢0) > 0 is well-defined and 𝑅′
𝑛(t(𝑢0)𝑢0)𝑢0 = 0. Considering the function

ℱ : 𝑋 ∖ {0} × (0, ∞) → R defined by ℱ(𝑣, 𝑡) = 𝑅′
𝑛(𝑡𝑣)(𝑡𝑣), it follows that

𝜕

𝜕𝑡
ℱ(𝑣, 𝑡)

⃒⃒⃒
(𝑣,𝑡)=(𝑢0,t(𝑢0))

= 𝑅′′
𝑛(t(𝑢0)𝑢0)(t(𝑢0)𝑢0, 𝑢0) + 𝑅′

𝑛(t(𝑢0)𝑢0)𝑢0

= 𝑅′′
𝑛(t(𝑢0)𝑢0)(t(𝑢0)𝑢0, t0(𝑢0)𝑢0)

t(𝑢0)
> 0.

In the last inequality was used that t(𝑢0) is a global minimum point of 𝑅𝑛(𝑡𝑢0). Hence, by
Implicit Function Theorem (DRÁBEK; MILOTA, 2013), there exists a neighborhood 𝒰 of 𝑢0 and
a 𝐶1-functional 𝜂 : 𝒰 → (0, ∞) such that

ℱ(𝑣, 𝜂(𝑣)) = 𝑅′
𝑛(𝜂(𝑣)𝑣)(𝜂(𝑣)𝑣) = 0, for all 𝑣 ∈ 𝒰 .

Since t(𝑣) is the unique real value that satisfies 𝑅′
𝑛(t(𝑣)𝑣)(t(𝑣)𝑣) = 0, we deduce that 𝜂(𝑣) =

t(𝑣) for all 𝑣 ∈ 𝒰 . Finally, we conclude from arbitrariness of 𝑢0 that t : 𝑋 ∖ {0} → (0, ∞) is
a functional of class 𝐶1. This ends the proof.

Remark 3.2.6. Let 𝑡 > 0 and 𝑢 ∈ 𝑋∖{0} be fixed. Then, using (3.6), the following assertions

hold:

(i) 𝑅𝑛(𝑡𝑢) = 𝜈 if and only if ℐ ′
𝜆,𝜈(𝑡𝑢)𝑡𝑢 = 0.

(ii) 𝑅𝑛(𝑡𝑢) > 𝜈 if and only if ℐ ′
𝜆,𝜈(𝑡𝑢)𝑡𝑢 > 0.

(iii) 𝑅𝑛(𝑡𝑢) < 𝜈 if and only if ℐ ′
𝜆,𝜈(𝑡𝑢)𝑡𝑢 < 0.

As a consequence of Propositions 3.2.2 and 3.2.3, we deduce that the function
𝑄𝑛 : (0, ∞) → R defined by 𝑄𝑛(𝑡) = 𝑅𝑛(𝑡𝑢) satisfies 𝑄′

𝑛(𝑡) = 0 if and only if 𝑡 = t(𝑢).
Furthermore, 𝑄′

𝑛(𝑡) < 0 if and only if 𝑡 ∈ (0, t(𝑢)) and 𝑄′
𝑛(𝑡) > 0 if and only if 𝑡 > t(𝑢). In

the other words, t(𝑢) is a global minimum point for 𝑄𝑛. Hence, we can consider the auxiliary
functional Λ𝑛 : 𝑋 ∖ {0} → R defined by

Λ𝑛(𝑢) = min
𝑡>0

𝑄𝑛(𝑡𝑢) = 𝑅𝑛(t(𝑢)𝑢). (3.21)
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Moreover, the following extreme parameter is well-defined

𝜈𝑛(𝜆) = inf
𝑢∈𝑋∖{0}

Λ𝑛(𝑢).

Under these conditions, we have the following result:

Proposition 3.2.7. Assume that (𝜙1)-(𝜙4), (𝐻1)-(𝐻2) and (𝑉0)-(𝑉1) hold. Then, the

functional Λ𝑛 satisfies the following properties:

(𝑖) Λ𝑛 is 0-homogeneous, that is, Λ𝑛(𝑡𝑢) = Λ𝑛(𝑢) for all 𝑡 > 0, 𝑢 ∈ 𝑋 ∖ {0}.

(𝑖𝑖) Λ𝑛 is continuous and weakly lower semicontinuous.

(𝑖𝑖𝑖) There exists 𝐶 : = 𝐶(ℓ, 𝑚, 𝑝, 𝑞, 𝑁, 𝑠, 𝑉0, 𝑎, 𝜆) > 0 such that Λ𝑛(𝑢) ≥ 𝐶 > 0 for all

𝑢 ∈ 𝑋 ∖ {0}. Furthermore, the function Λ𝑛 is unbounded from above.

(𝑖𝑣) There exists 𝑢* ∈ 𝑋 ∖ {0} such that 𝜈𝑛(𝜆) = Λ𝑛(𝑢*) > 0. In particular, 𝑢* is a critical

point for the functional Λ𝑛.

(𝑣) The function 𝑣* := t(𝑢*)𝑢* is a weakly solution of the following nonlocal elliptic problem:⎧⎪⎪⎨⎪⎪⎩
ℒ𝑠

Φ𝑢 + 𝑉 (𝑥) [2𝜙(|𝑢|) + 𝜙′(|𝑢|)|𝑢|] 𝑢 = 𝑞𝜈𝑛(𝜆)𝑎(𝑥)|𝑢|𝑞−2𝑢 − 𝑝𝜆|𝑢|𝑝−2𝑢

𝑢 ∈ 𝑊 𝑠,Φ(R𝑁),
(𝒫𝜈𝑛(𝜆))

where the operator ℒ𝑠
Φ is given by

ℒ𝑠
Φ𝑢 = 2(−ΔΦ)𝑠𝑢 + (−Δ𝜙)𝑠𝑢,

being

(−Δ𝜙)𝑠𝑢 := p.v.
∫︁
R𝑁

𝜙′(|𝐷𝑠𝑢|)|𝐷𝑠𝑢|𝐷𝑠𝑢
𝑑𝑦

|𝑥 − 𝑦|𝑛+𝑠
.

Proof. (𝑖) Let 𝑠 > 0 and 𝑢 ∈ 𝑋 ∖ {0} be fixed. We know that

𝑅′
𝑛

(︃
t(𝑢)

𝑠
(𝑠𝑢)

)︃(︃
t(𝑢)

𝑠
(𝑠𝑢)

)︃
= 0.

Then, it follows from Proposition 3.2.3 that t(𝑠𝑢) = t(𝑢)
𝑠

. Therefore,

Λ𝑛(𝑠𝑢) = 𝑅𝑛(t(𝑠𝑢)𝑠𝑢) = 𝑅𝑛(t(𝑢)𝑢) = Λ𝑛(𝑢).

This proves (𝑖).
(𝑖𝑖) First, the continuity of Λ𝑛 it follows from Proposition 3.2.5 and the continuous

embedding 𝑋 →˓ 𝐿𝑞(R𝑁). Now, we consider a sequence (𝑢𝑘)𝑘∈N ⊂ 𝑋 such that 𝑢𝑘 ⇀ 𝑢 ̸= 0.
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Since the embedding 𝑋 →˓ 𝐿𝑞(R𝑁) is compact, 𝑢𝑘 → 𝑢 a.e. in R𝑛. Defining the function
𝐻(𝑡) = (2 − 𝑞)𝜙(|𝑡|)|𝑡|2 + 𝜙′(|𝑡|)|𝑡|3, the last assertion implies that

𝐻(|𝐷𝑠𝑢𝑘|)|𝑥 − 𝑦|−𝑁 → 𝐻(|𝐷𝑠𝑢|)|𝑥 − 𝑦|−𝑁 a.e. in R𝑛 × R𝑁 .

We also have that 𝐻(𝑡) ≤ ℓ(𝑚 − 𝑞)Φ(|𝑡|) ≤ 0 by assumptions (𝜙3) and (𝐻1). Thus, by
Fatou’s Lemma, we deduce that∫︁

R𝑁

∫︁
R𝑁

𝐻(𝑡|𝐷𝑠𝑢|) 𝑑𝜇 ≥ − lim inf
𝑘→∞

(︂
−
∫︁
R𝑁

∫︁
R𝑁

𝐻(𝑡|𝐷𝑠𝑢𝑘|) 𝑑𝜇
)︂

= lim sup
𝑘→∞

∫︁
R𝑁

∫︁
R𝑁

𝐻(𝑡|𝐷𝑠𝑢𝑘|) 𝑑𝜇,

and similarly ∫︁
R𝑁

𝐻(𝑡|𝑢|) 𝑑𝑥 ≥ lim sup
𝑘→∞

∫︁
R𝑁

𝐻(𝑡|𝑢𝑘|) 𝑑𝑥,

for each 𝑡 > 0 fixed. This and the compact embedding 𝑋 →˓ 𝐿𝑟(R), for each 𝑟 ∈ (𝑚, ℓ*
𝑠),

shows that

𝑣 ↦→ 𝑅′
𝑛(𝑡𝑣)(𝑡𝑣) =

∫︀
R𝑁

∫︀
R𝑁 𝐻(𝑡|𝐷𝑠𝑣|) 𝑑𝜇 +

∫︀
R𝑁 𝑉 (𝑥)𝐻(𝑡|𝑣|) 𝑑𝑥 + 𝜆(𝑝 − 𝑞)‖𝑡𝑣‖𝑝

𝑝

‖𝑡𝑣‖𝑞
𝑞,𝑎

is weakly upper semicontinuous for each 𝑡 > 0 fixed. Hence, for 𝑘 enough larger, it holds

0 = 𝑅′
𝑛(t(𝑢)𝑢)(t(𝑢)𝑢) ≥ 𝑅′

𝑛(t(𝑢)𝑢𝑘)(t(𝑢)𝑢𝑘),

which implies that t(𝑢) ≤ t(𝑢𝑘) for 𝑘 ≫ 1, that is, 𝑢 ↦→ t(𝑢) is weakly lower semicontinuous.
Using this fact and that 𝑣 ↦→ 𝑅𝑛(𝑡𝑣) is also weakly lower semicontinuous, we conclude that

Λ𝑛(𝑢) = 𝑅𝑛(t(𝑢)𝑢) ≤ lim inf
𝑘→∞

𝑅𝑛(t(𝑢)𝑢𝑘) ≤ lim inf
𝑘→∞

𝑅𝑛(t(𝑢𝑘)𝑢𝑘) = lim inf
𝑘→∞

Λ𝑛(𝑢𝑘),

proving that Λ𝑛 is weakly lower semicontinuous.
(𝑖𝑖𝑖) Assume first that ‖t(𝑢)𝑢‖ ≤ 1. Hence, by (3.6), (𝜙3) and Lemma 2.3.13, we obtain

that
Λ𝑛(𝑢) = 𝑅𝑛(t(𝑢)𝑢) ≥

𝒥 ′
𝑠,Φ,𝑉 (t(𝑢)𝑢)(t(𝑢)𝑢)

‖t(𝑢)𝑢‖𝑞
𝑞,𝑎

≥ ℓ
min{‖t(𝑢)𝑢‖ℓ, ‖t(𝑢)𝑢‖𝑚}

‖t(𝑢)𝑢‖𝑞
𝑞,𝑎

= ℓ
‖t(𝑢)𝑢‖𝑚

‖t(𝑢)𝑢‖𝑞
𝑞,𝑎

.

(3.22)

By using assumption (𝐻2) and Hölder inequality, we have that

‖𝑣‖𝑞
𝑞,𝑎 ≤ ‖𝑎‖𝑟‖𝑣‖𝑞

𝑝, for all 𝑣 ∈ 𝐿𝑝(R𝑁), (3.23)
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where 𝑟 = (𝑝/𝑞)′. Putting together (3.22), (3.23) and the embedding 𝑋 →˓ 𝐿𝑝(R𝑁), we
deduce that

Λ𝑛(𝑢) = 𝑅𝑛(t(𝑢)𝑢) ≥ ℓ

𝑆𝑞
𝑝‖𝑎‖𝑟

‖t(𝑢)𝑢‖𝑚−𝑞 ≥ ℓ

𝑆𝑞
𝑝‖𝑎‖𝑟

=: 𝐶 > 0.

Suppose now that ‖t(𝑢)𝑢‖ > 1. Then, arguing as in (3.20), we can see that

‖t(𝑢)𝑢‖𝑝
𝑝 ≥ ℓ(𝑞 − 𝑚)

𝜆(𝑝 − 𝑞) ‖t(𝑢)𝑢‖ℓ,

which implies that

t(𝑢) ≥
[︃

(𝑞 − 𝑚)
𝜆(𝑝 − 𝑞)

‖𝑢‖ℓ

‖𝑢‖𝑝
𝑝

]︃ 1
𝑝−ℓ

. (3.24)

Moreover, by using (3.19) and (𝜙3), we have that

0 ≥ (ℓ − 𝑞)𝒥 ′
𝑠,Φ,𝑉 (t(𝑢)𝑢)(t(𝑢)𝑢) + 𝜆(𝑝 − 𝑞)‖t(𝑢)𝑢‖𝑝

𝑝. (3.25)

Thence, by using (3.24) and (3.25), we infer that

Λ𝑛(𝑢) = 𝑅𝑛(t(𝑢)𝑢) =
𝒥 ′

𝑠,Φ,𝑉 (t(𝑢)𝑢)(t(𝑢)𝑢) + 𝜆‖t(𝑢)𝑢‖𝑝
𝑝

‖t(𝑢)𝑢‖𝑞
𝑞,𝑎

≥
𝜆 (𝑝−𝑞)

(𝑞−ℓ) ‖t(𝑢)𝑢‖𝑝
𝑝 + 𝜆‖t(𝑢)𝑢‖𝑝

𝑝

‖t(𝑢)𝑢‖𝑞
𝑞,𝑎

≥
𝜆𝑝−ℓ

𝑞−ℓ

[︁
(𝑞−𝑚)
𝜆(𝑝−𝑞)

‖𝑢‖ℓ

‖𝑢‖𝑝
𝑝

]︁ 𝑝−𝑞
𝑝−ℓ ‖𝑢‖𝑝

𝑝

‖𝑢‖𝑞
𝑞,𝑎

=
𝑝−ℓ
𝑞−ℓ

[︁
(𝑞−𝑚)
(𝑝−𝑞)

]︁ 𝑝−𝑞
𝑝−ℓ 𝜆

𝑞−ℓ
𝑝−ℓ ‖𝑢‖ℓ 𝑝−𝑞

𝑝−ℓ ‖𝑢‖
𝑝 𝑞−ℓ

𝑝−ℓ
𝑝

‖𝑢‖𝑞
𝑞,𝑎

= 𝐶ℓ,𝑚,𝑝,𝑞𝜆
𝑞−ℓ
𝑝−ℓ

‖𝑢‖ℓ 𝑝−𝑞
𝑝−ℓ ‖𝑢‖

𝑝 𝑞−ℓ
𝑝−ℓ

𝑝

‖𝑢‖𝑞
𝑞,𝑎

.

Since the embedding 𝑋 →˓ 𝐿𝑝(R𝑁) is continuous, we deduce from inequality (3.23) that

Λ𝑛(𝑢) ≥ 𝐶ℓ,𝑚,𝑝,𝑞𝜆
𝑞−ℓ
𝑝−ℓ

‖𝑎‖𝑟

‖𝑢‖[ℓ 𝑝−𝑞
𝑝−ℓ

+𝑝 𝑞−ℓ
𝑝−ℓ

−𝑞]
𝑝 = 𝐶ℓ,𝑚,𝑝,𝑞𝜆

𝑞−ℓ
𝑝−ℓ

‖𝑎‖𝑟

=: 𝐶 > 0,

where have used that ℓ𝑝−𝑞
𝑝−ℓ

+ 𝑝 𝑞−ℓ
𝑝−ℓ

− 𝑞 = 0. It remains to prove that the function Λ𝑛 is
unbounded from above. Since 𝑋 is a reflexive space, there exists a sequence (𝑤𝑘)𝑘∈N in 𝑋

such that ‖𝑤𝑘‖ = 1 for all 𝑘 ∈ N and 𝑤𝑘 ⇀ 0. By item (𝑖), we can assume without loss of
generality that t(𝑤𝑘) = 1. Then, proceeding as in (3.22) and using the compact embedding
𝑋 →˓ 𝐿𝑞(R𝑛), we conclude that

Λ𝑛(𝑤𝑘) ≥ ℓ
‖t(𝑤𝑘)𝑤𝑘‖𝑚

‖t(𝑤𝑘)𝑤𝑘‖𝑞
𝑞,𝑎

≥ ℓ

‖𝑎‖∞

1
‖𝑤𝑘‖𝑞

𝑞
→ ∞, as 𝑘 → ∞.

This proves (𝑖𝑖𝑖).
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(𝑖𝑣) Since Λ𝑛 is 0-homogeneous, we can take a sequence (𝑢𝑘)𝑘∈N in 𝑋 such that

Λ𝑛(𝑢𝑘) → 𝜈𝑛(𝜆) as 𝑘 → ∞, ‖𝑢𝑘‖ = 1 and t(𝑢𝑘) = 1 for all 𝑘 ∈ N.

Due to reflexivity of 𝑋, there exists 𝑢 ∈ 𝑋 such that 𝑢𝑘 ⇀ 𝑢 in 𝑋. Then, by embedding
compact 𝑋 →˓ 𝐿𝑞(R𝑁) and the fact that ‖ · ‖ is weakly lower semicontinuous, we have that

‖𝑢‖ ≤ lim inf
𝑘→∞

‖𝑢𝑘‖ and lim
𝑘→∞

‖𝑢𝑘‖𝑞
𝑞 = ‖𝑢‖𝑞

𝑞.

We claim that 𝑢 ̸= 0. Otherwise, by using the last assertion and (3.22), we infer that

Λ𝑛(𝑢𝑘) ≥ ℓ

‖𝑎‖∞

1
‖𝑢𝑘‖𝑞

𝑞
→ ∞.

This contradiction implies that 𝑢 ̸= 0, which shows the claim above. Hence, since Λ𝑛 is weakly
lower semicontinuous, we conclude that

𝜈𝑛(𝜆) = lim
𝑘→∞

Λ𝑛(𝑢𝑘) ≥ Λ𝑛(𝑢) ≥ 𝜈𝑛(𝜆),

which proves (𝑖𝑣).
(𝑣) First, by using the fact that 𝑢* is a critical point of Λ𝑛, we have that

0 = (Λ𝑛)′(𝑢*)𝑤 = (𝑅𝑛(t(𝑢*)𝑢*))′𝑤

= 𝑅′
𝑛(t(𝑢*)𝑢*) [t′(𝑢*)𝑤] 𝑢* + 𝑅′

𝑛(t(𝑢*)𝑢*)t(𝑢*)𝑤,
(3.26)

for all 𝑤 ∈ 𝑋. Since 𝑅′
𝑛(t(𝑢*)𝑢*)𝑢* = 0 by Proposition 3.2.3, it follows from (3.26) that

𝑅′
𝑛(𝑣*)𝑤 = 𝑅′

𝑛(t(𝑢*)𝑢*)𝑤 = 0 for all 𝑤 ∈ 𝑋. Now, we consider functions ℱ , 𝒢 : 𝑋 → R

defined by

ℱ(𝑢) =
∫︁
R𝑁

∫︁
R𝑁

𝜙(|𝐷𝑠𝑢|)|𝐷𝑠𝑢|2 𝑑𝜇 +
∫︁
R𝑁

𝑉 (𝑥)𝜙(|𝑢|)|𝑢|2 𝑑𝑥 + 𝜆‖𝑢‖𝑝
𝑝

and
𝒢(𝑢) = ‖𝑢‖𝑞

𝑞,𝑎.

It is easy to check that 𝑅𝑛(𝑢) = ℱ(𝑢)
𝒢(𝑢) . Hence, using that 𝜈𝑛(𝜆) = ℱ(𝑣*)

𝒢(𝑣*) , we deduce that

0 = 𝑅′
𝑛(𝑣*)𝑤 =

[︃
ℱ(𝑣*)
𝒢(𝑣*)

]︃′

𝑤 = 𝒢(𝑣*)ℱ ′(𝑣*)𝑤 − ℱ(𝑣*)𝒢 ′(𝑣*)𝑤
𝒢(𝑣*)2

= 1
𝒢(𝑣*) [ℱ ′(𝑣*)𝑤 − 𝜈𝑛(𝜆)𝒢 ′(𝑣*)𝑤] ,
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holds for all 𝑤 ∈ 𝑋. On the other hand, by standard calculation, we obtain that

ℱ ′(𝑣*)𝑤 =
∫︁
R𝑁

∫︁
R𝑁

[2𝜙(|𝐷𝑠𝑣
*|) + 𝜙′(|𝐷𝑠𝑣

*|)|𝐷𝑠𝑣
*|] 𝐷𝑠𝑣

*𝐷𝑠𝑤 𝑑𝜇

+
∫︁
R𝑁

𝑉 (𝑥) [2𝜙(|𝑣*|) + 𝜙′(|𝑣*|)|𝑣*|] 𝑣*𝑤 𝑑𝑥 + 𝜆𝑝
∫︁
R𝑁

|𝑣*|𝑝−2𝑣*𝑤 𝑑𝑥

= 2⟨(−ΔΦ)𝑠𝑣*, 𝑤⟩ + ⟨(−Δ𝜙′)𝑠𝑣*, 𝑤⟩ +
∫︁
R𝑁

𝑉 (𝑥) [2𝜙(|𝑣*|) + 𝜙′(|𝑣*|)|𝑣*|] 𝑣*𝑤 𝑑𝑥

+ 𝜆𝑝
∫︁
R𝑁

|𝑣*|𝑝−2𝑣*𝑤 𝑑𝑥.

and
𝒢 ′(𝑣*)𝑤 = 𝑞

∫︁
R𝑁

𝑎(𝑥)|𝑣*|𝑞−2𝑣*𝑤 𝑑𝑥.

Therefore, combining the tree last identity, we conclude the proof.

In the sequel, we present similar results involving the functional 𝑅𝑒.

Proposition 3.2.8. Assume that (𝜙1)-(𝜙3), (𝐻1) and (𝑉0)-(𝑉1) hold. Then, the fibering map

𝑡 ↦→ 𝑅𝑒(𝑡𝑢) satisfies the following properties:

(i) It holds that

lim
𝑡→0+

𝑅𝑒(𝑡𝑢)
𝑡𝑚−𝑞

> 0 and lim
𝑡→0+

𝑑
𝑑𝑡

𝑅𝑒(𝑡𝑢)
𝑡𝑚−𝑞−1 < 0.

(ii) It holds that

lim
𝑡→∞

𝑅𝑒(𝑡𝑢)
𝑡𝑝−𝑞

> 0 and lim
𝑡→∞

𝑑
𝑑𝑡

𝑅𝑒(𝑡𝑢)
𝑡𝑝−𝑞−1 > 0.

Proof. The proof is similar to the Proposition 3.2.2, for this reason we omit the details.

In order to prove the uniqueness of the critical point of 𝑡 ↦→ 𝑅𝑒(𝑡𝑢) we need the following
auxiliary result:

Lemma 3.2.9. Assume that (𝜙1)-(𝜙3) holds. Then, the function

𝑡 ↦→ 𝜙(𝑡)𝑡2 − 𝑞Φ(𝑡)
𝑡𝑝

, 𝑡 > 0,

is strictly increasing.

Proof. Let 0 < 𝑠 < 𝑡 < ∞ be fixed. For each 𝜁1, 𝜁2 ∈ (0, 𝑡) such that 𝜁1 < 𝜁2, we deduce
from Lemma 3.2.1 that

[︁
(2 − 𝑞)𝜙(𝜁1)𝜁1 + 𝜙′(𝜁1)𝜁2

1

]︁
𝜁𝑝−1

2 <
[︁
(2 − 𝑞)𝜙(𝜁2)𝜁2 + 𝜙′(𝜁2)𝜁2

2

]︁
𝜁𝑝−1

1 .
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On the one hand, integrating the last inequality with respect to variable 𝜁2 over interval [0, 𝑡],
we obtain that

[︁
(2 − 𝑞)𝜙(𝜁1)𝜁1 + 𝜙′(𝜁1)𝜁2

1

]︁ 𝑡𝑝

𝑝
<
[︁
−𝑞Φ(𝑡) + 𝜙(𝑡)𝑡2

]︁
𝜁𝑝−1

1 .

On the other hand, integrating with respect to variable 𝜁1 over interval [0, 𝑠], we have that

[︁
−𝑞Φ(𝑠) + 𝜙(𝑠)𝑠2

]︁ 𝑡𝑝

𝑝
<
[︁
−𝑞Φ(𝑡) + 𝜙(𝑡)𝑡2

]︁ 𝑠𝑝

𝑝
.

This proves the desired result.

Proposition 3.2.10. Assume that (𝜙1)-(𝜙3), (𝐻1)-(𝐻2) and (𝑉0)-(𝑉1) hold. Then, for each

𝑢 ∈ 𝑋 ∖ {0}, there exists and unique s(𝑢) > 0 satisfying

𝑑

𝑑𝑡
𝑅𝑒(𝑡𝑢) = 0 for 𝑡 = s(𝑢). (3.27)

In addition, the functional s : 𝑋 ∖ {0} → (0, ∞) is of class 𝐶1 and there exists 𝑐 > 0 such

that ‖s(𝑢)𝑢‖ > 𝑐 for all 𝑢 ∈ 𝑋 ∖ {0}.

Proof. Firstly, thanks to the Proposition 3.2.8 and Bolzano’s theorem, the equation (3.27)
admits at least one root s(𝑢) > 0. On the other hand, we recall that

𝑅𝑒(𝑡𝑢) =
𝑡−𝑞𝒥𝑠,Φ,𝑉 (𝑡𝑢) + 𝜆

(︁
𝑡𝑝−𝑞

𝑝

)︁
‖𝑢‖𝑝

𝑝

1
𝑞
‖𝑢‖𝑞

𝑞,𝑎

Then, your derivative is given by

𝑑

𝑑𝑡
𝑅𝑒(𝑡𝑢) =

−𝑞𝑡−𝑞−1𝒥𝑠,Φ,𝑉 (𝑡𝑢) + 𝑡−𝑞𝒥 ′
𝑠,Φ,𝑉 (𝑡𝑢)𝑢 + 𝜆(𝑝 − 𝑞)

(︁
𝑡𝑝−𝑞−1

𝑝

)︁
‖𝑢‖𝑝

𝑝

1
𝑞
‖𝑢‖𝑞

𝑞,𝑎

= −𝑞𝑡−𝑞−1 (
∫︀
R𝑁

∫︀
R𝑁 Φ(𝑡|𝐷𝑠𝑢|) 𝑑𝜇 +

∫︀
R𝑁 𝑉 (𝑥)Φ(𝑡|𝑢|) 𝑑𝑥)

1
𝑞
‖𝑢‖𝑞

𝑞,𝑎

+ 𝑡−𝑞 (
∫︀
R𝑁

∫︀
R𝑁 𝜙(𝑡|𝐷𝑠𝑢|)|𝐷𝑠𝑢|2 𝑑𝜇 +

∫︀
R𝑁 𝑉 (𝑥)𝜙(𝑡|𝑢|)|𝑢|2 𝑑𝑥)

1
𝑞
‖𝑢‖𝑞

𝑞,𝑎

+ 𝜆(𝑝 − 𝑞)𝑡𝑝−𝑞−1

𝑝

‖𝑢‖𝑝
𝑝

1
𝑞
‖𝑢‖𝑞

𝑞,𝑎
.

Hence, the equation (3.27) is equivalent to

−𝜆
(𝑝 − 𝑞)

𝑝
‖𝑢‖𝑝

𝑝 =
∫︁
R𝑁

∫︁
R𝑁

𝜙(|𝑡𝐷𝑠𝑢|)|𝑡𝐷𝑠𝑢|2 − 𝑞Φ(|𝑡𝐷𝑠𝑢|)
|𝑡𝐷𝑠𝑢|𝑝

|𝐷𝑠𝑢|𝑝𝑑𝜇

+
∫︁
R𝑁

𝑉 (𝑥)𝜙(|𝑡𝑢|)|𝑡𝑢|2 − 𝑞Φ(|𝑡𝑢|)
|𝑡𝑢|𝑝

|𝑢|𝑝𝑑𝑥.
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But according to Lemma 3.2.9 and (𝑉0), the function ℒ𝑢 : (0, ∞) → R defined by

ℒ𝑢(𝑡) =
∫︁
R𝑁

∫︁
R𝑁

𝜙(|𝑡𝐷𝑠𝑢|)|𝑡𝐷𝑠𝑢|2 − 𝑞Φ(|𝑡𝐷𝑠𝑢|)
|𝑡𝐷𝑠𝑢|𝑝

|𝐷𝑠𝑢|𝑝𝑑𝜇

+
∫︁
R𝑁

𝑉 (𝑥)𝜙(|𝑡𝑢|)|𝑡𝑢|2 − 𝑞Φ(|𝑡𝑢|)
|𝑡𝑢|𝑝

|𝑢|𝑝𝑑𝑥

is strictly increasing. Therefore, s(𝑢) > 0 is unique for each 𝑢 ∈ 𝑋 ∖ {0}. The last assertion
about s(𝑢) follows using the same ideas discussed in the proof Proposition 3.2.5.

Remark 3.2.11. Let 𝑢 ∈ 𝑋 ∖ {0} and 𝑡 > 0 be fixed. Then, taking into account (3.7), we

have the following assertions:

(i) 𝑅𝑒(𝑡𝑢) = 𝜈 if and only if ℐ𝜆,𝜈(𝑡𝑢) = 0.

(ii) 𝑅𝑒(𝑡𝑢) > 𝜈 if and only if ℐ𝜆,𝜈(𝑡𝑢) > 0.

(iii) 𝑅𝑒(𝑡𝑢) < 𝜈 if and only if ℐ𝜆,𝜈(𝑡𝑢) < 0.

According to Proposition 3.2.8 and Proposition 3.2.10, we obtain that the function
𝑄𝑒 : (0, ∞) → R defined by 𝑄𝑒(𝑡) = 𝑅𝑒(𝑡𝑢) satisfies 𝑄′

𝑒(𝑡) = 0 if and only if 𝑡 = s(𝑢).
Moreover, 𝑄′

𝑒(𝑡) < 0 if and only if 𝑡 ∈ (0, s(𝑢)) and 𝑄′
𝑒(𝑡) > 0 if and only if 𝑡 > s(𝑢), that is,

s(𝑢) is a global minimum point for 𝑄𝑒. Therefore, we can also consider the auxiliary functional
Λ𝑒 : 𝑋 ∖ {0} → R given by

Λ𝑒(𝑢) = min
𝑡>0

𝑄𝑒(𝑡) = 𝑅𝑒(s(𝑢)𝑢). (3.28)

As consequence, the following extreme parameter is well-defined

𝜈𝑒(𝜆) = inf
𝑢∈𝑋∖{0}

Λ𝑒(𝑢).

Under these notations, a version of Proposition 3.2.7 for Λ𝑒 can be stated as follows:

Proposition 3.2.12. Assume that (𝜙1)-(𝜙4), (𝐻1)-(𝐻2) and (𝑉0)-(𝑉1) hold. Then, the

functional Λ𝑒 satisfies the following properties:

(𝑖) Λ𝑒 is 0-homogeneous, that is, Λ𝑒(𝑡𝑢) = Λ𝑒(𝑢) for all 𝑡 > 0, 𝑢 ∈ 𝑋 ∖ {0}.

(𝑖𝑖) Λ𝑒 is differentiable and weakly lower semicontinuous.

(𝑖𝑖𝑖) There exists 𝐶 : = 𝐶(ℓ, 𝑚, 𝑝, 𝑞, 𝑠, 𝑉0, 𝑎, 𝜆) > 0 such that Λ𝑒(𝑢) ≥ 𝐶 > 0 for all

𝑢 ∈ 𝑋 ∖ {0}.
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(𝑖𝑣) There exists 𝑢* ∈ 𝑋 ∖ {0} such that 𝜈𝑛(𝜆) = Λ𝑒(𝑢*) > 0. In particular, 𝑢* is a critical

point for the functional Λ𝑒.

(𝑣) The function 𝑣* := s(𝑢*)𝑢* is a weakly solution of the nonlocal elliptic problem (𝒫𝜆,𝜈)
for 𝜈 = Λ𝑒(𝑢*).

Proof. The proof of items (𝑖) − (𝑖𝑣) follows the same argument discussed in the proof of
Proposition 3.2.7.

Now, we will prove the item (𝑣). Since s(𝑢) > 0 is a critical point of 𝑄𝑒(𝑡) := 𝑅𝑒(𝑡𝑢),
we have that 0 = 𝑅′

𝑒(s(𝑢)𝑢)𝑢. On the other side, using that 𝑢* is a critical point for the
functional Λ𝑒, we obtain that

0 = Λ′
𝑒(𝑢*)𝑤 = [𝑅𝑒(s(𝑢*)𝑢*)]′𝑤 = Λ′

𝑒(s′(𝑢*)𝑢*)[s(𝑢*)𝑤]𝑢* + 𝑅′
𝑒(s(𝑢*)𝑢*)s(𝑢*)𝑤, 𝑤 ∈ 𝑋.

(3.29)
It follows from (3.29) that 𝑅′

𝑒(s(𝑢*)𝑢*)𝑤 = 0 holds for all 𝑤 ∈ 𝑋. Hence, by using the function
𝑣* = s(𝑢*)𝑢* and the fact that Λ𝑒(s(𝑢*)𝑢*) = Λ𝑒(𝑢*), we obtain the following identities

0 = 𝑅′
𝑒(𝑣*)𝑤 = 1

1
𝑞
‖𝑣*‖𝑞

𝑞,𝑎
ℐ ′

𝜆,Λ𝑒(𝑢*)(𝑣*)𝑤, for all 𝑤 ∈ 𝑋.

Here, also used an argument similar to the proof of the Proposition 3.2.7(𝑣). The last assertion
says that ℐ ′

𝜆,Λ𝑒(𝑢*)(𝑣*)𝑤 = 0 for all 𝑤 ∈ 𝑋. This ends the proof.

Next, we point out others fundamental properties regarding the nonlinear Rayleigh
quotients previously defined.

Lemma 3.2.13. Assume that (𝜙1)-(𝜙4), (𝐻1), (𝐻2) and (𝑉0)-(𝑉1) hold. Suppose also that

𝑅𝑛(𝑡𝑢) = 𝜈 for some 𝑡 > 0 and 𝑢 ∈ 𝑋 ∖ {0}. Then,

𝑅′
𝑛(𝑡𝑢)𝑢 = 𝑑

𝑑𝑡
𝑅𝑛(𝑡𝑢) = 1

𝑡

ℐ ′′
𝜆,𝜈(𝑡𝑢)(𝑡𝑢, 𝑡𝑢)

||𝑡𝑢||𝑞𝑞,𝑎
. (3.30)

Consequently, the following assertions are verified:

(i) 𝑅′
𝑛(𝑡𝑢)𝑢 > 0 if and only if ℐ ′′

𝜆,𝜈(𝑡𝑢)(𝑡𝑢, 𝑡𝑢) > 0.

(ii) 𝑅′
𝑛(𝑡𝑢)𝑢 < 0 if and only if ℐ ′′

𝜆,𝜈(𝑡𝑢)(𝑡𝑢, 𝑡𝑢) < 0.

(iii) 𝑅′
𝑛(𝑡𝑢)𝑢 = 0 if and only if ℐ ′′

𝜆,𝜈(𝑡𝑢)(𝑡𝑢, 𝑡𝑢) = 0.
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Proof. We consider the auxiliary functional ℋ : 𝑋 → R defined by ℋ(𝑢) = ||𝑢||𝑞𝑞,𝑎. By
definition (3.6), we have

ℋ(𝑡𝑢)𝑅𝑛(𝑡𝑢) = 𝒥 ′
𝑠,Φ,𝑉 (𝑡𝑢)(𝑡𝑢) + 𝜆‖𝑡𝑢‖𝑝

𝑝.

By differentiating the equation above with respect to 𝑡 and multiplying the result by 𝑡 > 0,
we obtain that

𝑡𝑅𝑛(𝑡𝑢) 𝑑

𝑑𝑡
ℋ(𝑡𝑢) + 𝑡ℋ(𝑡𝑢) 𝑑

𝑑𝑡
𝑅𝑛(𝑡𝑢) = 𝒥 ′′

𝑠,Φ,𝑉 (𝑡𝑢)(𝑡𝑢, 𝑡𝑢) + 𝒥 ′
𝑠,Φ,𝑉 (𝑡𝑢)(𝑡𝑢) + 𝜆𝑝‖𝑡𝑢‖𝑝

𝑝.

It is not hard to see that 𝑡 𝑑
𝑑𝑡

ℋ(𝑡𝑢) = 𝑞‖𝑡𝑢‖𝑞
𝑞,𝑎 for all 𝑡 > 0. This condition, along with

𝑅𝑛(𝑡𝑢) = 𝜈, ensures that

𝑡ℋ(𝑡𝑢) 𝑑

𝑑𝑡
𝑅𝑛(𝑡𝑢) = 𝒥 ′′

𝑠,Φ,𝑉 (𝑡𝑢)(𝑡𝑢, 𝑡𝑢) + 𝒥 ′
𝑠,Φ,𝑉 (𝑡𝑢)(𝑡𝑢) + 𝜆𝑝‖𝑡𝑢‖𝑝

𝑝 − 𝜈𝑞‖𝑡𝑢‖𝑞
𝑞,𝑎

= 𝒥 ′′
𝑠,Φ,𝑉 (𝑡𝑢)(𝑡𝑢, 𝑡𝑢) − 𝜈(𝑞 − 1)‖𝑡𝑢‖𝑞

𝑞,𝑎 + 𝜆(𝑝 − 1)‖𝑡𝑢‖𝑝
𝑝.

As a consequence, we have that

𝑑

𝑑𝑡
𝑅𝑛(𝑡𝑢) =

𝒥 ′′
𝑠,Φ,𝑉 (𝑡𝑢)(𝑡𝑢, 𝑡𝑢) − 𝜈(𝑞 − 1)‖𝑡𝑢‖𝑞

𝑞,𝑎 + 𝜆(𝑝 − 1)‖𝑡𝑢‖𝑝
𝑝

𝑡ℋ(𝑡𝑢)

= 1
𝑡

ℐ ′′
𝜆,𝜈(𝑡𝑢)(𝑡𝑢, 𝑡𝑢)

ℋ(𝑡𝑢) ,

where we have used the identity (3.11). This finishes the proof.

Using the same ideas discussed in the previous Lemma, we deduce a similar result for 𝑅𝑒.

Lemma 3.2.14. Assume that (𝜙1)-(𝜙4), (𝐻1), (𝐻2) and (𝑉0)-(𝑉1) hold. Suppose also that

𝑅𝑒(𝑡𝑢) = 𝜈 for some 𝑡 > 0 and 𝑢 ∈ 𝑋 ∖ {0}. Then,

𝑅′
𝑒(𝑡𝑢)𝑢 = 𝑑

𝑑𝑡
𝑅𝑒(𝑡𝑢) = 1

𝑡

ℐ ′
𝜆,𝜈(𝑡𝑢)𝑡𝑢
1
𝑞
||𝑡𝑢||𝑞𝑞,𝑎

. (3.31)

Consequently, the following assertions are verified:

(i) 𝑅′
𝑒(𝑡𝑢)𝑢 > 0 if and only if ℐ ′

𝜆,𝜈(𝑡𝑢)𝑡𝑢 > 0.

(ii) 𝑅′
𝑒(𝑡𝑢)𝑢 < 0 if and only if ℐ ′

𝜆,𝜈(𝑡𝑢)𝑡𝑢 < 0.

(iii) 𝑅′
𝑒(𝑡𝑢)𝑢 = 0 if and only if ℐ ′

𝜆,𝜈(𝑡𝑢)𝑡𝑢 = 0.

The next result establishes a relationship between the extremal values 𝜈𝑛 and 𝜈𝑒.

Proposition 3.2.15. Assume that (𝜙1)-(𝜙4), (𝐻1), (𝐻2) and (𝑉0)-(𝑉1) hold. Then, the

following assertions are verified:
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(i) It holds that t(𝑢) < s(𝑢) for all 𝑢 ∈ 𝑋 ∖ {0}.

(ii) It holds that Λ𝑛(𝑢) < Λ𝑒(𝑢) for all 𝑢 ∈ 𝑋 ∖ {0}.

(iii) It holds that 0 < 𝜈𝑛(𝜆) < 𝜈𝑒(𝜆) for all 𝜆 > 0.

Proof. By (3.6), (3.7), and straightforward calculation, we deduce that

𝑅𝑛(𝑡𝑢) − 𝑅𝑒(𝑡𝑢) =
𝑡−𝑞𝒥 ′

𝑠,Φ,𝑉 (𝑡𝑢)(𝑡𝑢) + 𝜆𝑡𝑝−𝑞‖𝑢‖𝑝
𝑝

‖𝑢‖𝑞
𝑞,𝑎

−
𝑡−𝑞𝒥𝑠,Φ,𝑉 (𝑡𝑢) + 𝜆

𝑝
𝑡𝑝−𝑞‖𝑢‖𝑝

𝑝

1
𝑞
‖𝑢‖𝑞

𝑞,𝑎

= 1
𝑞

𝑡−𝑞𝒥 ′
𝑠,Φ,𝑉 (𝑡𝑢)(𝑡𝑢) + 𝜆𝑡𝑝−𝑞‖𝑢‖𝑝

𝑝 − 𝑞𝑡−𝑞𝒥𝑠,Φ,𝑉 (𝑡𝑢) − 𝜆 𝑞
𝑝
𝑡𝑝−𝑞‖𝑢‖𝑝

𝑝

1
𝑞
‖𝑢‖𝑞

𝑞,𝑎

= 𝑡

𝑞

𝑡−𝑞𝒥 ′
𝑠,Φ,𝑉 (𝑡𝑢)𝑢 − 𝑞𝑡−𝑞−1𝒥𝑠,Φ,𝑉 (𝑡𝑢) + 𝜆𝑝−𝑞

𝑝
𝑡𝑝−𝑞−1‖𝑢‖𝑝

𝑝

1
𝑞
‖𝑢‖𝑞

𝑞,𝑎
.

From where it follows that

𝑅𝑛(𝑡𝑢) − 𝑅𝑒(𝑡𝑢) = 𝑡

𝑞

𝑑

𝑑𝑡
𝑅𝑒(𝑡𝑢).

for all 𝑡 > 0 and 𝑢 ∈ 𝑋 ∖ {0}. This identity implies that 𝑅𝑛(𝑡𝑢) < 𝑅𝑒(𝑡𝑢) for all 𝑡 ∈ (0, s(𝑢))

and 𝑅𝑛(𝑡𝑢) > 𝑅𝑒(𝑡𝑢) for all 𝑡 ∈ (s(𝑢), ∞). Moreover, 𝑅𝑛(𝑡𝑢) = 𝑅𝑒(𝑡𝑢) if and only if 𝑡 = s(𝑢).
As a consequence, we obtain that t(𝑢) < s(𝑢) for all 𝑢 ∈ 𝑋 ∖ {0}. Indeed, if t(𝑢) > s(𝑢) for
some 𝑢 ∈ 𝑋 ∖ {0}, then

𝑅𝑛(s(𝑢)𝑢) ≥ 𝑅𝑛(t(𝑢)𝑢) > 𝑅𝑒(t(𝑢)𝑢) ≥ 𝑅𝑒(s(𝑢)𝑢).

In the case which t(𝑢) = s(𝑢), we obtain that 𝑅𝑛(t(𝑢)𝑢) = 𝑅𝑒(t(𝑢)𝑢) > 𝑅𝑛(𝑡𝑢) for all
𝑡 < t(𝑢). In both cases we have a contradiction, which proves the item (𝑖). Now, using the
item (𝑖), we obtain that

Λ𝑛(𝑢) = 𝑅𝑛(t(𝑢)𝑢) < 𝑅𝑛(s(𝑢)𝑢) = 𝑅𝑒(s(𝑢)𝑢) = Λ𝑒(𝑢), for all 𝑢 ∈ 𝑋 ∖ {0}.

This proves the item (𝑖𝑖). Finally, in view to Proposition 3.2.12, there exists 𝑢* ∈ 𝑋 ∖ {0}

such that Λ𝑒(𝑢*) = 𝜈𝑒(𝜆). Therefore, it follows from (𝑖𝑖) that

𝜈𝑛(𝜆) ≤ Λ𝑛(𝑢*) < Λ𝑒(𝑢*) = 𝜈𝑒(𝜆).

This finishes the proof.

Our objective now is to describe the behavior of the fibering map 𝛾𝑢(𝑡) = ℐ𝜆,𝜈(𝑡𝑢) according
to the 𝜈 parameter. For this purpose, we consider the following open set:

𝒰𝜆,𝜈 = {𝑢 ∈ 𝑋 ∖ {0} : 𝜈 > Λ𝑛(𝑢)}.
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This set plays an important role in the application of Nehari method. Precisely, we prove that
for any function 𝑢 ∈ 𝒰𝜆,𝜈 it is projections onto the Nehari manifolds 𝒩 ±

𝜆,𝜈 are unique, as stated
in the following proposition.

Proposition 3.2.16. Assume that (𝜙1)-(𝜙4), (𝐻1)-(𝐻2) and (𝑉0)-(𝑉1) hold. Suppose also

that 𝜈 > 𝜈𝑛(𝜆) . Then, for each 𝑢 ∈ 𝒰𝜆,𝜈 , the fibering map 𝛾𝑢(𝑡) = ℐ𝜆,𝜈(𝑡𝑢) has exactly two

critical points t−
𝜈 (𝑢), t+

𝜈 (𝑢) > 0 such that t−
𝜈 (𝑢) < t(𝑢) < t+

𝜈 (𝑢). Furthermore, we have the

following properties:

(i) It is hold that 𝑡−
𝜈 (𝑢) is a local maximum point for the fibering map 𝛾𝑢 and t−

𝜈 (𝑢)𝑢 ∈ 𝒩 −
𝜆,𝜈 .

(ii) It is hold that t+
𝜈 (𝑢) is a local minimum point for the fibering map 𝛾𝑢 and t+

𝜈 (𝑢)𝑢 ∈ 𝒩 +
𝜆,𝜈 .

Furthermore, if 𝜈 > Λ𝑒(𝑢), then t+
𝜈 (𝑢) is a global minimum point for 𝛾𝑢.

(iii) The functionals 𝑢 ↦→ t+
𝜈 (𝑢) and 𝑢 ↦→ t−

𝜈 (𝑢) belong to 𝐶1(𝒰𝜆,𝜈 ,R).

Proof. Let 𝑢 ∈ 𝑋 ∖ {0} be a fixed. Since 𝜈 > Λ𝑛(𝑢), we have that

𝜈 > Λ𝑛(𝑢) = min
𝑡>0

𝑄𝑛(𝑡) = 𝑅𝑛(t(𝑢)𝑢). (3.32)

By Proposition 3.2.2, the following limits

lim
𝑡→0+

𝑄𝑛(𝑡) = lim
𝑡→∞

𝑄𝑛(𝑡) = ∞. (3.33)

hold true. Taking into account (3.32) and (3.33), we deduce that the identity 𝑄𝑛(𝑡) =

𝑅𝑛(𝑡𝑢) = 𝜈 admits exactly two roots in the following form 0 < t−
𝜈 (𝑢) < t(𝑢) < t+

𝜈 (𝑢).
By using Remark 3.2.6, the roots t−

𝜈 (𝑢) and t+
𝜈 (𝑢) are critical points for the fibering map 𝛾𝑢.

Moreover,
𝑄′

𝑛(t−
𝜈 ) < 0 and 𝑄′

𝑛(t+
𝜈 ) > 0. (3.34)

Hence, by using(3.34) and Lemma 3.2.13, we also have that

ℐ ′′(t−(𝑢)𝑢)(t−(𝑢)𝑢, t−(𝑢)𝑢) < 0 and ℐ ′′(t+(𝑢)𝑢)(t+(𝑢)𝑢, t+(𝑢)𝑢) > 0. (3.35)

which proves that t+
𝜈 (𝑢)𝑢 ∈ 𝒩 +

𝜆,𝜈 and t−
𝜈 (𝑢)𝑢 ∈ 𝒩 −

𝜆,𝜈 . The first inequality in (3.35) implies
that 𝛾′′

𝑢(t−
𝜈 (𝑢)) < 0. As a consequence, t−(𝑢) is a local maximum point for 𝛾𝑢. Similarly, the

second inequality in (3.35) proves that t+(𝑢) is a local minimum point for 𝛾𝑢. Now, assume
that 𝜈 > Λ𝑒(𝑢). Then,

𝑄𝑛(t+
𝜈 (𝑢)) = 𝜈 > Λ𝑒(𝑢) = 𝑅𝑒(s(𝑢)𝑢) = 𝑅𝑛(s(𝑢)𝑢) = 𝑄𝑛(s(𝑢)).



62

This fact and Proposition 3.2.15 imply that s(𝑢) < t+
𝜈 (𝑢) for all 𝑢 ∈ 𝑋 ∖ {0} since 𝑄𝑛 it is

strictly increasing in (t(𝑢), ∞). As consequence, 𝑅𝑒(t+
𝜈 (𝑢)𝑢) < 𝑅𝑛(t+

𝜈 (𝑢)𝑢) = 𝜈. Moreover,
it is not hard to see that 𝜈 ↦→ ℐ𝜆,𝜈(𝑢) is a strictly decreasing function for each 𝜆 > 0 and
𝑢 ∈ 𝑋 ∖ {0} fixed. Hence, these statements and Remark 3.2.11 give us

ℐ𝜆,𝜈(t+
𝜈 (𝑢)𝑢) < ℐ𝜆,𝑅𝑒(t+

𝜈 (𝑢)𝑢)(t+
𝜈 (𝑢)𝑢) = 0,

proving that t+
𝜈 (𝑢) is a global minimum point for 𝛾𝑢 for each 𝜈 > Λ𝑒(𝑢). This ends the proof

of items (𝑖) and (𝑖𝑖).
Now, let us prove the (𝑖𝑖𝑖). We consider the function ℱ± : (0, ∞)×(𝑋 ∖{0}) → R defined

by ℱ±(𝑡, 𝑢) = ℐ ′
𝜆,𝜈(𝑡𝑢)𝑡𝑢. Note that ℱ±(𝑡, 𝑢) = 0 if and only if 𝑡𝑢 ∈ 𝒩𝜆,𝜈 . Furthermore, we

have that
𝜕

𝜕𝑡
ℱ±(𝑡, 𝑢) = 1

𝑡
(ℐ ′′

𝜆,𝜈(𝑡𝑢)(𝑡𝑢, 𝑡𝑢) + ℐ ′
𝜆,𝜈(𝑡𝑢)𝑡𝑢) ̸= 0,

for all (𝑡, 𝑢) ∈ (0, ∞) × (𝑋 ∖ {0}) such that 𝑡𝑢 ∈ 𝒩 ±
𝜆,𝜈 . Therefore, it follows from Implicit

Function Theorem that functions 𝑢 ↦→ t+
𝜈 (𝑢) and 𝑢 ↦→ t−

𝜈 (𝑢) belong to 𝐶1(𝒰𝜆,𝜈 ,R). This
finishes the proof.

Remark 3.2.17. It is important to mention that Proposition 3.2.16 provides us that 𝒩𝜆,𝜈 =

𝒩 +
𝜆,𝜈 ∪ 𝒩 −

𝜆,𝜈 ∪ 𝒩 0
𝜆,𝜈 where 𝒩 +

𝜆,𝜈 and 𝒩 −
𝜆,𝜈 are nonempty sets whenever 𝜈 > 𝜈𝑛(𝜆) and 𝜆 > 0.

In the other words, the fibering map 𝑡 ↦→ 𝛾𝑢(𝑡) = ℐ𝜆,𝜈(𝑡𝑢) always intersects the Nehari set in

two distinct points.

In the next result it is established that the fibering map 𝛾𝑢 does not intercept the Nehari
set in the case 𝜈 < Λ𝑛(𝑢) and intercept it only in a point of 𝒩 0

𝜈,𝜆 taking into account the
extremal case 𝜈 = Λ𝑛(𝑢).

Proposition 3.2.18. Assume that (𝜙1)-(𝜙4), (𝐻1)-(𝐻2) and (𝑉0)-(𝑉1) hold. Suppose also

that 𝑢 ∈ 𝑋 ∖ {0}. Then, the following assertions are verified:

(i) Assume that 𝜈 < Λ𝑛(𝑢). Then, the fibering map 𝛾𝑢 does not admit any critical point,

that is, 𝑡𝑢 /∈ 𝒩𝜆,𝜈 for all 𝑡 > 0.

(ii) Assume that 𝜈 = Λ𝑛(𝑢). Then, the fibering map 𝛾𝑢(𝑡) = ℐ𝜆,𝜈(𝑡𝑢) has a unique critical

point t(𝑢) > 0 such that t(𝑢)𝑢 ∈ 𝒩 0
𝜆,𝜈 .

Proof. (𝑖) Since 𝜈 < Λ𝑛(𝑢) = 𝑄(t(𝑢)) = 𝑅𝑛(t(𝑢)𝑢) and t(𝑢) is a global minimum point
for 𝑄𝑛, it follows that 𝑄𝑛(𝑡) = 𝜈 does not admit any root, which is equivalent to say that
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𝛾′
𝑢(𝑡) = ℐ ′

𝜆,𝜈(𝑡𝑢)𝑢 ̸= 0 for all 𝑡 > 0 and for each 𝑢 ∈ 𝑋 ∖ {0} by Remark 3.2.6. Consequently,
𝑡𝑢 /∈ 𝒩𝜆,𝜈 for all 𝑡 > 0, proving the item (𝑖).

(𝑖𝑖) Assume that 𝜈 = Λ𝑛(𝑢) = 𝑄𝑛(t(𝑢)). Then, 𝛾′
𝑢(t(𝑢)) = ℐ ′

𝜆,𝜈(t(𝑢)𝑢)𝑢 = 0 by
Remark 3.2.6. Moreover, for each 𝑢 ∈ 𝑋 ∖ {0}, we also have that 𝑄′

𝑛(t(𝑢)) = 0 since
t(𝑢) > 0 is the unique critical point of 𝑄𝑛. Hence, due to Lemma 3.2.13, we conclude that
ℐ ′′

𝜆,𝜈(t(𝑢)𝑢)(t(𝑢)𝑢, t(𝑢)𝑢) = 0, that is, t(𝑢)𝑢 ∈ 𝒩 0
𝜆,𝜈 . This finishes the proof.

Lemma 3.2.19. Assume that (𝜙1)-(𝜙4), (𝐻1)-(𝐻2) and (𝑉0)-(𝑉1) hold. Suppose also that

𝜈 > 𝜈𝑛(𝜆) and 𝜆 > 0. Then, the sets 𝒩 +
𝜆,𝜈 and 𝒩 −

𝜆,𝜈 are 𝐶1-submanifolds in 𝑋.

Proof. Let 𝑢 ∈ 𝒰𝜆,𝜈 be a fixed function. Then, by Proposition 3.2.16, there exist t−
𝜈 (𝑢) < t+

𝜈 (𝑢)

such that t−
𝜈 (𝑢)𝑢 ∈ 𝒩 −

𝜆,𝜈 and t+
𝜈 (𝑢)𝑢 ∈ 𝒩 +

𝜆,𝜈 . Consequently, the sets 𝒩 −
𝜆,𝜈 and 𝒩 +

𝜆,𝜈 are
nonempty. We then define the 𝐶1-functional 𝐹𝜆,𝜈 : 𝑋 → R defined by 𝐹𝜆,𝜈(𝑢) = ℐ ′

𝜆,𝜈(𝑢)𝑢.
By assumptions (𝜙1)-(𝜙4), we have that 𝐹𝜆,𝜈 is of class 𝐶1 and it is derivative is given by

𝐹 ′
𝜆,𝜈(𝑢)𝑣 = ℐ ′′

𝜆,𝜈(𝑢)(𝑢, 𝑣) + ℐ ′
𝜆,𝜈(𝑢)𝑣, 𝑢, 𝑣 ∈ 𝑋.

In particular, 𝐹 ′
𝜆,𝜈(𝑢)𝑢 = ℐ ′′

𝜆,𝜈(𝑢)(𝑢, 𝑢) ̸= 0 for all 𝑢 ∈ 𝒩 −
𝜆,𝜈 ∪ 𝒩 +

𝜆,𝜈 . Namely, zero is a regular
value to 𝐹𝜆,𝜈 restrict to sets 𝒩 ±

𝜆,𝜈 . Therefore, the desired results are obtained from the Implicit
Function Theorem (DRÁBEK; MILOTA, 2013).

Using the uniqueness of projection on the Nehari set, we can prove that 𝒩 0
𝜆,𝜈 is nonempty

for all 𝜈 ≥ 𝜈𝑛(𝜆). Moreover, Nehari set 𝒩𝜆,𝜈 is empty for all 𝜈 ∈ (−∞, 𝜈𝑛(𝜆)). Summarizing,
we have the following result:

Lemma 3.2.20. Assume that (𝜙1)-(𝜙4), (𝐻1)-(𝐻2) and (𝑉0)-(𝑉1) hold. Then, the following

assertions hold:

(i) The Nehari set 𝒩 0
𝜆,𝜈 is nonempty for all 𝜈 ∈ [𝜈𝑛(𝜆), ∞) and 𝜆 > 0.

(ii) Furthermore, 𝒩𝜆,𝜈 is empty for all 𝜈 ∈ (−∞, 𝜈𝑛(𝜆)) and 𝜆 > 0.

Proof. (𝑖) Initially, we consider 𝜈 = 𝜈𝑛(𝜆). In this case, by Proposition 3.2.7, there exists
𝑢 ∈ 𝑋 ∖ {0} such that 𝜈 = 𝜈𝑛 = Λ𝑛(𝑢). Then, the Proposition 3.2.18 guarantee that there
exists a unique t(𝑢) > 0 in such way that t(𝑢)𝑢 ∈ 𝒩 0

𝜆,𝜈 . Now, we assume that 𝜈 > 𝜈𝑛(𝜆). Using
once more the Proposition 3.2.7, we obtain that Λ𝑛(𝑢) = 𝜈𝑛(𝜆) < 𝜈 for some 𝑢 ∈ 𝑋 ∖ {0}.
On the other hand, since by Proposition 3.2.13 the function Λ𝑛 is unbounded from above,
there exists a sequence (𝑣𝑘)𝑘∈N ⊂ 𝑋 ∖{0} such that Λ𝑛(𝑣𝑘) → ∞ as 𝑘 → ∞. We can assume
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without any loss of generality that Λ𝑛(𝑣𝑘) > 𝜈 for all 𝑘 ∈ N. In this case, we have that 𝑢 ̸= 𝛼𝑣𝑘

for all 𝛼 > 0 and 𝑘 ∈ N. In fact, we assume that 𝑢 ̸= 𝛼𝑣𝑘 for some 𝛼. Then, using that Λ𝑛

is 0-homogeneous, we obtain that Λ𝑛(𝑢) = Λ𝑛(𝛼𝑣𝑘) = Λ𝑛(𝑣𝑘) > 𝜈, which is a contradiction.
Thereby, we obtain that 𝑡𝑢 + (1 − 𝑡)𝑣𝑘 ̸= 0 for each 𝑡 ∈ [0, 1]. Now, we consider the auxiliary
function 𝑓 : [0, 1] → R defined by 𝑓(𝑡) = Λ𝑛(𝑡𝑢 + (1 − 𝑡)𝑣𝑘). Since Λ𝑛 is a continuous
function, it follows that 𝑓 is also continuous. Moreover, observe that 𝑓(0) = Λ𝑛(𝑢) < 𝜈 and
𝑓(1) = Λ𝑛(𝑣𝑘) > 𝜈. Applying the Intermediate Value Theorem, we obtain 𝑡0 ∈ (0, 1) such that
Λ𝑛(𝑡0𝑢 + (1 − 𝑡0)𝑣𝑘) = 𝜈. We then consider the function 𝑤𝑘 = 𝑡0𝑢 + (1 − 𝑡0)𝑣𝑘. Therefore, by
Proposition 3.2.18, there exists a unique t(𝑤𝑘) > 0 in such way t(𝑤𝑘)𝑤𝑘 ∈ 𝒩 0

𝜆,𝜈 . This proves
that 𝒩 0

𝜆,𝜈 is nonempty for all 𝜈 ∈ [𝜈𝑛(𝜆), ∞).
(𝑖𝑖) Assume by contradiction that there exists 𝑢 ∈ 𝒩𝜆,𝜈 for some 𝜆 > 0 and 𝜈 ∈

(−∞, 𝜈𝑛(𝜆)). Thus, by Remark 3.2.6, we have that 𝑅𝑛(𝑢) = 𝜈. On the other hand, we
deduce from (3.10) that

𝜈 < 𝜈𝑛(𝜆) = inf
𝑤∈𝑋∖{0}

inf
𝑡>0

𝑅𝑛(𝑡𝑤) ≤ inf
𝑡>0

𝑅𝑛(𝑡𝑢) ≤ 𝑅𝑛(𝑢),

which is a contradiction. Therefore, 𝒩𝜆,𝜈 = ∅ for each 𝜈 ∈ (−∞, 𝜈𝑛(𝜆)) and 𝜆 > 0. This
finishes the proof.

Proposition 3.2.21. Assume that (𝜙1)-(𝜙4), (𝐻1)-(𝐻2) and (𝑉0)-(𝑉1) hold. Suppose also

that 𝜈 > 𝜈𝑛(𝜆) and 𝜆 > 0. Then, the following assertions are satisfied:

(i) There exist 𝑐𝜈 > 0 such that ‖𝑢‖ ≥ 𝑐𝜈 for all 𝑢 ∈ 𝒩𝜆,𝜈 .

(ii) The Nehari manifold 𝒩𝜆,𝜈 and 𝒩 0
𝜆,𝜈 are closed sets.

Proof. (𝑖) Let 𝑢 ∈ 𝒩𝜆,𝜈 be fixed. By definition of Nehari manifold (3.2),

𝜈||𝑢||𝑞𝑞,𝑎 = 𝒥 ′
𝑠,Φ,𝑉 (𝑢)𝑢 + 𝜆||𝑢||𝑝𝑝.

Now, using the Lemma 2.3.13, continuous embedding 𝑋 →˓ 𝐿𝑟(R𝑁) for all 𝑟 ∈ [𝑚, ℓ*
𝑠) and

the last identity, we have

ℓ min{‖𝑢‖ℓ, ‖𝑢‖𝑚} ≤ ℓ𝒥𝑠,Φ,𝑉 (𝑢) ≤ 𝜈||𝑢||𝑞𝑞,𝑎 ≤ 𝜈𝑆𝑞
𝑞 ‖𝑎‖∞‖𝑢‖𝑞.

As a consequence, we deduce that

‖𝑢‖ ≥ 𝑐𝜈 := min

⎧⎨⎩
(︃

ℓ

𝜈𝑆𝑞
𝑞 ‖𝑎‖∞

)︃ 1
𝑞−ℓ

,

(︃
ℓ

𝜈𝑆𝑞
𝑞 ‖𝑎‖∞

)︃ 1
𝑞−𝑚

⎫⎬⎭ . (3.36)
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This proves item (𝑖).
(𝑖𝑖) By item (𝑖), the Nehari manifold 𝒩𝜆,𝜈 is away from zero. Hence, by using a standard

argument, 𝒩𝜆,𝜈 is a closed set. Now, let us prove that 𝒩 0
𝜆,𝜈 is also closed. Consider a sequence

(𝑢𝑘)𝑘∈N in 𝒩 0
𝜆,𝜈 such that 𝑢𝑘 → 𝑢 in 𝑋 for some 𝑢 ∈ 𝑋. Since 𝒩𝜆,𝜈 is closed, we have that

𝑢 ̸= 0 and 𝑢 ∈ 𝒩𝜆,𝜈 . Finally, using the strong converge and the fact that ℐ𝜆,𝜈 ∈ 𝐶2(𝑋,R),
we conclude that

ℐ ′′
𝜆,𝜈(𝑢)(𝑢, 𝑢) = 𝒥 ′′

𝑠,Φ,𝑉 (𝑢)(𝑢, 𝑢)−𝜈(𝑞 −1)‖𝑢‖|𝑞𝑞,𝑎 +𝜆(𝑝−1)‖𝑢‖𝑝
𝑝 = lim

𝑘→∞
ℐ ′′

𝜆,𝜈(𝑢𝑘)(𝑢𝑘, 𝑢𝑘) = 0.

Therefore, 𝑢 ∈ 𝒩 0
𝜆,𝜈 , which proves that 𝒩 0

𝜆,𝜈 is closed. This ends the proof.

Remark 3.2.22. There holds that any sequence (𝑢𝑘)𝑘∈N in the Nehari set 𝒩𝜆,𝜈 such that

𝑢𝑘 ⇀ 𝑢 for some 𝑢 ∈ 𝑋 satisfies 𝑢 ̸= 0. Indeed, arguing by contradiction and assuming

that 𝑢𝑘 ⇀ 0, it follows from the compact embeddings 𝑋 →˓ 𝐿𝑟(R𝑁), 𝑟 ∈ [2, 2*
𝑠), that

‖𝑢𝑘‖𝑞
𝑞,𝑎, ‖𝑢𝑘‖𝑝

𝑝 → 0 as 𝑘 → ∞. In view of Lemma 2.3.13 and Proposition 3.2.21 (𝑖), we have

that

ℓ min{𝑐ℓ
𝜈 , 𝑐𝑚

𝜈 } ≤ ℓ min{‖𝑢‖ℓ, ‖𝑢‖𝑚}ℓ𝒥𝑠,Φ,𝑉 (𝑢) ≤ 𝒥 ′
𝑠,Φ,𝑉 (𝑢)𝑢 = 𝜈‖𝑢𝑘‖𝑞

𝑞,𝑎 − 𝜆‖𝑢𝑘‖𝑝
𝑝 → 0.

This is a contradiction, proving that 𝑢 ̸= 0 as was mentioned before.

Lemma 3.2.23. Assume that (𝜙1)-(𝜙4), (𝐻1)-(𝐻2) and (𝑉0)-(𝑉1) hold. Suppose also that

𝜈 > 𝜈𝑛(𝜆) and 𝜆 > 0 . Then, the following assertions are satisfied:

(i) It holds that 𝒩 −
𝜆,𝜈 ⊆ 𝒩 −

𝜆,𝜈 ∪ 𝒩 0
𝜆,𝜈 .

(ii) It holds that 𝒩 +
𝜆,𝜈 ⊆ 𝒩 +

𝜆,𝜈 ∪ 𝒩 0
𝜆,𝜈 .

Proof. Firstly, we shall consider the Nehari set 𝒩 −
𝜆,𝜈 . We consider a sequence (𝑢𝑘)𝑘 ⊂ 𝒩 −

𝜆,𝜈

such that 𝑢𝑘 → 𝑢 in 𝑋 holds for some 𝑢 ∈ 𝑋. Using the fact that 𝒩𝜆,𝜈 is closed, we obtain
that 𝑢 is in 𝒩𝜆,𝜈 . Furthermore, using that 𝑢𝑘 ∈ 𝒩 −

𝜆,𝜈 , the following identity holds

ℐ ′′
𝜆,𝜈(𝑢𝑘)(𝑢𝑘, 𝑢𝑘) = 𝒥 ′′

𝑠,Φ,𝑉 (𝑢𝑘)(𝑢𝑘, 𝑢𝑘) − 𝜈(𝑞 − 1)‖𝑢𝑘‖|𝑞𝑞,𝑎 + 𝜆(𝑝 − 1)‖𝑢𝑘‖𝑝
𝑝 < 0.

Since ℐ𝜆,𝜈 is of class 𝐶2, taking the limit as 𝑘 → ∞ in the last inequality and taking, we
conclude that ℐ ′′

𝜆,𝜈(𝑢)(𝑢, 𝑢) ≤ 0. Namely, 𝑢 ∈ 𝒩 −
𝜆,𝜈 ∪ 𝒩 0

𝜆,𝜈 . The proof of item (𝑖𝑖) follows the
same ideas.

It is important to emphasize that the inclusion 𝒩 ±
𝜆,𝜇 ⊆ 𝒩 ±

𝜆,𝜇 ∪ 𝒩 0
𝜆,𝜇 must not be strict in

order to achieve our proposed objectives. For the reason, the hypothesis (𝜙3) is necessary.
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Proposition 3.2.24. Assume that (𝜙1)-(𝜙4), (𝐻1), (𝐻2) and (𝑉0)-(𝑉1) hold. Suppose also

𝜈 > 𝜈𝑛(𝜆) and 𝜆 > 0. Then, 𝒩 ±
𝜆,𝜈 = 𝒩 ±

𝜆,𝜈 ∪ 𝒩 0
𝜆,𝜈 .

Proof. By Lemma 3.2.23, it remains to prove that 𝒩 ±
𝜆,𝜈 ∪ 𝒩 0

𝜆,𝜈 ⊆ 𝒩 ±
𝜆,𝜈 . Since 𝒩 ±

𝜆,𝜈 ⊂ 𝒩 ±
𝜆,𝜈 , it

is sufficient to show that 𝒩 0
𝜆,𝜈 ⊂ 𝒩 ±

𝜆,𝜈 . Let 𝑢 be any fixed function in 𝒩 0
𝜆,𝜈 . Then, by Lemma

3.2.13, we have that t(𝑢) = 1. In this case, we obtain

𝑅𝑛(𝑢) = 𝜈 and 𝑑

𝑑𝑡
𝑅𝑛(𝑡𝑢)

⃒⃒⃒⃒
𝑡=1

= 0. (3.37)

We recall that
𝑑

𝑑𝑡
𝑅𝑛(𝑡𝑢) = (2 − 𝑞)𝑡1−𝑞 (

∫︀
R𝑁

∫︀
R𝑁 𝜙(𝑡|𝐷𝑠𝑢|)|𝐷𝑠𝑢|2 𝑑𝜇 +

∫︀
R𝑁 𝑉 (𝑥)𝜙(𝑡|𝑢|)|𝑢|2 𝑑𝑥)

‖𝑢‖𝑞
𝑞,𝑎

+ 𝑡2−𝑞 (
∫︀
R𝑁

∫︀
R𝑁 𝜙′(𝑡|𝐷𝑠𝑢|)|𝐷𝑠𝑢|3𝑑𝜇 +

∫︀
R𝑁 𝑉 (𝑥)𝜙′(𝑡|𝑢|)|𝑢|3 𝑑𝑥)

‖𝑢‖𝑞
𝑞,𝑎

+
𝜆(𝑝 − 𝑞)𝑡𝑝−𝑞−1‖𝑢‖𝑝

𝑝

‖𝑢‖𝑞
𝑞,𝑎

.

Then, 𝑑
𝑑𝑡

𝑅𝑛(𝑡𝑢)
⃒⃒⃒
𝑡=1

= 0 if, and only if,

𝜆(𝑝 − 𝑞)‖𝑢‖𝑝
𝑝 = (𝑞 − 2)

(︂∫︁
R𝑁

∫︁
R𝑁

𝜙(|𝐷𝑠𝑢|)|𝐷𝑠𝑢|2 𝑑𝜇 +
∫︁
R𝑁

𝑉 (𝑥)𝜙(|𝑢|)|𝑢|2 𝑑𝑥
)︂

−
(︂∫︁

R𝑁

∫︁
R𝑁

𝜙′(|𝐷𝑠𝑢|)|𝐷𝑠𝑢|3𝑑𝜇 +
∫︁
R𝑁

𝑉 (𝑥)𝜙′(|𝑢|)|𝑢|3 𝑑𝑥
)︂

.
(3.38)

Moreover, by Proposition 3.2.3 we know that the map 𝑢 ↦→ 𝑅𝑛(𝑡𝑢) has a unique critical point
which corresponds to a global minimum point. In particular, since 𝜙 is a 𝐶2-function, we have
𝑑2

𝑑𝑡2 𝑅𝑛(𝑡𝑢)
⃒⃒⃒⃒
𝑡=1

> 0 for each 𝑢 ∈ 𝒩 0
𝜆,𝜈 . We mention that

𝑑2

𝑑𝑡2 𝑅𝑛(𝑡𝑢) = (2 − 𝑞)(1 − 𝑞)𝑡−𝑞 (
∫︀
R𝑁

∫︀
R𝑁 𝜙(𝑡|𝐷𝑠𝑢|)|𝐷𝑠𝑢|2 𝑑𝜇 +

∫︀
R𝑁 𝑉 (𝑥)𝜙(𝑡|𝑢|)|𝑢|2 𝑑𝑥)

‖𝑢‖𝑞
𝑞,𝑎

+ (2 − 𝑞)𝑡1−𝑞 (
∫︀
R𝑁

∫︀
R𝑁 𝜙′(𝑡|𝐷𝑠𝑢|)|𝐷𝑠𝑢|3 𝑑𝜇 +

∫︀
R𝑁 𝑉 (𝑥)𝜙′(𝑡|𝑢|)|𝑢|3 𝑑𝑥)

‖𝑢‖𝑞
𝑞,𝑎

+ (2 − 𝑞)𝑡1−𝑞 (
∫︀
R𝑁

∫︀
R𝑁 𝜙′(𝑡|𝐷𝑠𝑢|)|𝐷𝑠𝑢|3𝑑𝜇 +

∫︀
R𝑁 𝑉 (𝑥)𝜙′(𝑡|𝑢|)|𝑢|3 𝑑𝑥)

‖𝑢‖𝑞
𝑞,𝑎

+ 𝑡2−𝑞 (
∫︀
R𝑁

∫︀
R𝑁 𝜙′′(𝑡|𝐷𝑠𝑢|)|𝐷𝑠𝑢|4𝑑𝜇 +

∫︀
R𝑁 𝑉 (𝑥)𝜙′′(𝑡|𝑢|)|𝑢|4 𝑑𝑥)

‖𝑢‖𝑞
𝑞,𝑎

+
𝜆(𝑝 − 𝑞)(𝑝 − 𝑞 − 1)𝑡𝑝−𝑞−2‖𝑢‖𝑝

𝑝

‖𝑢‖𝑞
𝑞,𝑎

,

Hence, we obtain that

0 < (𝑞 − 2)(𝑞 − 1)
(︂∫︁

R𝑁

∫︁
R𝑁

𝜙(|𝐷𝑠𝑢|)|𝐷𝑠𝑢|2 𝑑𝜇 +
∫︁
R𝑁

𝑉 (𝑥)𝜙(|𝑢|)|𝑢|2 𝑑𝑥
)︂

+ 2(2 − 𝑞)
(︂∫︁

R𝑁

∫︁
R𝑁

𝜙′(|𝐷𝑠𝑢|)|𝐷𝑠𝑢|3 𝑑𝜇 +
∫︁
R𝑁

𝑉 (𝑥)𝜙′(|𝑢|)|𝑢|3 𝑑𝑥
)︂

+
(︂∫︁

R𝑁

∫︁
R𝑁

𝜙′′(|𝐷𝑠𝑢|)|𝐷𝑠𝑢|4𝑑𝜇 +
∫︁
R𝑁

𝑉 (𝑥)𝜙′′(|𝑢|)|𝑢|4 𝑑𝑥
)︂

+ 𝜆(𝑝 − 𝑞)(𝑝 − 𝑞 − 1)‖𝑢‖𝑝
𝑝.

(3.39)
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At this stage, we will prove that there exists 𝑣 ∈ (𝐵𝑅(𝑢) ∩ 𝒩𝜆,𝜈) ∖ 𝒩 0
𝜆,𝜈 , where 𝐵𝑅(𝑢)

denotes the open ball centered at 𝑢 with radius 𝑅 > 0. In fact, we assume by contradiction
that 𝐵𝑅(𝑢) ∩ 𝒩𝜆,𝜈 ⊂ 𝒩 0

𝜆,𝜈 . We also consider a sequence (𝜀𝑘)𝑘∈N ⊂ R such that 𝜀𝑘 → 0 as
𝑘 → ∞. Up to a subsequence, we will consider the following cases:

Case 1: Assume that Λ𝑛(𝑢 + 𝜀𝑘𝑤) < 𝜈 holds for any 𝑤 ∈ 𝑋 ∖ {0} fixed. In this case,
by Proposition 3.2.16, there exist 0 < t−

𝜈 (𝑢 + 𝜀𝑘𝑤) < t(𝑢 + 𝜀𝑘𝑤) < t+
𝜈 (𝑢 + 𝜀𝑘𝑤) < ∞ such

that t±
𝜈 (𝑢 + 𝜀𝑘𝑤)(𝑢 + 𝜀𝑘𝑤) ∈ 𝒩 ±

𝜆,𝜈 . Furthermore, 𝑣 ↦→ t±
𝜈 (𝑣) are continuous functions. Thus,

t±
𝜈 (𝑢 + 𝜀𝑘𝑤)(𝑢 + 𝜀𝑘𝑤) ∈ 𝐵𝑅(𝑢) ∩ 𝒩𝜆,𝜈 ⊂ 𝒩 0

𝜆,𝜈 for 𝑘 large enough. However, the Lemma
3.2.13 assures us that t±

𝜈 (𝑢 + 𝜀𝑘𝑤) are critical points for fibering map 𝑡 ↦→ 𝑅𝑛(𝑡(𝑢 + 𝜀𝑘𝑤))

for 𝑘 large enough, contradicting the uniqueness of t(𝑢 + 𝜀𝑘𝑤). This shows that the Case 1 is
impossible.

Case 2: Assume Λ𝑛(𝑢+𝜀𝑘𝑤) = 𝜈 holds for any 𝑤 ∈ 𝑋 ∖{0} fixed. Then, 𝑢+𝜀𝑘𝑤 ∈ 𝒩 0
𝜆,𝜈 ,

that is, t(𝑢 + 𝜀𝑘𝑤) = 1. This fact gives us the following identity:

𝜆(𝑝 − 𝑞)‖𝑢 + 𝜀𝑘𝑤‖𝑝
𝑝 = (𝑞 − 2)

∫︁
R𝑁

∫︁
R𝑁

𝜙(|𝐷𝑠(𝑢 + 𝜀𝑘𝑤)|)|𝐷𝑠(𝑢 + 𝜀𝑘𝑤)|2 𝑑𝜇

+ (𝑞 − 2)
∫︁
R𝑁

𝑉 (𝑥)𝜙(|𝑢 + 𝜀𝑘𝑤|)|𝑢 + 𝜀𝑘𝑤|2 𝑑𝑥

−
∫︁
R𝑁

∫︁
R𝑁

𝜙′(|𝐷𝑠(𝑢 − 𝜀𝑘𝑤)|)|𝐷𝑠(𝑢 + 𝜀𝑘𝑤)|3𝑑𝜇

−
∫︁
R𝑁

𝑉 (𝑥)𝜙′(|𝑢 + 𝜀𝑘𝑤|)|𝑢 + 𝜀𝑘𝑤|3 𝑑𝑥.

(3.40)

By subtracting the identity (3.38) from (3.40) and dividing by 𝜀𝑘, we obtain that

𝜆(𝑝 − 𝑞)
‖𝑢 + 𝜀𝑘𝑤‖𝑝

𝑝 − ‖𝑢‖𝑝
𝑝

𝜀𝑘

= (𝑞 − 2)
∫︁
R𝑁

∫︁
R𝑁

𝜙(|𝐷𝑠(𝑢 + 𝜀𝑘𝑤)|)|𝐷𝑠(𝑢 + 𝜀𝑘𝑤)|2 − 𝜙(|𝐷𝑠𝑢|)|𝐷𝑠𝑢|2

𝜀𝑘

𝑑𝜇

+ (𝑞 − 2)
∫︁
R𝑁

𝑉 (𝑥)𝜙(|𝑢 + 𝜀𝑘𝑤|)|𝑢 + 𝜀𝑘𝑤|2 − 𝜙(|𝑢|)|𝑢|2

𝜀𝑘

𝑑𝑥

−
∫︁
R𝑁

∫︁
R𝑁

𝜙′(|𝐷𝑠(𝑢 − 𝜀𝑘𝑤)|)|𝐷𝑠(𝑢 + 𝜀𝑘𝑤)|3 − 𝜙′(|𝐷𝑠𝑢|)|𝐷𝑠𝑢|3

𝜀𝑘

𝑑𝜇

−
∫︁
R𝑁

𝑉 (𝑥)𝜙′(|𝑢 + 𝜀𝑘𝑤|)|𝑢 + 𝜀𝑘𝑤|3 − 𝜙′(|𝑢|)|𝑢|3

𝜀𝑘

𝑑𝑥.
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Since 𝜙 is a 𝐶2-function, taking the limit as 𝑘 → ∞ in the above identity, we deduce that

𝜆(𝑝 − 𝑞)𝑝
∫︁
R𝑁

|𝑢|𝑝−2𝑢 𝑤 𝑑𝑥

= (𝑞 − 2)
∫︁
R𝑁

∫︁
R𝑁

[2𝜙(|𝐷𝑠𝑢|)𝐷𝑠𝑢𝐷𝑠𝑤 + 𝜙′(|𝐷𝑠𝑢|)|𝐷𝑠𝑢|𝐷𝑠𝑢𝐷𝑠𝑤] 𝑑𝜇

+ (𝑞 − 2)
∫︁
R𝑁

𝑉 (𝑥) [2𝜙(|𝑢|)𝑢𝑤 + 𝜙′(|𝑢|)|𝑢|𝑢𝑤] 𝑑𝑥

−
∫︁
R𝑁

∫︁
R𝑁

[︁
3𝜙′(|𝐷𝑠𝑢|)|𝐷𝑠𝑢|𝐷𝑠𝑢𝐷𝑠𝑤 + 𝜙′′(|𝐷𝑠𝑢|)|𝐷𝑠𝑢|2𝐷𝑠𝑢𝐷𝑠𝑤

]︁
𝑑𝜇

−
∫︁
R𝑁

𝑉 (𝑥)
[︁
3𝜙′(|𝑢|)|𝑢|𝑢𝑤 + 𝜙′′(|𝑢|)|𝑢|2𝑢𝑤

]︁
𝑑𝑥.

(3.41)

In particular, taking 𝑤 = 𝑢 in (3.41), we have that

𝜆(𝑝 − 𝑞)𝑝‖𝑢‖𝑝
𝑝 = (𝑞 − 2)

∫︁
R𝑁

∫︁
R𝑁

[︁
2𝜙(|𝐷𝑠𝑢|)|𝐷𝑠𝑢|2 + 𝜙′(|𝐷𝑠𝑢|)|𝐷𝑠𝑢|3

]︁
𝑑𝜇

+ (𝑞 − 2)
∫︁
R𝑁

𝑉 (𝑥)
[︁
2𝜙(|𝑢|)|𝑢|2 + 𝜙′(|𝑢|)|𝑢|3

]︁
𝑑𝑥

−
∫︁
R𝑁

∫︁
R𝑁

[︁
3𝜙′(|𝐷𝑠𝑢|)|𝐷𝑠𝑢|3 + 𝜙′′(|𝐷𝑠𝑢|)|𝐷𝑠𝑢|4

]︁
𝑑𝜇

−
∫︁
R𝑁

𝑉 (𝑥)
[︁
3𝜙′(|𝑢|)|𝑢|3 + 𝜙′′(|𝑢|)|𝑢|4

]︁
𝑑𝑥.

This identity is equivalent to

𝜆(𝑝 − 𝑞)𝑝‖𝑢‖𝑝
𝑝 = 2(𝑞 − 2)

(︂∫︁
R𝑁

∫︁
R𝑁

𝜙(|𝐷𝑠𝑢|)|𝐷𝑠𝑢|2 𝑑𝜇 +
∫︁
R𝑁

𝑉 (𝑥)𝜙(|𝑢|)|𝑢|2 𝑑𝑥
)︂

+ (𝑞 − 5)
(︂∫︁

R𝑁

∫︁
R𝑁

𝜙′(|𝐷𝑠𝑢|)|𝐷𝑠𝑢|3𝑑𝜇 +
∫︁
R𝑁

𝑉 (𝑥)𝜙′(|𝑢|)|𝑢|3 𝑑𝑥
)︂

−
(︂∫︁

R𝑁

∫︁
R𝑁

𝜙′′(|𝐷𝑠𝑢|)|𝐷𝑠𝑢|4 𝑑𝜇 +
∫︁
R𝑁

𝑉 (𝑥)𝜙′′(|𝑢|)|𝑢|4 𝑑𝑥.
)︂

.

(3.42)

In light of (3.38),(3.39), and (3.42), we arrive at the following linear system:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑥 − 𝑦 − 𝑤 = 0

2𝑥 + (𝑞 − 5)𝑦 − 𝑧 − 𝑝𝑤 = 0

(𝑞 − 1)𝑥 + 2(2 − 𝑞)𝑦 + 𝑧 + (𝑝 − 𝑞 − 1)𝑤 > 0,

(3.43)

where we denote

𝑥 =
∫︁
R𝑁

∫︁
R𝑁

𝜙(|𝐷𝑠𝑢|)|𝐷𝑠𝑢|2 𝑑𝜇 +
∫︁
R𝑁

𝑉 (𝑥)𝜙(|𝑢|)|𝑢|2 𝑑𝑥,

𝑦 =
∫︁
R𝑁

∫︁
R𝑁

𝜙′(|𝐷𝑠𝑢|)|𝐷𝑠𝑢|3𝑑𝜇 +
∫︁
R𝑁

𝑉 (𝑥)𝜙′(|𝑢|)|𝑢|3 𝑑𝑥,

𝑧 =
∫︁
R𝑁

∫︁
R𝑁

𝜙′′(|𝐷𝑠𝑢|)|𝐷𝑠𝑢|4 𝑑𝜇 +
∫︁
R𝑁

𝑉 (𝑥)𝜙′′(|𝑢|)|𝑢|4 𝑑𝑥,

𝑤 = 𝜆(𝑝 − 𝑞)‖𝑢‖𝑝
𝑝.
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Thanks to system (3.43), we define the number 𝛽 = (𝑞−1)𝑥+2(2−𝑞)𝑦+𝑧+(𝑝−𝑞−1)𝑤 > 0.
Hence, we have the following equivalent system:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑥 − 𝑦 − 𝑤 = 0

2𝑥 + (𝑞 − 5)𝑦 − 𝑧 − 𝑝𝑤 = 0

(𝑞 − 1)𝑥 + 2(2 − 𝑞)𝑦 + 𝑧 + (𝑝 − 𝑞 − 1)𝑤 = 𝛽.

(3.44)

However, by applying the Gauss method to system (3.44), we obtain that 𝛽 = 0. This
contradiction shows that Case 2 is impossible.

Caso 3: Suppose that Λ𝑛(𝑢+𝜀𝑘𝑤) > 𝜈 holds for any 𝑤 ∈ 𝑋 ∖{0} fixed. Define a sequence
𝜈𝑘 = Λ𝑛(𝑢 + 𝜀𝑘𝑤) for all 𝑘 ∈ N. It follows from Proposition 3.2.7 (𝑖) that 𝜈𝑘 → 𝜈 as 𝑘 → ∞.
Furthermore, 𝜈𝑘 = Λ𝑛(𝑢 + 𝜀𝑘𝑤) implies that 𝑢 + 𝜀𝑘𝑤 ∈ 𝒩 0

𝜆,𝜈𝑘
, that is, t(𝑢 + 𝜀𝑘𝑤) = 1.

This fact implies that the function 𝑢 + 𝜀𝑘𝑤 also satisfies the identity (3.40). Thereby, by
proceeding as in the Case 2, we obtain the same system established in (3.43). This also leads
to a contradiction.

Therefore, it follows from three cases that there exists 𝑣 ∈ 𝐵𝑅(𝑢) ∩ (𝒩𝜆,𝜈 ∖ 𝒩 0
𝜆,𝜈)

for each 𝑅 > 0. In this case, 𝑣 ∈ 𝒩 +
𝜆,𝜈 or 𝑣 ∈ 𝒩 −

𝜆,𝜈 . This implies that 𝑣 ∈ 𝒰𝜆,𝜈 =

{𝑣 ∈ 𝑋 ∖ {0} : Λ𝑛(𝑣) < 𝜈}. Thence, the Proposition 3.2.16 guarantees that there exist
0 < t−

𝜈 (𝑣) < t(𝑣) < t+
𝜈 (𝑣) < ∞ such that t−

𝜈 (𝑣)(𝑣) ∈ 𝒩 −
𝜆,𝜈 and t+

𝜈 (𝑣)(𝑣) ∈ 𝒩 +
𝜆,𝜈 . Thus,

considering the sequence 𝑅𝑘 = 1
𝑘
, we obtain a sequence (𝑣𝑘)𝑘∈N ⊂ 𝐵𝑅(𝑢)∩ (𝒩𝜆,𝜈 ∖𝒩 0

𝜆,𝜈) with
t−
𝜈 (𝑣𝑘)(𝑣𝑘) ∈ 𝒩 −

𝜆,𝜈 and t+
𝜈 (𝑣𝑘)(𝑣𝑘) ∈ 𝒩 +

𝜆,𝜈 . Since 𝑅𝑘 → 0 as 𝑘 → ∞, we infer that 𝑣𝑘 → 𝑢 in
𝑋. In addition, because of the continuity of 𝑢 ↦→ t±

𝜈 (𝑢) and 𝑢 ↦→ t(𝑢), we conclude that

t±
𝜈 (𝑣𝑘) → t±

𝜈 (𝑢) = t(𝑢) = 1, as 𝑘 → ∞.

This condition enables us to define the sequences (𝑓𝑘)𝑘∈N ⊂ 𝒩 −
𝜆,𝜈 and (𝑔𝑘)𝑘∈N ⊂ 𝒩 +

𝜆,𝜈 given
by 𝑓𝑘 := t−

𝜈 (𝑣𝑘)𝑣𝑘 and 𝑔𝑘 := t+
𝜈 (𝑣𝑘)𝑣𝑘 such that 𝑓𝑘 → 𝑢 and 𝑔𝑘 → 𝑢 in 𝑋 for each 𝑢 ∈ 𝒩 0

𝜆,𝜈 .
Therefore, 𝒩 0

𝜆,𝜈 ⊂ 𝒩 ±
𝜆,𝜈 , which proves that 𝒩 ±

𝜆,𝜈 = 𝒩 ±
𝜆,𝜈 ∪ 𝒩 0

𝜆,𝜈 .

Remark 3.2.25. By using Proposition 3.2.24, we deduce that

ℰ−
𝜆,𝜈 = inf

𝑢∈𝒩 −
𝜆,𝜈

ℐ𝜆,𝜈(𝑢) = inf
𝑢∈𝒩 −

𝜆,𝜈

ℐ𝜆,𝜈(𝑢) ≤ inf
𝑢∈𝒩 −

𝜆,𝜈
∪𝒩 0

𝜆,𝜈

ℐ𝜆,𝜈(𝑢) ≤ inf
𝑢∈𝒩 0

𝜆,𝜈

ℐ𝜆,𝜈(𝑢) =: ℰ0
𝜆,𝜈

and

ℰ+
𝜆,𝜈 = inf

𝑢∈𝒩 +
𝜆,𝜈

ℐ𝜆,𝜈(𝑢) = inf
𝑢∈𝒩 +

𝜆,𝜈

ℐ𝜆,𝜈(𝑢) ≤ inf
𝑢∈𝒩 +

𝜆,𝜈
∪𝒩 0

𝜆,𝜈

ℐ𝜆,𝜈(𝑢) ≤ inf
𝑢∈𝒩 0

𝜆,𝜈

ℐ𝜆,𝜈(𝑢) =: ℰ0
𝜆,𝜈 .
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Therefore, the energy levels ℰ−
𝜆,𝜈 , ℰ+

𝜆,𝜈 and ℰ0
𝜆,𝜈 can not be distinct with 𝜆 > 0 and 𝜈 ≥ 𝜈𝑛(𝜆).

However, in the sequel we prove that ℰ−
𝜆,𝜈 , ℰ+

𝜆,𝜈 are attained in the sets 𝒩 −
𝜆,𝜈 , 𝒩 +

𝜆,𝜈 , respectively.

In the following, we prove that ℐ𝜆,𝜈 is coercive and bound below on the Nehari manifolds
𝒩 −

𝜆,𝜈 and 𝒩 +
𝜆,𝜈 , which allow us to find finding minimizers for the problem given by (3.3) and

(3.4), respectively. More precisely, we obtain the following result:

Proposition 3.2.26. Assume that (𝜙1)-(𝜙4), (𝐻1), (𝐻2) and (𝑉0)-(𝑉1) hold. Then, ℐ𝜆,𝜈 is

coercive in the Nehari manifold 𝒩𝜆,𝜈 .

Proof. Let 𝑢 ∈ 𝒩𝜆,𝜈 be fixed. It follows from continuous embedding 𝑋 →˓ 𝐿𝑟(Ω) for each
𝑟 ∈ (𝑚, ℓ*

𝑠), assumption (𝐻2) and Hölder inequality that ||𝑢||𝑞𝑞,𝑎 ≤ ‖𝑎‖𝑟‖𝑢‖𝑞
𝑝, 𝑢 ∈ 𝑋, holds

true where 𝑟 = (𝑝/𝑞)′. As a consequence, we obtain by Lemma 2.3.13 that

ℐ𝜆,𝜈(𝑢) ≥ 𝒥𝑠,Φ,𝑉 (𝑢) − 𝜈

𝑞
‖𝑎‖𝑟‖𝑢‖𝑞

𝑝 + 𝜆

𝑝
||𝑢||𝑝𝑝

≥ min{‖𝑢‖ℓ, ‖𝑢‖𝑚} −
[︃

𝜈

𝑞
‖𝑎‖𝑟‖𝑢‖𝑞−𝑝

𝑝 − 𝜆

𝑝

]︃
||𝑢||𝑝𝑝.

(3.45)

Now, assume that ‖𝑢‖ → ∞. On the one hand, if ||𝑢||𝑝 → ∞, then since 𝑚 < 𝑞 < 𝑝 < ℓ*
𝑠

by assumption (𝜙1), the inequality (3.45) implies that ℐ𝜆,𝜈 is coercive in the Nehari manifold
𝒩𝜆,𝜈 . On the other hand, if ||𝑢||𝑝 ≤ 𝐶 holds true for some constant 𝐶 > 0, then using (3.45)
once more, we deduce that

ℐ𝜆,𝜈 ≥ min{‖𝑢‖ℓ, ‖𝑢‖𝑚} −
[︃

𝜈

𝑞
‖𝑎‖𝑟𝐶 − 𝜆

𝑝

]︃
𝐶 → ∞ as ‖𝑢‖ → ∞.

Therefore, ℐ𝜆,𝜈 is coercive in the Nehari manifold 𝒩𝜆,𝜈 .

The next result assures us that 𝒩 −
𝜆,𝜈 and 𝒩 +

𝜆,𝜈 are natural constraints for our main problem.

Lemma 3.2.27. Assume that (𝜙1)-(𝜙4), (𝐻1), (𝐻2) and (𝑉0)-(𝑉1) hold. Let 𝑢 ∈ 𝒩 −
𝜆,𝜈 ∪𝒩 +

𝜆,𝜈

be a local minimum for ℐ𝜆,𝜈 in 𝒩𝜆,𝜈 . Then, 𝑢 is a critical point of ℐ𝜆,𝜈 in 𝑋, that is, ℐ ′
𝜆,𝜈(𝑢)𝑣 = 0

for all 𝑣 ∈ 𝑋.

Proof. We consider the functional ℱ : 𝑋 ∖ {0} → R defined by ℱ(𝑢) = ℐ ′
𝜆,𝜈(𝑣)𝑣. Thence,

𝒩𝜆,𝜈 = ℱ−1(0) and

ℱ ′(𝑣)𝑤 = ℐ ′′
𝜆,𝜈(𝑣)(𝑣, 𝑤) + ℐ ′

𝜆,𝜈(𝑣)𝑤, for all 𝑣 ∈ 𝑋 ∖ {0} and 𝑤 ∈ 𝑋.

Since 𝑣 ∈ 𝒩 −
𝜆,𝜈 ∪ 𝒩 +

𝜆,𝜈 be a local minimum for ℐ𝜆,𝜈 in 𝒩𝜆,𝜈 , we can apply the Lagrange
Multiplier Theorem (DRÁBEK; MILOTA, 2013) to obtain 𝜈 ∈ R such that

ℐ ′
𝜆,𝜈(𝑢)𝑤 = 𝜈ℱ ′(𝑢)𝑤, 𝑤 ∈ 𝑋.
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In particular, we have that ℱ ′(𝑢)𝑢 = ℐ ′′
𝜆,𝜈(𝑢)(𝑢, 𝑢) < 0 or ℱ ′(𝑢)𝑢 = ℐ ′′

𝜆,𝜈(𝑢)(𝑢, 𝑢) > 0.
Therefore, these assertions together with the last identity yield that 𝜈 = 0, which ends the
proof.

At this stage, we apply standard arguments used in the Nehari method.

Proposition 3.2.28. Assume that (𝜙1)-(𝜙4), (𝐻1)-(𝐻2) and (𝑉0)-(𝑉1) hold. Let 𝜆 > 0 be

fixed and 𝜈 > 𝜈𝑛(𝜆). Then, there exists a constant 𝐷𝜈 > 0 such that ℐ𝜆,𝜈(𝑢) ≥ 𝐷𝜈 holds for

all 𝑢 ∈ 𝒩 −
𝜆,𝜈 ∪ 𝒩 0

𝜆,𝜈 . In particular, ℰ−
𝜆,𝜈 ≥ 𝐷𝜈 , where ℰ−

𝜆,𝜈 was defined in (3.3).

Proof. Let 𝑢 ∈ 𝒩 −
𝜆,𝜈 ∪ 𝒩 0

𝜆,𝜈 be a fixed function. As a consequence, by using (3.2), it is easy
to verify that

ℐ𝜆,𝜈(𝑢) = ℐ𝜆,𝜈(𝑢) − 1
𝑞

ℐ ′
𝜆,𝜈(𝑢)𝑢 ≥

(︃
1 − 𝑚

𝑞

)︃
𝒥𝑠,Φ,𝑉 (𝑢) + 𝜆

(︃
1
𝑝

− 1
𝑞

)︃
‖𝑢‖𝑝

𝑝

= 𝑞 − 𝑚

𝑞
𝒥𝑠,Φ,𝑉 (𝑢) + 𝜆

𝑞 − 𝑝

𝑝𝑞
‖𝑢‖𝑝

𝑝.

Taking into account (3.12) and (𝜙3), we have that

𝜆(𝑞 − 𝑝)‖𝑢‖𝑝
𝑝 ≥ (ℓ − 𝑞)

∫︁
R𝑁

∫︁
R𝑁

𝜑(|𝐷𝑠𝑢|)|𝐷𝑠𝑢|2 𝑑𝜇 ≥ 𝑚(ℓ − 𝑞)𝒥𝑠,Φ,𝑉 (𝑢).

Then, combining the last two inequality and Lemma 2.3.13, we deduce that

ℐ𝜆,𝜈(𝑢) ≥
(︃

𝑞 − 𝑚

𝑞

)︃
𝒥𝑠,Φ,𝑉 (𝑢) + 𝑚

(︃
ℓ − 𝑞

𝑝𝑞

)︃
𝒥𝑠,Φ,𝑉 (𝑢)

≥ 𝑝(𝑞 − 𝑚) − 𝑚(𝑞 − ℓ)
𝑝𝑞

min{‖𝑢‖ℓ, ‖𝑢‖𝑚}.

(3.46)

In view of Proposition 3.2.21 and (3.46), we infer that

ℐ𝜆,𝜈(𝑢) ≥ 𝑝(𝑞 − 𝑚) − 𝑚(𝑞 − ℓ)
𝑝𝑞

min{𝑐ℓ
𝜈 , 𝑐𝑚

𝜈 } =: 𝐷𝜈 > 0.

In the last inequality we have used that 𝑚(𝑞 − ℓ) < 𝑝(𝑞 − 𝑚). Therefore, by using (3.3), we
deduce that ℰ−

𝜆,𝜈 ≥ 𝐷𝜈 > 0. This finishes the proof.

Proposition 3.2.29. Assume that (𝜙1)-(𝜙4), (𝐻1)-(𝐻2) and (𝑉0)-(𝑉1) hold. Suppose also

that 𝜆 > 0 and 𝜈 > 𝜈𝑛(𝜆). Let (𝑢𝑘)𝑘∈N ⊂ 𝒩 −
𝜆,𝜈 be a minimizer sequence for ℐ𝜆,𝜈 in 𝒩 −

𝜆,𝜈 .

Then, there exists 𝑢𝜆,𝜈 ∈ 𝒩 −
𝜆,𝜈 ∪ 𝒩 0

𝜆,𝜈 such that, up to a subsequence, 𝑢𝑘 → 𝑢𝜆,𝜈 in 𝑋.

Consequently, there exists a constant 𝐷𝜈 > 0 such that ℰ−
𝜆,𝜈 = ℐ𝜆(𝑢𝜆,𝜈) ≥ 𝐷𝜈 .

Proof. Firstly, by Proposition 3.2.26 (𝑖) the sequence (𝑢𝑘)𝑘∈N is bounded. Then, up to a
subsequence, we can assume that 𝑢𝑘 ⇀ 𝑢𝜆,𝜈 in 𝑋 as 𝑘 → ∞. In virtue of Remark 3.2.22 we
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have also that 𝑢𝜆,𝜈 ̸= 0. Since 𝒩 −
𝜆,𝜈 ⊂ 𝒩 −

𝜆,𝜈 ∪𝒩 0
𝜆,𝜈 by Proposition 3.2.24, it is sufficient to prove

the strong convergence 𝑢𝑘 → 𝑢𝜆,𝜈 in 𝑋 as 𝑘 → ∞. To this end, suppose by contradiction
that (𝑢𝑘) does not converges to 𝑢𝜆,𝜈 in 𝑋. Hence, since Λ𝑛 is weakly lower semicontinuous
(by Proposition 3.2.7) and 𝑢𝑘 ∈ 𝒩 −

𝜆,𝜈 , we obtain that

Λ𝑛(𝑢𝜆,𝜈) ≤ lim inf
𝑘→∞

Λ𝑛(𝑢𝑘) < lim sup
𝑘→∞

Λ𝑛(𝑢𝑘) = lim sup
𝑘→∞

𝑅𝑛(t(𝑢𝑘)𝑢𝑘) ≤ lim inf
𝑘→∞

𝑅𝑛(𝑢𝑘) = 𝜈.

Then, by Proposition 3.2.16, there exist unique t−
𝜈 (𝑢𝜆,𝜈) < t(𝑢𝜆,𝜈) < t+

𝜈 (𝑢𝜆,𝜈) such that
t−
𝜈 (𝑢𝜆,𝜈)𝑢𝜆,𝜈 ∈ 𝒩 −

𝜆,𝜈 and t+
𝜈 (𝑢𝜆,𝜈)𝑢𝜆,𝜈 ∈ 𝒩 +

𝜆,𝜈 . Now, using that 𝑢 ↦→ 𝑅𝑛(𝑡𝑢) is lower
semicontinuous for each 𝑡 > 0, we infer that

𝑅𝑛(𝑡𝑢𝜆,𝜈) ≤ lim inf
𝑘→∞

𝑅𝑛(𝑡𝑢𝑘) < lim sup
𝑘→∞

𝑅𝑛(𝑡𝑢𝑘), (3.47)

which implies that 𝑅𝑛(𝑡𝑢𝜆,𝜈) < 𝑅𝑛(𝑡𝑢𝑘) for each 𝑘 large enough. This assertion shows that
t−
𝜈 (𝑢𝜆,𝜈) < t−

𝜈 (𝑢𝑘) = 1 for each 𝑘 ≫ 1. Indeed, arguing by contradiction, assume that
t−
𝜈 (𝑢𝜆,𝜈) ≥ 1 for some 𝑘 ≫ 1. Then, since 𝑡 ↦→ 𝑅𝑛(𝑡𝑢𝜆,𝜈) is strictly decreasing in (0, t(𝑣𝜆,𝜈)),

we have by above assertion that 𝑅𝑛(t−
𝜈 (𝑢𝜆,𝜈)𝑢𝜆,𝜈) ≤ 𝑅𝑛(𝑢𝜆,𝜈) < 𝑅𝑛(𝑢𝑘) = 𝜈, which is a

contradiction.
On the other hand, using that the functional 𝑢 ↦→ ℐ𝜆,𝜈(𝑡𝑢) is also weakly lower

semicontinuous for each 𝑡 > 0, we obtain the following estimate

ℐ𝜆,𝜈(𝑡𝑢𝜆,𝜈) ≤ lim inf
𝑘→∞

ℐ𝜆,𝜈(𝑡𝑢𝑘), for all 𝑡 > 0 (3.48)

Since (𝑢𝑘)𝑘∈N belongs to 𝒩 −
𝜆,𝜈 , we have that 𝑡 ↦→ ℐ𝜆,𝜈(𝑡𝑢𝑘) is a strictly increasing function in

(0, 1). Thence, by using (3.48), we conclude that

ℐ𝜆,𝜈(t−
𝜈 (𝑢𝜆,𝜈)𝑢𝜆,𝜈) < ℐ𝜆,𝜈(𝑢𝜆,𝜈) ≤ lim inf

𝑘→∞
ℐ𝜆,𝜈(𝑢𝑘) = ℰ𝜆,𝜈 .

This is a contradiction, which proves 𝑢𝑘 → 𝑢𝜆,𝜈 in 𝑋 as 𝑘 → ∞. Hence, using the strong
convergence, we conclude that ℰ−

𝜆,𝜈 = ℐ𝜆(𝑢𝜆,𝜈). Moreover, it follows from Proposition 3.2.28
that ℰ−

𝜆,𝜈 = ℐ𝜆,𝜈(𝑢𝜆,𝜈) ≥ 𝐷𝜈 > 0. Finally, by Proposition 3.2.24, we obtain also that
𝑢𝜆 ∈ 𝒩 −

𝜆,𝜈 ∪ 𝒩 0
𝜆,𝜈 .

Proposition 3.2.30. Assume that (𝜙1)-(𝜙4), (𝐻1)-(𝐻2) and (𝑉0)-(𝑉1) hold. Suppose also

that 𝜆 > 0 and 𝜈 > 𝜈𝑛(𝜆). Let (𝑣𝑘) ⊂ 𝒩 +
𝜆,𝜈 be a minimizer sequence for ℐ𝜆,𝜈 in 𝒩 +

𝜆,𝜈 . Then,

there exists 𝑣𝜆,𝜈 ∈ 𝒩 +
𝜆,𝜈 ∪𝒩 0

𝜆,𝜈 such that, up to a subsequence, 𝑣𝑘 → 𝑣𝜆,𝜈 in 𝑋. Consequently,

ℰ+
𝜆,𝜈 = ℐ𝜆(𝑣𝜆,𝜈) where ℰ+

𝜆,𝜈 was given in (3.4).
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Proof. In virtue of Proposition 3.2.26 (𝑖𝑖) the sequence (𝑣𝑘)𝑘∈N is bounded. Hence, up to a
subsequence, it follows that 𝑣𝑘 ⇀ 𝑣𝜆,𝜈 ̸= 0 in 𝑋 as 𝑘 → ∞. Now let us prove the strong
convergence 𝑣𝑘 → 𝑣𝜆,𝜈 in 𝑋. Assume by contradiction that (𝑣𝑘)𝑘∈N does not converge to 𝑣𝜆,𝜈

in 𝑋. On the one hand, by using Proposition 3.2.7 and that 𝑢𝑘 ∈ 𝒩 +
𝜆,𝜈 , we obtain that

Λ𝑛(𝑣𝜆,𝜈) ≤ lim inf
𝑘→∞

Λ𝑛(𝑣𝑘) < lim sup
𝑘→∞

Λ𝑛(𝑣𝑘) = lim sup
𝑘→∞

𝑅𝑛(t(𝑣𝑘)𝑣𝑘) ≤ 𝜈.

Then, by Proposition 3.2.16, there exist unique t−
𝜈 (𝑣𝜆,𝜈) < t(𝑣𝜆,𝜈) < t+

𝜈 (𝑣𝜆,𝜈) such that
t−
𝜈 (𝑢𝜆,𝜈)𝑢𝜆,𝜈 ∈ 𝒩 −

𝜆,𝜈 and t+
𝜈 (𝑢𝜆,𝜈)𝑢𝜆,𝜈 ∈ 𝒩 +

𝜆,𝜈 .
On the other hand, using that the functionals 𝑢 ↦→ 𝑅′

𝑛(𝑢)𝑢 is weakly upper semicontinuous,
we deduce from Lemma 3.2.13 that

𝑑

𝑑𝑡
𝑅𝑛(𝑡𝑣𝜆,𝜈)

⃒⃒⃒
𝑡=1

= 𝑅′
𝑛(𝑣𝜆,𝜈)𝑣𝜆,𝜈 ≥ lim sup

𝑘→∞
𝑅′

𝑛(𝑣𝑘)𝑣𝑘 > lim inf
𝑘→∞

𝑅′
𝑛(𝑣𝑘)𝑣𝑘 ≥ 0, (3.49)

Consequently, by using (3.49), we also deduce that t(𝑣𝜆,𝜈) < 1. Now, using the fact that 𝑅𝑛

is weakly lower semicontinuous and 𝑣𝑘 ∈ 𝒩 +
𝜆,𝜈 , we infer that

𝑅𝑛(𝑣𝜆,𝜈) ≤ lim inf
𝑘→∞

𝑅𝑛(𝑣𝑘) < lim sup
𝑘→∞

𝑅𝑛(𝑣𝑘) = 𝜈. (3.50)

Since 𝑡 ↦→ 𝑅𝑛(𝑡𝑣𝜆,𝜈) is strictly increasing in (t(𝑣𝜆,𝜈), ∞) and 𝑅𝑛(t+
𝜈 (𝑣𝜆,𝜈)𝑣𝜆,𝜈) = 𝜈, then

the inequality (3.50) implies t−
𝜈 (𝑣𝜆,𝜈) < 1 < t+

𝜈 (𝑢𝜆,𝜈). Hence, using that fibering map
𝑡 ↦→ ℐ𝜆,𝜈(𝑡𝑣𝜆,𝜈) is a strictly decreasing function in (t−

𝜈 (𝑣𝜆,𝜈), t+
𝜈 (𝑣𝜆,𝜈)), we conclude that

ℐ𝜆,𝜈(t+
𝜈 (𝑣𝜆,𝜈)𝑣𝜆,𝜈) < ℐ𝜆,𝜈(𝑣𝜆,𝜈) ≤ lim inf

𝑘→∞
ℐ𝜆,𝜈(𝑣𝑘) = ℰ+

𝜆,𝜈 .

This is a contradiction, which proves 𝑣𝑘 → 𝑣𝜆,𝜈 in 𝑋 as 𝑘 → ∞. Therefore, using the
strong convergence, we conclude that ℰ+

𝜆,𝜈 = ℐ𝜆(𝑣𝜆,𝜈). It follows from Proposition 3.2.28 that
ℰ+

𝜆,𝜈 = ℐ𝜆,𝜈(𝑣𝜆,𝜈) ≥ 𝐷𝜈 > 0. Finally, according to Proposition 3.2.24 we obtain also that
𝑣𝜆,𝜈 ∈ 𝒩 +

𝜆,𝜈 ∪ 𝒩 0
𝜆,𝜈 . This finishes the proof.

From this point onward, our objective is to ensure that the functional ℐ𝜆,𝜈 has at least two
critical points for each 𝜆 > 0 and 𝜈 ∈ (𝜈𝑛(𝜆), ∞). However, it is known that 𝒩 0

𝜆,𝜈 is nonempty
for each 𝜆 > 0 and 𝜈 ∈ (𝜈𝑛(𝜆), +∞). As a result, the minimizer sequences on the Nehari
manifolds 𝒩 −

𝜆,𝜈 and 𝒩 +
𝜆,𝜈 may strongly converge to a function in 𝒩 0

𝜆,𝜈 , where the Lagrange
Multipliers Theorem does not apply. In order to overcome this phenomenon, we explore some
fine properties which are crucial in proving that any minimizers for the functional ℐ𝜆,𝜈 restricted
to the Nehari manifold 𝒩 −

𝜆,𝜈 or 𝒩 +
𝜆,𝜈 does not belong to 𝒩 0

𝜆,𝜈 . As a first auxiliary result, we
point out the following statement:
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Lemma 3.2.31. Assume that (𝜙1)-(𝜙4), (𝐻1)-(𝐻2) and (𝑉0)-(𝑉1) hold. Let 𝜆 > 0 and

𝜈 ∈ (𝜈𝑛(𝜆), ∞) be fixed. Then, the following assertions hold:

(i) There holds that

ℰ−
𝜆,𝜈 := inf

𝑤∈𝒰𝜆,𝜈

[︃
sup

𝑡∈[0,t(𝑤)]
ℐ𝜆,𝜈(𝑡𝑤)

]︃
.

(ii) There holds that

ℰ+
𝜆,𝜈 := inf

𝑤∈𝒰𝜆,𝜈

[︃
inf

𝑡∈[t(𝑤),∞)
ℐ𝜆,𝜈(𝑡𝑤)

]︃
.

Proof. Let 𝑤 ∈ 𝒰𝜆,𝜈 be a fixed function. According to Proposition 3.2.16 there exist unique
0 < t−

𝜈 (𝑤) < t(𝑤) < t+
𝜈 (𝑤) < ∞ such that t−

𝜈 (𝑤)𝑤 ∈ 𝒩 −
𝜆,𝜈 and t+

𝜈 (𝑤)𝑤 ∈ 𝒩 +
𝜆,𝜈 . In particular,

sup
𝑡∈[0,t(𝑤)]

ℐ𝜆,𝜈(𝑡𝑤) = ℐ𝜆,𝜈(𝑡𝑛,−
𝜈 (𝑤)𝑤) ≥ inf

𝑢∈𝒩 −
𝜆,𝜈

ℐ𝜆,𝜈(𝑢), 𝑤 ∈ 𝒰𝜆,𝜈 .

Consequently, we infer that

inf
𝑤∈𝒰𝜆,𝜈

[︃
sup

𝑡∈[0,t(𝑤)]
ℐ𝜆,𝜈(𝑡𝑤)

]︃
≥ inf

𝑢∈𝒩 −
𝜆,𝜈

ℐ𝜆,𝜈(𝑢).

On the other side, for all 𝜀 > 0, there exists 𝑤𝜖 ∈ 𝒩 −
𝜆,𝜈 such that

inf
𝑢∈𝒩 −

𝜆,𝜈

ℐ𝜆,𝜈(𝑢) ≤ ℐ𝜆,𝜈(𝑤𝜖) ≤ inf
𝑢∈𝒩 −

𝜆,𝜈

ℐ𝜆,𝜈(𝑢) + 𝜖.

Moreover, we recall that ℐ𝜆,𝜈(𝑤𝜖) = sup𝑡∈[0,t(𝑤𝜖)] ℐ𝜆,𝜈(𝑡𝑤𝜖). Therefore,

inf
𝑤∈𝒰𝜆,𝜈

[︃
sup

𝑡∈[0,t(𝑤)]
ℐ𝜆,𝜈(𝑡𝑤)

]︃
≤ sup

𝑡∈[0,t(𝑤𝜖)]
ℐ𝜆,𝜈(𝑡𝑤𝜖) ≤ inf

𝑢∈𝒩 −
𝜆,𝜈

ℐ𝜆,𝜈(𝑢) + 𝜀.

Since 𝜀 > 0 is arbitrary, we conclude the proof for the item (𝑖). The proof of item (𝑖𝑖) follows
the same ideas discussed above by using t+

𝜈 (𝑤) instead of t−
𝜈 (𝑤).

It is important to emphasize that the function Λ𝑛 defined in (3.21) depend on parameter
𝜆. In this case, we can consider the function 𝜆 ↦→ Λ𝑛,𝜆(𝑢) given by

Λ𝑛,𝜆(𝑢) = 𝑅𝑛,𝜆(t𝜆(𝑢)𝑢)

for each 𝑢 ∈ 𝑋 ∖ {0} fixed, where t𝜆(𝑢) is obtained in Proposition 3.2.3.

Remark 3.2.32. A fundamental property for obtaining the results is the continuity and

monotonicity of the function 𝜆 ↦→ t𝜆(𝑢). In the paper by Silva et al. (2024a), this property

is easily observed due to the availability of an explicit expression for this function. However,

in the present work, we cannot derive such an expression explicitly. Therefore, a more careful

analysis is required. For this reason, we introduce the following proposition:
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Proposition 3.2.33. Assume that (𝜙1)-(𝜙4), (𝐻1)-(𝐻2) and (𝑉0)-(𝑉1) hold. Let 𝑢 ∈ 𝑋 ∖{0}

be fixed. Then, the following assertions hold:

(i) 𝜆 ↦→ Λ𝑛,𝜆(𝑢) is an increasing function.

(ii) 𝜆 ↦→ t𝜆(𝑢) is a decreasing continuous function.

(iii) For each 𝜈 ∈ (Λ𝑛,𝜆(𝑢), ∞) fixed, the functions 𝜆 ↦→ t±
𝜆,𝜈(𝑢) are of class 𝐶1. Furthermore,

𝜆 ↦→ t−
𝜆,𝜈(𝑢) is increasing while 𝜆 ↦→ t+

𝜆,𝜈(𝑢) is decreasing.

(iv) For each 𝜆 > 0 and 𝑢 ∈ 𝒰𝜆,𝜈 fixed, the functions 𝜈 ↦→ t±
𝜆,𝜈(𝑢) are class 𝐶1. Moreover,

𝜈 ↦→ t−
𝜆,𝜈(𝑢) is decreasing while 𝜈 ↦→ t+

𝜆,𝜈(𝑢) is increasing.

Proof. (𝑖) Let 0 < 𝜆 < 𝜆0 be fixed. By direct calculation, we obtain that

𝑅𝑛,𝜆(𝑡𝑢) = 𝑅𝑛,𝜆0(𝑡𝑢) + (𝜆 − 𝜆0)
‖𝑡𝑢‖𝑝

𝑝

‖𝑡𝑢‖𝑞
𝑞,𝑎

< 𝑅𝑛,𝜆0(𝑡𝑢).

for all 𝑡 > 0. In particular, Λ𝑛,𝜆(𝑢) < Λ𝑛,𝜆0(𝑢), which proves that 𝜆 ↦→ Λ𝑛,𝜆(𝑢) is an increasing
function.

(𝑖𝑖) Firstly, we will prove the continuity of 𝜆 ↦→ 𝑡𝜆(𝑢). Let 𝜆0 > 0 and (𝜆𝑘)𝑘∈N ⊂ (0, ∞)

be a sequence such that 𝜆𝑘 → 𝜆0. We show that (t𝜆𝑘
(𝑢))𝑘∈N is bounded for each 𝑢 ∈ 𝑋 ∖{0}

fixed. Indeed, assume by contradiction that, up to subsequence, t𝜆𝑘
(𝑢) → ∞. Since

lim
𝑡→∞

(︁
𝒦𝑢(𝑡) + 𝜆(𝑝 − 𝑞)‖𝑢‖𝑝

𝑝

)︁
= 𝜆(𝑝 − 𝑞)‖𝑢‖𝑝

𝑝 > 0,

there exists 𝑡′ > 0 such that 𝒦𝑢(𝑡′) + 𝜆(𝑝 − 𝑞)‖𝑢‖𝑝
𝑝 > 0. Moreover, t𝜆𝑘

(𝑢) > 𝑡′ for 𝑘 enough
larger. On the other hand, by Lemma 3.2.1, we know that 𝑡 ↦→ 𝒦𝑢(𝑡) + 𝜆(𝑝 − 𝑞)‖𝑢‖𝑝

𝑝 is a
strictly increasing continuous function. Thus, for 𝑘 enough larger, it holds that

0 < 𝒦𝑢(𝑡′) + 𝜆(𝑝 − 𝑞)‖𝑢‖𝑝
𝑝 ≤ 𝒦𝑢(𝑡𝜆𝑘

(𝑢)) + 𝜆(𝑝 − 𝑞)‖𝑢‖𝑝
𝑝 = 0,

which is a contradiction. Hence, (t𝜆(𝑢))𝑘∈N is bounded. By this assertion, there exists 𝑡0 ≥ 0

such that, up to a subsequence, t𝜆𝑘
(𝑢) → 𝑡0. But by proceeding as in (3.20), we obtain that

‖t𝜆𝑘
(𝑢)𝑢‖𝑝 ≥ ℓ(𝑞 − 𝑚)

𝜆𝑘(𝑝 − 𝑞)𝑆𝑝
𝑝

min{‖t𝜆𝑘
(𝑢)𝑢‖ℓ, ‖t𝜆𝑘

(𝑢)𝑢‖𝑚}.

This implies that 𝑡0 > 0. Then, t𝜆𝑘
(𝑢)𝑢 → 𝑡0𝑢 in 𝑋. Since 𝑅𝑛 is of class 𝐶1, we deduce from

Proposition 3.2.3 that

𝑑

𝑑𝑡
𝑅𝑛(𝑡𝑢)

⃒⃒⃒
𝑡=𝑡0

= 𝑅′
𝑛(𝑡0𝑢)𝑢 = lim

𝑘→∞
𝑅′

𝑛(t𝜆𝑘
(𝑢)𝑢)𝑢 = 0,
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which implies that 𝑡0 = t(𝑢). This proves that 𝜆 ↦→ t𝜆(𝑢) is continuous.
The monotonicity it follows directly of identity (3.17). Indeed, we known that

−𝜆(𝑝 − 𝑞)‖𝑢‖𝑝
𝑝 =

∫︁
R𝑁

∫︁
R𝑁

(2 − 𝑞)𝜙(t𝜆(𝑢)|𝐷𝑠𝑢|) + 𝜙′(t𝜆(𝑢)|𝐷𝑠𝑢|)|t𝜆(𝑢)𝐷𝑠𝑢|
|t𝜆(𝑢)𝐷𝑠𝑢|𝑝−2 |𝐷𝑠𝑢|𝑝𝑑𝜇

+
∫︁
R𝑁

𝑉 (𝑥)(2 − 𝑞)𝜙(t𝜆(𝑢)|𝑢|) + 𝜙′(t𝜆(𝑢)|𝑢|)|t𝜆(𝑢)𝑢|
|t𝜆(𝑢)𝑢|𝑝−2 |𝑢|𝑝𝑑𝑥.

Hence, by Lemma 3.2.1, if 𝜆 < 𝜆0, then t𝜆0(𝑢) < t𝜆(𝑢).
(𝑖𝑖𝑖) We consider the function ℱ±

𝑢 : (0, ∞) × (0, ∞) → R defined by ℱ±
𝑢 (𝜆, 𝑡) =

ℐ ′
𝜆,𝜈(𝑡𝑢)(𝑡𝑢). Then, since t𝜆,𝜈(𝑢)𝑢 ∈ 𝒩𝜆,𝜈 for each 𝜆 > 0 and 𝜈 > Λ𝑛,𝜆(𝑢) fixed, we have that

ℱ±
𝑢 (𝜆, t±

𝜆,𝜈(𝑢)) = 0. Moreover, by Lemma 3.2.13, we obtain that

𝜕ℱ±
𝑢

𝜕𝑡
(𝜆, t±

𝜆,𝜈(𝑢)) = ℐ ′′
𝜆,𝜈(t±

𝜆,𝜈(𝑢)𝑢)(t±
𝜆,𝜈(𝑢)𝑢, 𝑢) ̸= 0.

Hence, it follows from Implicit Function Theorem that (0, ∞) ∋ 𝜆 ↦→ t±
𝜆,𝜈(𝑢) is of class 𝐶1

and

𝜕

𝜕𝜆
t±
𝜆,𝜈(𝑢) = −

𝜕ℱ±
𝑢

𝜕𝜆
(𝜆, t±

𝜆,𝜈(𝑢))
𝜕ℱ±

𝑢

𝜕𝑡
(𝜆, t±

𝜆,𝜈(𝑢))
= −

t±
𝜆,𝜈(𝑢)‖t±

𝜆,𝜈(𝑢)𝑢‖𝑝
𝑝

ℐ ′′
𝜆,𝜈(t±

𝜆,𝜈(𝑢)𝑢)(t±
𝜆,𝜈(𝑢)𝑢, t±

𝜆,𝜈(𝑢)𝑢) , for all 𝜆 > 0.

Therefore, 𝜕
𝜕𝜆

t−
𝜆,𝜈(𝑢) > 0 and 𝜕

𝜕𝜆
t+
𝜆,𝜈(𝑢) < 0 for all 𝜆 > 0. This proves the item (𝑖𝑖𝑖).

(𝑖𝑣) In the same way we can prove the functions 𝜈 ↦→ t±
𝜆,𝜈(𝑢) are class 𝐶1 and

𝜕

𝜕𝜈
t±
𝜆,𝜈(𝑢) =

t±
𝜆,𝜈(𝑢)‖t±

𝜆,𝜈(𝑢)𝑢‖𝑞
𝑞,𝑎

ℐ ′′
𝜆,𝜈(t±

𝜆,𝜈(𝑢)𝑢)(t±
𝜆,𝜈(𝑢)𝑢, t±

𝜆,𝜈(𝑢)𝑢) , for all 𝜈 > Λ𝑛,𝜆(𝑢),

which implies that 𝜕
𝜕𝜈

t−
𝜆,𝜈(𝑢) < 0 and 𝜕

𝜕𝜈
t+
𝜆,𝜈(𝑢) > 0 for all 𝜈 > Λ𝑛,𝜆(𝑢). This finishes the

proof.

From the Proposition 3.2.33, we also obtain the following result:

Proposition 3.2.34. Assume that (𝜙1)-(𝜙4), (𝐻1)-(𝐻2) and (𝑉0)-(𝑉1) hold. Then, the

functions ℰ±
𝜆,𝜈 : [0, ∞) × (𝜈𝑛(𝜆), ∞) → R defined in (3.3) satisfies the following properties:

(ii) The functions 𝜆 ↦→ ℰ±
𝜆,𝜈 are non-decreasing, that is, it holds that ℰ±

𝜆1,𝜈 ≤ ℰ±
𝜆2,𝜈 for each

𝜆1 ∈ (0, 𝜆2) and 𝜈 > 𝜈𝑛(𝜆2) fixed.

(iii) For each 𝜆 > 0 fixed, the function 𝜈 ↦→ ℰ±
𝜆,𝜈 are non-increasing, that is, it holds that

ℰ±
𝜆,𝜈2 ≤ ℰ±

𝜆,𝜈1 for each 𝜈1 < 𝜈2.
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Proof. (𝑖) Firstly, let us prove that 𝜆 ↦→ ℰ−
𝜆,𝜈 is increasing. By Proposition 3.2.33, we obtain

that 𝜈 > 𝜈𝑛(𝜆2) ≥ 𝜈𝑛(𝜆1) for each 0 < 𝜆1 < 𝜆2, which implies 𝒰𝜆2,𝜈 ⊂ 𝒰𝜆1,𝜈 . Moreover, it is
not hard to see that the function 𝜆 ↦→ ℐ𝜆,𝜈(𝑢) is increasing for each 𝜈 > 0 and 𝑢 ∈ 𝑋 ∖ {0}

fixed. Then, according to Lemma 3.2.31, we have that

ℰ−
𝜆1,𝜈 ≤ sup

𝑡∈[0,t𝜆1 (𝑤)]
ℐ𝜆1,𝜈(𝑡𝑤) = ℐ𝜆1,𝜈(t−

𝜆1,𝜈(𝑤)𝑤) ≤ ℐ𝜆2,𝜈(t−
𝜆1,𝜈(𝑤)𝑤), (3.51)

for all 𝑤 ∈ 𝒰𝜆2,𝜈 . On the other hand, by using (3.51), Proposition 3.2.16 and that
t−
𝜆1,𝜈(𝑤) < t−

𝜆2,𝜈(𝑤) < t𝜆2(𝑤), we deduce that

ℰ−
𝜆1,𝜈 ≤ ℐ𝜆2,𝜈(t−

𝜆2,𝜈(𝑤)𝑤) = sup
𝑡∈[0,t𝜆2 (𝑤)]

ℐ𝜆2,𝜈(𝑡𝑤), for all 𝑤 ∈ 𝒰𝜆2,𝜈 .

Therefore,

ℰ−
𝜆1,𝜈 ≤ inf

𝑤∈𝒰𝜆2,𝜈

⎡⎣ sup
𝑡∈[0,t𝜆2 (𝑤)]

ℐ𝜆1,𝜈(𝑡𝑤)
⎤⎦ = ℰ−

𝜆2,𝜈 .

Now, let us prove that 𝜆 ↦→ ℰ+
𝜆,𝜈 is increasing. By Lemma 3.2.31,

ℰ+
𝜆1,𝜈 ≤ inf

𝑡∈[t𝜆1 (𝑤),∞)
ℐ𝜆1,𝜈(𝑡𝑤) = ℐ𝜆1,𝜈(t+

𝜆1,𝜈(𝑤)𝑤), for all 𝑤 ∈ 𝒰𝜆2,𝜈 . (3.52)

On the other side, we have that t−
𝜆1,𝜈(𝑤) < t−

𝜆2,𝜈(𝑤) < t𝜆2(𝑤) < t+
𝜆2,𝜈(𝑤) < t+

𝜆1,𝜈(𝑤) by
Proposition 3.2.33. This fact combined with the Proposition 3.2.16 imply that

ℐ𝜆1,𝜈(t+
𝜆1,𝜈(𝑤)𝑤) ≤ ℐ𝜆1,𝜈(t+

𝜆2,𝜈(𝑤)𝑤) ≤ ℐ𝜆2,𝜈(t+
𝜆2,𝜈(𝑤)𝑤) = inf

𝑡∈[t𝜆2 (𝑤),∞)
ℐ𝜆2,𝜈(𝑡𝑤), (3.53)

for all 𝑤 ∈ 𝒰𝜆2,𝜈 . From inequalities (3.52) and (3.53), we conclude that

ℰ+
𝜆1,𝜈 ≤ inf

𝑤∈𝒰𝜆2,𝜈

[︃
inf

𝑡∈[t𝜆2 (𝑤),∞)
ℐ𝜆2,𝜈(𝑡𝑤)

]︃
= ℰ𝜆2,𝜈 .

This finishes the proof of item (𝑖). The proof of item (𝑖𝑖) follows the same argument as that
of item (𝑖).

Finally, the next propositions ensure that any minimizers for the functional ℐ𝜆,𝜈 in the
Nehari manifold 𝒩 −

𝜆,𝜈 or 𝒩 +
𝜆,𝜈 not belong to 𝒩 0

𝜆,𝜈 .

Proposition 3.2.35. Assume that (𝜙1)-(𝜙4), (𝐻1)-(𝐻2) and (𝑉0)-(𝑉1) hold. Then, there

exists 𝜆* > 0 such that the minimizer 𝑢𝜆,𝜈 ∈ 𝒩 −
𝜆,𝜈 ∪ 𝒩 0

𝜆,𝜈 obtained in Proposition 3.2.29

belongs to 𝒩 −
𝜆,𝜈 for each 𝜆 ∈ (0, 𝜆*) and 𝜈 ∈ (𝜈𝑛(𝜆), ∞) be fixed. Furthermore, 𝑢𝜆,𝜈 is a

critical point for the functional ℐ𝜆,𝜈 .
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Proof. By Proposition 3.2.29, there exists 𝑢𝜆,𝜈 ∈ 𝒩 −
𝜆,𝜈 ∪ 𝒩 0

𝜆,𝜈 such that

ℰ−
𝜆,𝜈 = ℐ𝜆,𝜈(𝑢𝜆,𝜈) = inf

𝑤∈𝒩 −
𝜆,𝜈

ℐ𝜆,𝜈(𝑤).

Arguing by contradiction, we assume that 𝑢𝜆,𝜈 ∈ 𝒩 0
𝜆,𝜈 for 𝜆 > 0 and 𝜈 > 𝜈𝑛(𝜆). It follows

from Remark 3.2.25 that

ℐ𝜆,𝜈(𝑢𝜆,𝜈) = inf
𝑤∈𝒩 −

𝜆,𝜈

ℐ𝜆,𝜈(𝑤) ≤ inf
𝑤∈𝒩 0

𝜆,𝜈

ℐ𝜆,𝜈(𝑤) ≤ ℐ𝜆,𝜈(𝑢𝜆,𝜈).

As a consequence, we obtain that

ℐ𝜆,𝜈(𝑢𝜆,𝜈) = inf
𝑤∈𝒩 −

𝜆,𝜈

ℐ𝜆,𝜈(𝑤) = inf
𝑤∈𝒩 0

𝜆,𝜈

ℐ𝜆,𝜈(𝑤).

On the other hand, by using the fact that 𝑢𝜆,𝜈 ∈ 𝒩 0
𝜆,𝜈 and arguing as in (3.46), we also have

that
ℐ𝜆,𝜈(𝑢𝜆,𝜈) ≥ 𝑝(𝑞 − 𝑚) − 𝑚(𝑞 − ℓ)

𝑝𝑞
min{‖𝑢𝜆,𝜈‖ℓ, ‖𝑢𝜆,𝜈‖𝑚}. (3.54)

Let 𝜆0 > 0 and 𝜈0 ∈ (𝜈𝑛(𝜆0), 𝜈) be fixed. Since ℰ−
𝜆0,𝜈0 ≥ ℰ−

𝜆,𝜈 for all 𝜈 ≥ 𝜈0 and 𝜆 ∈ (0, 𝜆0)

by Proposition 3.2.34, we deduce that

min{‖𝑢𝜆,𝜈‖ℓ, ‖𝑢𝜆,𝜈‖𝑚} ≤ 𝑝𝑞

𝑝(𝑞 − 𝑚) − 𝑚(𝑞 − ℓ)ℰ−
𝜆0,𝜈0 . (3.55)

Moreover, by using (3.12) and (𝜙3) together with the Lemma 2.3.13, we obtain that

𝜆(𝑝 − 𝑞)‖𝑤‖𝑝
𝑝 ≥

∫︁
R𝑁

∫︁
R𝑁

(𝑞 − 𝑚)𝜑(|𝐷𝑠𝑤|)|𝐷𝑠𝑤|2𝑑𝜇 +
∫︁
R𝑁

𝑉 (𝑥)(𝑞 − 𝑚)𝜑(|𝑤|)|𝑤|2𝑑𝑥

≥ ℓ(𝑞 − 𝑚)𝒥𝑠,Φ,𝑉 (𝑤)

≥ (𝑞 − 𝑚) min{‖𝑤‖ℓ, ‖𝑤‖𝑚},

for all 𝑤 ∈ 𝒩 0
𝜆,𝜈 . Now, using the Sobolev embedding 𝑋 →˓ 𝐿𝑝(R𝑁), we can see that

𝜆(𝑝 − 𝑞)||𝑤||𝑝𝑝 ≤ 𝜆(𝑝 − 𝑞)𝑆𝑝
𝑝 ||𝑤||𝑝. The two last inequalities give us

||𝑤||𝑝 ≥ 𝑞 − 𝑚

𝜆(𝑝 − 𝑞)𝑆𝑝
𝑝

min{‖𝑤‖ℓ, ‖𝑤‖𝑚}, for all 𝑤 ∈ 𝒩 0
𝜆,𝜈 . (3.56)

Hence, by using (3.55) and (3.56), we deduce that
[︃

𝑞 − 𝑚

𝜆(𝑝 − 𝑞)𝑆𝑝
𝑝

]︃1/(𝑝−ℓ)

≤
[︃

𝑝𝑞

𝑝(𝑞 − 𝑚) − 𝑚(𝑞 − ℓ)ℰ−
𝜆0,𝜈0

]︃ 1
ℓ

(3.57)

or [︃
𝑞 − 𝑚

𝜆(𝑝 − 𝑞)𝑆𝑝
𝑝

]︃1/(𝑝−𝑚)

≤
[︃

𝑝𝑞

𝑝(𝑞 − 𝑚) − 𝑚(𝑞 − ℓ)ℰ−
𝜆0,𝜈0

]︃ 1
𝑚

. (3.58)
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hold true for 𝜆 ∈ (0, 𝜆0). In particular, the inequalities (3.57) and (3.58) are satisfied for all
𝜆 ∈ (0, 𝜆*) with 𝜆* > 0 given by

𝜆* = min

⎧⎨⎩
[︃

𝑝(𝑞 − 𝑚) − 𝑚(𝑞 − ℓ)
𝑝𝑞ℰ−

𝜆0,𝜈0

]︃ 𝑝−ℓ
ℓ (𝑞 − 𝑚)

(𝑝 − 𝑞)𝑆𝑝
𝑝
,

[︃
𝑝(𝑞 − 𝑚) − 𝑚(𝑞 − ℓ)

𝑝𝑞ℰ−
𝜆0,𝜈0

]︃ 𝑝−𝑚
𝑚 (𝑞 − 𝑚)

(𝑝 − 𝑞)𝑆𝑝
𝑝
, 𝜆0

⎫⎬⎭ ,

and we have a contradiction establishing that 𝑢𝜆,𝜈 belongs to 𝒩 −
𝜆,𝜈 for each 𝜆 ∈ (0, 𝜆*) and

𝜈 > 𝜈𝑛(𝜆). Therefore, by using Lemma 3.2.27, we conclude that 𝑢𝜆,𝜈 is a critical point for
ℐ𝜆,𝜈 whenever 𝜆 ∈ (0, 𝜆*) and 𝜈 ∈ (𝜈𝑛(𝜆), ∞).

The next results state that, depending on the values of the parameters 𝜆 and 𝜈, the energy
level ℰ+

𝜆,𝜈 can be negative, zero or positive.

Proposition 3.2.36. Assume that (𝜙1)-(𝜙4), (𝐻1)-(𝐻2) and (𝑉0)-(𝑉1) hold. Suppose also

that 𝜆 > 0 and 𝜈 > 𝜈𝑛(𝜆). Let 𝑣𝜆,𝜈 ∈ 𝑋 be solution obtained in the Proposition 3.2.30. Then,

the following assertions are satisfied:

(i) Assume that 𝜈 ∈ (𝜈𝑛(𝜆), 𝜈𝑒(𝜆)). Then, ℰ+
𝜆,𝜈 = ℐ𝜆,𝜈(𝑣𝜆,𝜈) > 0.

(ii) Assume that 𝜈 = 𝜈𝑒(𝜆). Then, ℰ+
𝜆,𝜈 = ℐ𝜆,𝜈(𝑣𝜆,𝜈) = 0.

(iii) Assume that 𝜈 ∈ (𝜈𝑒(𝜆), ∞). Then, ℰ+
𝜆,𝜈 = ℐ𝜆,𝜈(𝑣𝜆,𝜈) < 0.

Proof. (𝑖) Assume that 𝜈𝑛(𝜆)<𝜈 <𝜈𝑒(𝜆) and let 𝑢 ∈ 𝒩𝜆,𝜈 be fixed. By definition of 𝜈𝑒 , we
can see that 𝜈 < 𝜈𝑒(𝜆) ≤ 𝑅𝑒(𝑢). Moreover, for each 𝑢 ∈ 𝒩𝜆,𝜈 , we have by assumption (𝜙3)

that
𝜈‖𝑢‖𝑞

𝑞,𝑎 ≥ ℓ𝒥𝑠,Φ,𝑉 (𝑢) + 𝜆‖𝑢‖𝑝
𝑝 > min{‖𝑢‖ℓ, ‖𝑢‖𝑚}.

On the other hand, since ℐ𝜆,𝑅𝑒(𝑢)(𝑢) = 0, for each 𝑢 ∈ 𝒩𝜆,𝜈 , it follows from Proposition 3.2.21
that

ℐ𝜆,𝜈(𝑢) = 𝑅𝑒(𝑢) − 𝜈

𝑞
||𝑢||𝑞𝑞,𝑎 ≥ 𝜈𝑒(𝜆) − 𝜈

𝑞
||𝑢||𝑞𝑞,𝑎 ≥ 𝜈𝑒(𝜆) − 𝜈

𝜈𝑞
min{‖𝑢‖ℓ, ‖𝑢‖𝑚} ≥ 𝐶𝜈 ,

where 𝐶𝜈 > 0. Therefore,
ℰ+

𝜆,𝜈 = inf
𝑢∈𝒩 +

𝜆,𝜈

ℐ𝜆,𝜈(𝑢) > 0.

This ends the proof for the item (𝑖).
(𝑖𝑖) Assume that 𝜈 = 𝜈𝑒(𝜆). Using the Proposition 3.2.12 we can consider 𝑢𝑒 ∈ 𝑋 such

that Λ𝑒(𝑢𝑒) = 𝜈𝑒(𝜆). Since Λ𝑒(𝑡𝑢𝑒) = Λ𝑒(𝑢𝑒) for all 𝑡 > 0, we can suppose without any loss
of generality that s(𝑢𝑒) = 1, that is,

Λ𝑒(𝑢𝑒) = 𝑅𝑒(𝑢𝑒) = inf
𝑤∈𝑋∖{0}

Λ𝑒(𝑤).
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Then, since Λ𝑒 is differentiable, we have that 𝑅′
𝑒(𝑢𝑒)𝑣 = 0 for all 𝑣 ∈ 𝑋. By using (3.9) and

Lemma 3.2.14, we obtain that 𝑢𝑒 is a critical point for ℐ𝜆,𝜈 with zero energy. Furthermore,
the Proposition 3.2.15 give us that

Λ𝑛(𝑢𝑒) < Λ𝑒(𝑢𝑒) = 𝑅𝑒(𝑢𝑒) = 𝜈𝑒(𝜆) = 𝜈,

which implies that 𝑢𝑒 ∈ 𝒰𝜆,𝜈 . Thus, by Proposition 3.2.16, there exist 0 < t−
𝜈 (𝑢𝑒) < t(𝑢𝑒) <

t+
𝜈 (𝑢𝑒) such that t−

𝜈 (𝑢𝑒)𝑢𝑒 ∈ 𝒩 −
𝜆,𝜈 and t+

𝜈 (𝑢𝑒)𝑢𝑒 ∈ 𝒩 +
𝜆,𝜈 . Since t−

𝜈 (𝑢𝑒) and t+
𝜈 (𝑢𝑒) are the

only roots of the equation 𝑅𝑛(𝑡𝑢) = 𝜈 and 𝑅𝑛(𝑢𝑒) = 𝑅𝑒(𝑢𝑒) = 𝜈𝑒(𝜆) = 𝜈, it follows from
Proposition 3.2.15 that t−

𝜈𝑒
(𝑢𝑒) < t+

𝜈𝑒
(𝑢𝑒) = s(𝑢𝑒) = 1. As a consequence, we obtain that

𝑢𝑒 ∈ 𝒩 +
𝜆,𝜈 . Thence, using this fact we deduce that ℰ+

𝜆,𝜈 = ℐ𝜆,𝜈(𝑣𝜆,𝜈) ≤ ℐ𝜆,𝜈(𝑢𝑒) = 0. On the
other side, thanks to Remark 3.2.11 and the fact that 𝜈 = 𝜈𝑒(𝜆) ≤ 𝑅𝑒(𝑣), we also have that
ℐ𝜆,𝜈(𝑣) ≥ 0, for all 𝑣 ∈ 𝑋 ∖ {0}. This finishes the proof of item (𝑖𝑖).

(𝑖𝑖𝑖) Assume that 𝜈 > 𝜈𝑒 = 𝑅𝑒(𝑢𝑒). Since 𝜈 ↦→ ℐ𝜆,𝜈(𝑢) is a strictly decreasing function
for each 𝜆 > 0 and 𝑢 ∈ 𝑋 ∖ {0} fixed, then ℐ𝜆,𝜈(𝑢𝑒) < ℐ𝜆,𝑅𝑒(𝑢𝑒)(𝑢𝑒) = 0. On the other hand,
since Λ𝑛(𝑢𝑒) = 𝑅𝑛(𝑢𝑒) = 𝑅𝑒(𝑢𝑒) = 𝜈𝑒(𝜆) < 𝜈, we infer that 𝑢𝑒 ∈ 𝒰𝜆,𝜈 . Hence, by Proposition
3.2.16 there exists t+

𝜈 (𝑢𝑒) ∈ (0, ∞) such that t+
𝜈 (𝑢𝑒)𝑢𝑒 ∈ 𝒩 +

𝜆,𝜈 and

ℰ+
𝜆,𝜈 ≤ ℐ𝜆,𝜈(t+

𝜈 (𝑢𝑒)𝑢𝑒) = inf
𝑡>0

ℐ𝜆,𝜈(𝑡𝑢𝑒) ≤ ℐ𝜆,𝜈(𝑢𝑒) < 0.

This finishes the proof.

Proposition 3.2.37. Assume that (𝜙1)-(𝜙4), (𝐻1)-(𝐻2) and (𝑉0)-(𝑉1) hold.Suppose also that

𝜆 > 0 and 𝜈 > 𝜈𝑛(𝜆). Then, there exists 𝜆* > 0 such that the minimizer 𝑣𝜆,𝜈 ∈ 𝒩 +
𝜆,𝜈 ∪ 𝒩 0

𝜆,𝜈

obtained in Proposition 3.2.30 belongs to 𝒩 +
𝜆,𝜈 . Furthermore, 𝑣𝜆,𝜈 is a critical point for the

functional ℐ𝜆,𝜈 if one of the following conditions is satisfied:

(i) 𝜈 ∈ [𝜈𝑒(𝜆), ∞) and 𝜆 > 0.

(ii) 𝜈 ∈ (𝜈𝑛(𝜆), 𝜈𝑒(𝜆)) and 𝜆 ∈ (0, 𝜆*).

(iii) 𝜆 > 0 and 𝜈 ∈ (𝜈𝑒(𝜆) − 𝜀, 𝜈𝑒(𝜆)), where 𝜀 > 0 is small enough.

Proof. By Proposition 3.2.29, there exists 𝑣𝜆,𝜈 ∈ 𝒩 +
𝜆,𝜈 ∪ 𝒩 0

𝜆,𝜈 such that

ℰ+
𝜆,𝜈 = ℐ𝜆,𝜈(𝑣𝜆,𝜈) = inf

𝑤∈𝒩 +
𝜆,𝜈

ℐ𝜆,𝜈(𝑤).

Firstly, let us assume that (𝑖) holds, that is, 𝜈 ∈ [𝜈𝑒(𝜆), ∞) and 𝜆 > 0. Then, by Proposition
3.2.36, we have that ℐ𝜆,𝜈(𝑣𝜆,𝜈) ≤ 0. On the other hand, by using the same ideas discussed in
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the proof of Proposition 3.2.28, we deduce that the inequality

inf
𝑤∈𝒩 0

𝜆,𝜈

ℐ𝜆,𝜈(𝑤) > 0 ≥ ℐ𝜆,𝜈(𝑣𝜆,𝜈) = inf
𝑤∈𝒩 +

𝜆,𝜈

ℐ𝜆,𝜈(𝑤)

holds true for all 𝜆 > 0 and 𝜈 ≥ 𝜈𝑒(𝜆). This implies that 𝑣𝜆,𝜈 is in 𝒩 +
𝜆,𝜈 . Therefore, by using

Lemma 3.2.27, we conclude that 𝑣𝜆,𝜈 is a critical point for ℐ𝜆,𝜈 for all 𝜈 ∈ [𝜈𝑒(𝜆), ∞) and
𝜆 > 0.

For the item (𝑖𝑖), we proceed by contradiction. We assume that 𝑣𝜆,𝜈 ∈ 𝒩 0
𝜆,𝜈 for 𝜆 > 0 and

𝜈 ∈ (𝜈𝑛(𝜆), 𝜈𝑛(𝜆)). As a consequence of Remark 3.2.25, we obtain that

ℰ+
𝜆,𝜈 = ℐ𝜆,𝜈(𝑣𝜆,𝜈) = inf

𝑤∈𝒩 +
𝜆,𝜈

ℐ𝜆,𝜈(𝑤) = inf
𝑤∈𝒩 0

𝜆,𝜈

ℐ𝜆,𝜈(𝑤).

Let 𝜆0 > 0 and 𝜈0 ∈ (𝜈𝑛(𝜆), 𝜈) be fixed. By Proposition 3.2.34 and Proposition 3.2.36, we
have that ℰ+

𝜆0,𝜈0 ≥ ℰ+
𝜆,𝜈 > 0 for all 𝜈 ≥ 𝜈0 and 𝜆 ∈ (0, 𝜆0). Thus, using the same ideas

discussed in the proof of Proposition 3.2.35, we deduce that
[︃

𝑞 − 𝑚

𝜆(𝑝 − 𝑞)𝑆𝑝
𝑝

]︃1/(𝑝−ℓ)

≤
[︃

𝑝𝑞

𝑝(𝑞 − 𝑚) − 𝑚(𝑞 − ℓ)ℰ+
𝜆0,𝜈0

]︃ 1
ℓ

(3.59)

or [︃
𝑞 − 𝑚

𝜆(𝑝 − 𝑞)𝑆𝑝
𝑝

]︃1/(𝑝−𝑚)

≤
[︃

𝑝𝑞

𝑝(𝑞 − 𝑚) − 𝑚(𝑞 − ℓ)ℰ+
𝜆0,𝜈0

]︃ 1
𝑚

. (3.60)

holds true for 𝜆 ∈ (0, 𝜆0). In particular, the inequalities (3.59) and (3.60) are satisfied for all
𝜆 ∈ (0, 𝜆*) with 𝜆* > 0 given by

𝜆* = min

⎧⎨⎩
[︃

𝑝(𝑞 − 𝑚) − 𝑚(𝑞 − ℓ)
𝑝𝑞ℰ+

𝜆0,𝜈0

]︃ 𝑝−ℓ
ℓ (𝑞 − 𝑚)

(𝑝 − 𝑞)𝑆𝑝
𝑝
,

[︃
𝑝(𝑞 − 𝑚) − 𝑚(𝑞 − ℓ)

𝑝𝑞ℰ+
𝜆0,𝜈0

]︃ 𝑝−𝑚
𝑚 (𝑞 − 𝑚)

(𝑝 − 𝑞)𝑆𝑝
𝑝
, 𝜆0

⎫⎬⎭ ,

which is a contradiction. Therefore, 𝑣𝜆,𝜈 ∈ 𝒩 +
𝜆,𝜈 which implies that 𝑣𝜆,𝜈 is a critical point for

the functional ℐ𝜆,𝜈 by Lemma 3.2.27.
It remains to consider the item (𝑖𝑖𝑖). In this case, it is sufficient to prove that ℰ+

𝜆,𝜈 < ℰ0
𝜆,𝜈 .

Since 𝒩 0
𝜆,𝜈 is closed and ℐ𝜆,𝜈 |𝒩 0

𝜆,𝜈
is coercive, there exists 𝑤𝜆,𝜈 ∈ 𝒩 0

𝜆,𝜈 such that ℐ𝜆,𝜈(𝑤𝜆,𝜈) =

ℰ0
𝜆,𝜈 . By using the estimates (3.36) and (3.46), we deduce the following inequality

ℰ0
𝜆,𝜈 = ℐ𝜆,𝜈(𝑤𝜆,𝜈) ≥ 𝑝(𝑞 − 𝑚) − 𝑚(𝑞 − ℓ)

𝑝𝑞
min

⎧⎨⎩
(︃

ℓ

𝜈𝑆𝑞
𝑞 ‖𝑎‖∞

)︃ ℓ
𝑞−ℓ

,

(︃
ℓ

𝜈𝑆𝑞
𝑞 ‖𝑎‖∞

)︃ 𝑚
𝑞−𝑚

⎫⎬⎭ .

Assuming that 𝜈 < 𝜈𝑒(𝜆), we obtain that

ℰ0
𝜆,𝜈 >

𝑝(𝑞 − 𝑚) − 𝑚(𝑞 − ℓ)
𝑝𝑞

min

⎧⎨⎩
(︃

ℓ

𝜈𝑒(𝜆)𝑆𝑞
𝑞 ‖𝑎‖∞

)︃ ℓ
𝑞−ℓ

,

(︃
ℓ

𝜈𝑒(𝜆)𝑆𝑞
𝑞 ‖𝑎‖∞

)︃ 𝑚
𝑞−𝑚

⎫⎬⎭ =: 𝐶𝜈𝑒(𝜆).
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Now, using the Proposition 3.2.36, we have that ℐ𝜆,𝜈(𝑣𝜆,𝜈) = ℰ+
𝜆,𝜈 = 0 when 𝜈 = 𝜈𝑒. Moreover,

ℐ𝜆,𝜈(𝑣𝜆,𝜈) = ℰ+
𝜆,𝜈 > 0 for each 𝜈 ∈ (𝜈𝑛(𝜆), 𝜈𝑒(𝜆)). More precisely, we employ the same

estimates used in the proof of Proposition 3.2.36 (𝑖), we obtain that

ℰ+
𝜆,𝜈 ≥ 𝜈𝑒(𝜆) − 𝜈

𝜈𝑞
min

⎧⎨⎩
(︃

ℓ

𝜈𝑒(𝜆)𝑆𝑞
𝑞 ‖𝑎‖∞

)︃ ℓ
𝑞−ℓ

,

(︃
ℓ

𝜈𝑒(𝜆)𝑆𝑞
𝑞 ‖𝑎‖∞

)︃ 𝑚
𝑞−𝑚

⎫⎬⎭ .

Hence, by two last inequality, there exists 𝜀 > 0 small enough such that ℰ+
𝜆,𝜈 < 𝐶𝜈𝑒(𝜆) < ℰ0

𝜆,𝜈

for each 𝜈 ∈ (𝜈𝑒(𝜆) − 𝜀, 𝜈𝑒(𝜆)). This ends the proof.

3.3 THE PROOF OF MAIN RESULTS

The purpose of this section is to present the proof of our main results.

The proof of Theorem 3.1.1. According to Proposition 3.2.15 we have that 0 < 𝜈𝑛(𝜆) <

𝜈𝑒(𝜆) for all 𝜆 > 0. Now, by using Proposition 3.2.29 we find a function 𝑢𝜆,𝜈 ∈ 𝒩 −
𝜆,𝜈 ∪ 𝒩 0

𝜆,𝜈

that solve the minimization problem given by (3.3), that is,

ℰ−
𝜆,𝜈 = ℐ𝜆,𝜈(𝑢𝜆,𝜈) = inf

𝑤∈𝒩 −
𝜆,𝜈

ℐ𝜆,𝜈(𝑤).

But thanks to Proposition 3.2.35, there exists 𝜆* > 0 such that the function 𝑢𝜆,𝜈 ∈ 𝒩 +
𝜆,𝜈 for

each 𝜆 ∈ (0, 𝜆*) and 𝜈 ∈ (𝜈𝑛(𝜆), ∞). Therefore, it follows from Lemma 3.2.27 that 𝑢𝜆,𝜈 is
a weak solution for problem (𝒫𝜆,𝜈) Moreover, according to Proposition 3.2.28 we also obtain
that ℐ𝜆,𝜈(𝑢𝜆,𝜈) ≥ 𝐷𝜈 holds true for some 𝐷𝜈 > 0. This finishes the proof.

The proof of Theorem 3.1.2. Firstly, using the Proposition 3.2.30, we find a minimizer
𝑣𝜆,𝜈 ∈ 𝒩 +

𝜆,𝜈 ∪ 𝒩 0
𝜆,𝜈 for the minimization problem given by (3.4). However, by Proposition

3.2.37, there exists 𝜆* > 0 in such way that 𝑣𝜆,𝜈 /∈ 𝒩 0
𝜆,𝜈 for each 𝜆 ∈ (0, 𝜆*) and 𝜈 > 𝜈𝑛(𝜆).

More preciselly, we obtain that 𝑣𝜆,𝜈 is a weak solution of problem (𝒫𝜆,𝜈) if one of the following
conditions is satisfied:

(i) 𝜈 ∈ [𝜈𝑒(𝜆), ∞) and 𝜆 > 0.

(ii) 𝜈 ∈ (𝜈𝑛(𝜆), 𝜈𝑒(𝜆)) and 𝜆 ∈ (0, 𝜆*).

(iii) 𝜆 > 0 and 𝜈 ∈ (𝜈𝑒(𝜆) − 𝜀, 𝜈𝑒(𝜆)), where 𝜀 > 0 is small enough.

In order to prove that 𝑣𝜆,𝜈 is a ground state solution, it is sufficient to verify that ℰ+
𝜆,𝜈 < ℰ−

𝜆,𝜈 . Let
𝑢𝜆,𝜈 be the weak solution obtained in Theorem 3.1.1. We know that 1 = t−

𝜈 (𝑢𝜆,𝜈) < t+
𝜈 (𝑢𝜆,𝜈)



83

with t+
𝜈 (𝑢𝜆,𝜈)𝑢𝜆,𝜈 ∈ 𝒩 +

𝜆,𝜈 . Hence, since 𝑡 ↦→ ℐ𝜆,𝜈(𝑡𝑢𝜆,𝜈) is a decreasing function on [1, t+
𝜈 (𝑢𝜆,𝜈)],

we conclude that

ℰ+
𝜆,𝜈 = ℐ𝜆,𝜈(𝑣𝜆,𝜈) ≤ ℐ𝜆,𝜈(t+

𝜈 (𝑢𝜆,𝜈)𝑢𝜆,𝜈) < ℐ𝜆,𝜈(𝑢𝜆,𝜈) = ℰ−
𝜆,𝜈 .

Therefore, 𝑣𝜆,𝜈 is a ground state solution. Finally, according to Proposition 3.2.36 we also
obtain that ℐ𝜆,𝜈(𝑣𝜆,𝜈) > 0 whenever 𝜈 ∈ (𝜈𝑒, ∞). Furthermore, by using Proposition 3.2.36,
we observe that ℐ𝜆,𝜈(𝑣𝜆,𝜈) = 0 for 𝜈 = 𝜈𝑒. In the same way, assuming that 𝜈 ∈ (𝜈𝑛, 𝜈𝑒), the
solution 𝑣𝜆,𝜈 satisfies ℐ𝜆,𝜈(𝑣𝜆,𝜈) < 0, see Proposition 3.2.36. This ends the proof.

The proof of Corollary 3.1.3. The proof is an immediate consequence of the Theorems
3.1.1 and 3.1.2.

The proof of Theorem 3.1.4. The proof it follows directly from Lemma 3.2.20, which
states that the Nehari set 𝒩𝜆,𝜈 is empty for each 𝜈 ∈ (−∞, 𝜈𝑛(𝜆)) and 𝜆 > 0.

3.4 THE ASYMPTOTIC BEHAVIOR OF SOLUTIONS

In the section, we study the asymptotic behavior of solutions 𝑢𝜆,𝜈 and 𝑣𝜆,𝜈 obtained from
Propositions 3.2.29 and 3.2.30 as 𝜆 → 0 or 𝜈 → ∞.

We start proving some properties on the energy ℰ−
𝜆,𝜈 as well as the solution 𝑢𝜆,𝜈 when the

parameter 𝜈 is fixed.

Proposition 3.4.1. Assume that (𝜙1)-(𝜙4), (𝐻1)-(𝐻2) and (𝑉0)-(𝑉1) hold. Then, the function

ℰ−
𝜆,𝜈 : [0, 𝜆*) × (𝜈𝑛(𝜆), ∞) → R given by (3.3) possesses the following properties:

(i) It holds that 𝜆 ↦→ ℰ−
𝜆,𝜈 is a continuous function for each 𝜈 > 𝜈𝑛(𝜆) fixed.

(ii) For each 𝜆0 and 𝜈 > 𝜈𝑛(𝜆0) fixed, there exists 𝐶 > 0 independent on 𝜆 such that

0 < ℰ−
𝜆,𝜈 ≤ 𝐶 for all 𝜆 ∈ [0, 𝜆0).

(iii) For each 𝜆0 > 0 and 𝜈 > 𝜈𝑛(𝜆0) fixed, the sequence (𝑢𝜆,𝜈)𝜆<𝜆0 obtained as minimizer

in 𝒩 −
𝜆,𝜈 is bounded in 𝑋.

(iv) In addition, 𝑢𝜆,𝜈 → 𝑢𝜈 in 𝑋 for some 𝑢𝜈 ∈ 𝑋 ∖ {0} as 𝜆 → 0. Consequently, we obtain

that ℰ−
𝜆,𝜈 → ℰ−

0,𝜈 as 𝜆 → 0 and ℰ−
0,𝜈 = ℐ0,𝜈(𝑢𝜈), where ℰ−

0,𝜈 := inf𝑢∈𝒩0,𝜈 ℐ0,𝜈(𝑢).
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Proof. (𝑖) It is sufficient to prove that the function 𝜆 ↦→ ℰ−
𝜆,𝜈 is sequentially continuous.

To this end, let 𝜆 ∈ [0, 𝜆*) and 𝜈 > 𝜈𝑛(𝜆) be fixed and consider a sequence (𝜆𝑘)𝑘∈N in R

such that 𝜆𝑘 → 𝜆. First, we know from Proposition 3.2.7 that, for each 𝜆 > 0, it holds
𝜈𝑛(𝜆) = inf𝑢∈𝑋∖{0} Λ𝑛,𝜆(𝑢) = 𝑅𝑛,𝜆(t𝜆(𝑢𝜆)𝑢𝜆) for some 𝑢𝜆 ∈ 𝑋 ∖ {0}. Then, it follows from
Proposition 3.2.33 that

lim sup
𝑘→∞

𝜈𝑛(𝜆𝑘) ≤ lim sup
𝑘→∞

𝑅𝑛,𝜆𝑘
(t𝜆𝑘

(𝑢𝜆)𝑢𝜆) = 𝑅𝑛,𝜆(t𝜆(𝑢𝜆)𝑢𝜆) = 𝜈𝑛(𝜆) < 𝜈,

which implies that 𝜈𝑛(𝜆𝑘) < 𝜈 for all 𝑘 ∈ N enough large. Thus, according to Proposition
3.2.29 and Proposition 3.2.35, we have that ℰ−

𝜆𝑘,𝜈 is attained by a function 𝑢𝑘 ∈ 𝒩 −
𝜆𝑘,𝜈 ⊂ 𝑋

which is a critical point for the functional ℐ𝜆𝑘,𝜈 for all 𝑘 ∈ N enough large. Consequently, we
obtain that

ℰ−
𝜆𝑘,𝜈 = ℐ𝜆𝑘,𝜈(𝑢𝑘) ≤ ℐ𝜆𝑘,𝜈(𝑤), for all 𝑤 ∈ 𝒩 −

𝜆𝑘,𝜈 , (3.61)

ℐ ′
𝜆𝑘,𝜈(𝑢𝑘)𝑤 = 0, for all 𝑤 ∈ 𝑋 and ℐ ′′

𝜆𝑘,𝜈(𝑢𝑘)(𝑢𝑘, 𝑢𝑘) < 0, (3.62)

for all 𝑘 ∈ N enough large. Now, we will show that (𝑢𝑘)𝑘∈N is bounded. Indeed, by Proposition
3.2.33,

lim sup
𝑘→∞

ℰ−
𝜆𝑘,𝜈 ≤ lim sup

𝑘→∞
ℐ𝜆𝑘,𝜈(t−

𝜆𝑘,𝜈(𝑢𝜆,𝜈)𝑢𝜆,𝜈) = ℐ𝜆,𝜈(t−
𝜆,𝜈(𝑢𝜆,𝜈)𝑢𝜆,𝜈) = ℰ−

𝜆,𝜈
,

where 𝑢𝜆,𝜈 is obtained in Proposition 3.2.29. Hence, by using the same ideas discussed in the
proof of inequality (3.46), we deduce that

ℰ−
𝜆,𝜈

≥ lim sup
𝑘→∞

ℰ−
𝜆𝑘,𝜈 ≥ lim sup

𝑘→∞

[︃
𝑝(𝑞 − 𝑚) − 𝑚(𝑞 − ℓ)

𝑝𝑞
min{‖𝑢𝑘‖ℓ, ‖𝑢𝑘‖𝑚}

]︃
,

that is, (𝑢𝑘)𝑘∈N is a bounded sequence in 𝑋. Thence, there exists 𝑢 ∈ 𝑋 such that 𝑢𝑘 ⇀ 𝑢 in
𝑋. It is not hard to verify that 𝑢 ̸= 0, see Remark 3.2.22. Moreover, by using (3.62), Hölder
inequality and compact embedding 𝑋 →˓ 𝐿𝑟(R𝑁) for each 𝑟 ∈ (𝑚, ℓ*

𝑠), we have that

𝒥𝑠,Φ,𝑉 (𝑢𝑘)(𝑢𝑘 − 𝑢) = 𝜈𝑘

∫︁
R𝑁

𝑎(𝑥)|𝑢𝑘|𝑞−2𝑢𝑘(𝑢𝑘 − 𝑢)𝑑𝑥 − 𝜆𝑘

∫︁
R𝑁

|𝑢𝑘|𝑝−2𝑢𝑘(𝑢𝑘 − 𝑢)𝑑𝑥 = 𝑜𝑘(1).

Then, by (𝑆+)-condition (see Proposition 2.3.17), we infer that 𝑢𝑘 → 𝑢 in 𝑋. This fact
combined with (3.62) imply that ℐ ′

𝜆,𝜈(𝑢)𝑤 = 0 for all 𝑤 ∈ 𝑋 and ℐ ′′
𝜆,𝜈(𝑢)(𝑢, 𝑢) ≤ 0, that is,

𝑢 ∈ 𝒩 −
𝜆,𝜈 ∪ 𝒩 0

𝜆,𝜈 . Now, proceeding as in proof of Proposition 3.2.35, we obtain that 𝑢 /∈ 𝒩 0
𝜆,𝜈 .

Finally, by using (3.61) and strong converge, we have also that ℐ𝜆,𝜈(𝑢) ≤ ℐ𝜆,𝜈(𝑤) for all
𝑤 ∈ 𝒩 −

𝜆,𝜈 , which implies that

lim
𝑘→∞

ℰ−
𝜆𝑘,𝜈 = lim

𝑘→∞
ℐ𝜆𝑘,𝜈(𝑢𝑘) = ℐ𝜆,𝜈(𝑢) = ℰ−

𝜆,𝜈 .
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This finishes the proof of item (𝑖).
(𝑖𝑖) Let 𝜆0 and 𝜈 > 𝜈𝑛(𝜆0) be fixed. It follows from Proposition 3.2.34 that

ℰ−
𝜆,𝜈 ≤ ℰ−

𝜆0,𝜈 = inf
𝑤∈𝒩 −

𝜆0,𝜈

ℐ𝜆0,𝜈(𝑤) = 𝐶 < ∞, for all 𝜆 ∈ (0, 𝜆0),

where 𝐶 := 𝐶(𝑞, 𝑝, 𝜆0, 𝜈, 𝑁) is independent on 𝜆.
(𝑖𝑖𝑖) Let (𝑢𝜆,𝜈)𝜆<𝜆0 be the sequence obtained as minimizers in 𝒩 −

𝜆,𝜈 for the functional ℐ𝜆,𝜈 ,
see Proposition 3.2.29 and Proposition 3.2.35. Arguing as in (3.46), we deduce also that

𝐶 ≥ ℰ−
𝜆,𝜈 = ℐ𝜆,𝜈(𝑢𝜆,𝜈) ≥ 𝑝(𝑞 − 𝑚) − 𝑚(𝑞 − ℓ)

𝑝𝑞
min{‖𝑢𝜆,𝜈‖ℓ, ‖𝑢𝜆,𝜈‖𝑚},

for all 𝜆 ∈ [0, 𝜆0), where 𝐶 > 0 is independent on 𝜆. The last assertion implies that

‖𝑢𝜆,𝜈‖ ≤ min

⎧⎨⎩
[︃

𝑝𝑞𝐶

𝑝(𝑞 − 𝑚) − 𝑚(𝑞 − ℓ)

]︃ 1
ℓ

,

[︃
𝑝𝑞𝐶

𝑝(𝑞 − 𝑚) − 𝑚(𝑞 − ℓ)

]︃ 1
𝑚

⎫⎬⎭ .

Consequently, the sequence (𝑢𝜆,𝜈)𝜆<𝜆0 is bounded in 𝑋 with respect to 𝜆 > 0. Therefore, there
exists 𝑢𝜈 ∈ 𝑋 such that 𝑢𝜆,𝜈 ⇀ 𝑢𝜈 in 𝑋 as 𝜆 → 0. Arguing as in the proof of Proposition
3.4.1 (𝑖), we obtain also that 𝑢𝜆,𝜈 → 𝑢𝜈 in 𝑋 as 𝜆 → 0. By using Proposition 3.2.28, we
have that ‖𝑢𝜈‖ ≥ 𝐷𝜈 > 0, that is, 𝑢𝜈 ̸= 0. Finally, by using item (𝑖), we conclude that
0 < ℰ−

𝜆,𝜈 → ℰ−
0,𝜈 as 𝜆 → 0, where ℰ−

0,𝜈 = ℐ0,𝜈(𝑢𝜈). This finishes the proof.

The next result is useful in order to study the asymptotic behavior of solutions obtained
from Theorems 3.1.1 and 3.1.2 as 𝜆 → 0 .

Proposition 3.4.2. Assume that (𝜙1)-(𝜙4), (𝐻1)-(𝐻2) and (𝑉0)-(𝑉1) hold. Then, 𝜈𝑒(𝜆) → 0

and 𝜈𝑛(𝜆) → 0 as 𝜆 → 0.

Proof. Let 𝑢 ∈ 𝑋 ∖ {0} be fixed. First, by using Proposition 3.2.10 and assumption (𝜙3), we
obtain that

0 = 1
𝑞

‖s(𝑢)𝑢‖𝑞
𝑞,𝑎s(𝑢)𝑅𝑒(s(𝑢)𝑢)𝑢 = −𝑞𝒥𝑠,Φ,𝑉 (s(𝑢)𝑢) + 𝒥 ′

𝑠,Φ,𝑉 (s(𝑢)𝑢)(s(𝑢)𝑢)

+ 𝜆
𝑝 − 𝑞

𝑝
‖s(𝑢)𝑢‖𝑝

𝑝 (3.63)

≥ (ℓ − 𝑞)𝒥𝑠,Φ,𝑉 (s(𝑢)𝑢) + 𝜆
𝑝 − 𝑞

𝑝
‖s(𝑢)𝑢‖𝑝

𝑝.

The last inequality combined with Lemma 2.3.13 imply that

‖s(𝑢)𝑢‖𝑝
𝑝 ≤ 𝑝(𝑞 − ℓ)

𝜆(𝑝 − 𝑞) max{‖s(𝑢)𝑢‖ℓ, ‖s(𝑢)𝑢‖𝑚}. (3.64)
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On the other hand, combining (3.63) and (𝜙3) once more, we deduce that

0 ≤ (𝑚 − 𝑞)𝒥𝑠,Φ,𝑉 (s(𝑢)𝑢) + 𝜆
𝑝 − 𝑞

𝑝
‖s(𝑢)𝑢‖𝑝

𝑝. (3.65)

Assume that ‖s(𝑢)𝑢‖ ≤ 1. Hence, combining (3.64) and (3.65), we infer that

0 < 𝜈𝑒(𝜆) ≤ Λ𝑒(𝑢) =
𝒥𝑠,Φ,𝑉 (s(𝑢)𝑢) + 𝜆

𝑝
‖s(𝑢)𝑢‖𝑝

𝑝

1
𝑞
‖s(𝑢)𝑢‖𝑞

𝑞,𝑎
≤

𝜆 𝑝−𝑞
𝑝(𝑞−𝑚)‖s(𝑢)𝑢‖𝑝

𝑝 + 𝜆
𝑝
‖s(𝑢)𝑢‖𝑝

𝑝

1
𝑞
‖s(𝑢)𝑢‖𝑞

𝑞,𝑎

≤
𝜆 (𝑝−𝑚)

𝑝(𝑞−𝑚)

[︁
𝑝(𝑞−ℓ)
𝜆(𝑝−𝑞)

‖𝑢‖ℓ

‖𝑢‖𝑝
𝑝

]︁ 𝑝−𝑞
𝑝−ℓ ‖𝑢‖𝑝

𝑝

1
𝑞
‖𝑢‖𝑞

𝑞,𝑎

=
𝑞(𝑝−𝑚)
𝑝(𝑞−𝑚)

[︁
𝑝(𝑞−ℓ)
(𝑝−𝑞)

]︁ 𝑝−𝑞
𝑝−ℓ 𝜆

𝑞−ℓ
𝑝−ℓ ‖𝑢‖ℓ 𝑝−𝑞

𝑝−ℓ ‖𝑢‖
𝑝 𝑞−ℓ

𝑝−ℓ
𝑝

‖𝑢‖𝑞
𝑞,𝑎

= 𝐶ℓ,𝑚,𝑞,𝑝𝜆
𝑞−ℓ
𝑝−ℓ

‖𝑢‖ℓ 𝑝−𝑞
𝑝−ℓ ‖𝑢‖

𝑝 𝑞−ℓ
𝑝−ℓ

𝑝

‖𝑢‖𝑞
𝑞,𝑎

.

In the case of ‖s(𝑢)𝑢‖ > 1, we obtain that

0 < 𝜈𝑒(𝜆) ≤ 𝐶ℓ,𝑚,𝑞,𝑝𝜆
𝑞−𝑚
𝑝−𝑞

‖𝑢‖𝑚 𝑝−𝑞
𝑝−𝑚 ‖𝑢‖

𝑝 𝑞−𝑚
𝑝−𝑚

𝑝

‖𝑢‖𝑞
𝑞,𝑎

.

Summarizing, we have that

0 < 𝜈𝑒(𝜆) ≤ Λ𝑒(𝑢) ≤ 𝐶ℓ,𝑚,𝑞,𝑝 max

⎧⎪⎨⎪⎩𝜆
𝑞−ℓ
𝑝−𝑞

‖𝑢‖ℓ 𝑝−𝑞
𝑝−ℓ ‖𝑢‖

𝑝 𝑞−ℓ
𝑝−ℓ

𝑝

‖𝑢‖𝑞
𝑞,𝑎

, 𝜆
𝑞−𝑚
𝑝−𝑞

‖𝑢‖𝑚 𝑝−𝑞
𝑝−𝑚 ‖𝑢‖

𝑝 𝑞−𝑚
𝑝−𝑚

𝑝

‖𝑢‖𝑞
𝑞,𝑎

⎫⎪⎬⎪⎭
The last inequality implies that 𝜈𝑒(𝜆) → 0 as 𝜆 → 0. Finally, by using Proposition 3.2.15, we
also obtain that 𝜈𝑛(𝜆) → 0 as 𝜆 → 0.

Remark 3.4.3. As a consequence of the previous result, for each fixed 𝜈 > 0, there exists a

sufficiently small 𝜆0 > 0 such that 𝜈 > 𝜈𝑛(𝜆) and 𝜈 > 𝜈𝑒(𝜆) hold for each 𝜆 ∈ (0, 𝜆0). For

this reason, we can analyze the asymptotic behavior of the solutions 𝑢𝜆,𝜈 and 𝑣𝜆,𝜈 as 𝜆 → 0.

Now we are ready to prove the following result.

Proposition 3.4.4. Assume that (𝜙1)-(𝜙4), (𝐻1)-(𝐻2) and (𝑉0)-(𝑉1) hold. Then, the weak

solutions 𝑢𝜆,𝜈 and 𝑣𝜆,𝜈 obtained respectively in Propositions 3.2.29 and 3.2.30 has the following

asymptotic behavior:

(i) It holds that 𝑢𝜆,𝜈 → 𝑢𝜈 in 𝑋 as 𝜆 → 0, where 𝑢𝜈 is ground state solution to the

following nonlocal elliptic problem

(−ΔΦ)𝑠𝑤 + 𝑉 (𝑥)𝜙(|𝑤|)𝑤 = 𝜈𝑎(𝑥)|𝑤|𝑞−2𝑤 in R𝑁 , 𝑤 ∈ 𝑊 𝑠,Φ(R𝑁). (3.66)
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(ii) It holds that ‖𝑣𝜆,𝜈‖ → ∞ as 𝜆 → 0.

Proof. (𝑖) In view from Proposition 3.4.1, there exists 𝑢𝜈 ∈ 𝑋 ∖ {0} such that 𝑢𝜆,𝜈 → 𝑢𝜈 in
𝑋 as 𝜆 → 0 and ℰ−

0,𝜈 = ℐ0,𝜈(𝑢𝜈). Since ℐ ′
𝜆,𝜈(𝑢𝜆,𝜈)𝑤 = 0 for all 𝑤 ∈ 𝑋, using the compact

embedding 𝑋 →˓ 𝐿𝑟(R𝑁) for each 𝑟 ∈ (𝑚, ℓ*
𝑠), we conclude that ℐ ′

0,𝜈(𝑢𝜈)𝑤 = 0 for all
𝑤 ∈ 𝑋. Therefore, the function 𝑢𝜈 is a weak nontrivial solution with minimal energy level for
the nonlocal elliptic problem (3.66). This proves the item (𝑖).

(𝑖𝑖) Firstly, it follows from (3.12), (𝜙3) and Lemma 2.3.13 that

𝜆(𝑝 − 𝑞)‖𝑣𝜆,𝜈‖𝑝
𝑝 ≥ ℓ(𝑞 − 𝑚)𝒥𝑠,Φ,𝑉 (𝑣𝜆,𝜈) ≥ (𝑞 − 𝑚) min{‖𝑣𝜆,𝜈‖ℓ, ‖𝑣𝜆,𝜈‖𝑚},

Now, combining the last assertion with Sobolev embedding 𝑋 →˓ 𝐿𝑝(R𝑁), we infer that

‖𝑣𝜆,𝜈‖ ≥ min

⎧⎨⎩
[︃

𝑞 − 𝑚

𝜆(𝑝 − 𝑞)𝑆𝑝
𝑝

]︃ 1
𝑝−ℓ

,

[︃
𝑞 − 𝑚

𝜆(𝑝 − 𝑞)𝑆𝑝
𝑝

]︃ 1
𝑝−𝑚

⎫⎬⎭ → ∞ as 𝜆 → 0.

This ends the proof.

In the sequel, we study the behavior of solutions 𝑢𝜆,𝜈 and 𝑣𝜆,𝜈 as 𝜈 → ∞. The idea is to
guarantee that the sequences (𝑢𝜆,𝜈)𝜈 and (𝑣𝜆,𝜈)𝜈 remain bounded in 𝑋 for each 𝜈 > 0 large
enough. As a starting point, we consider the following two result:

Lemma 3.4.5. Assume that (𝜙1)-(𝜙4), (𝐻1)-(𝐻2) and (𝑉0)-(𝑉1) hold. Then, the function

ℰ−
𝜆,𝜈 : [0, 𝜆*) × (𝜈𝑛(𝜆), ∞) → R given by (3.3) possesses the following properties:

(i) For each 𝜆 > 0 and 𝜈0 > 𝜈𝑛(𝜆) fixed, there exists 𝐶 > 0 independent on 𝜈 such that

0 < ℰ−
𝜆,𝜈 ≤ 𝐶 for all 𝜈 > 𝜈0.

(ii) For each 𝜆 > 0 and 𝜈0 > 𝜈𝑛(𝜆) fixed, the sequence (𝑢𝜆,𝜈)𝜈>𝜈0 obtained as minimizer in

𝒩 −
𝜆,𝜈 is bounded in 𝑋.

Proof. (𝑖) Let 𝜆 > 0 and 𝜈0 > 𝜈𝑛(𝜆) be fixed. By Proposition 3.2.34, it follows that

ℰ−
𝜆,𝜈 ≤ ℰ−

𝜆,𝜈0 = inf
𝑤∈𝒩 −

𝜆,𝜈0

ℐ𝜆,𝜈(𝑤) = 𝐶 < ∞, for all 𝜈 > 𝜈0,

where 𝐶 := 𝐶(𝑝, 𝑞, 𝜆, 𝜈0, 𝑁) > 0 is independent on 𝜈. This proves the item (𝑖).
The proof of item (𝑖𝑖) follows the same ideas as Proposition 3.4.1 (𝑖𝑖𝑖).

Lemma 3.4.6. Assume that (𝜙1)-(𝜙4), (𝐻1)-(𝐻2) and (𝑉0)-(𝑉1) hold. Then, the function

ℰ+
𝜆,𝜈 : [0, 𝜆*) × (𝜈𝑛(𝜆), ∞) → R given by (3.3) possesses the following properties:



88

(i) It holds that 𝜈 ↦→ ℰ+
𝜆,𝜈 is a continuous function for 𝜆 > 0 fixed.

(ii) For each 𝜆 > 0 and 𝜈0 > 𝜈𝑛(𝜆), there exists 𝐶 > 0 independent on 𝜈 such that ℰ+
𝜆,𝜈 ≤ 𝐶

for all 𝜈 > 𝜈0.

(iii) It holds that ℰ+
𝜆,𝜈 → −∞ as 𝜈 → ∞ for each 𝜆 > 0 fixed.

Proof. The proof of item (𝑖) and (𝑖𝑖) follows using the same ideas discussed in the proof of
Proposition 3.4.1.

(𝑖𝑖𝑖) Let 𝑤 ∈ 𝑋∖{0} be fixed. Taking 𝜈 > 0 large enough, we can assume that 𝜈 > Λ𝑛(𝑤).
Then, by Proposition 3.2.16, there exists t𝜆,𝜈 := t+

𝜆,𝜈(𝑤) > 0 such that t𝜆,𝜈𝑤 ∈ 𝒩 +
𝜆,𝜈 .

Consequently, it follows from assumption (𝜙3) and Lemma 2.3.13 that

𝜈𝑡𝑞
𝜆,𝜈‖𝑤‖𝑞

𝑞,𝑎 = 𝒥 ′
𝑠,Φ,𝑉 (t𝜆,𝜈𝑤)(t𝜆,𝜈𝑤) + 𝜆𝑡𝑝

𝜆,𝜈‖𝑤‖𝑝
𝑝

≤ 𝑚 max{‖t𝜆,𝜈𝑤‖ℓ, ‖t𝜆,𝜈𝑤‖𝑚} + 𝜆𝑡𝑝
𝜆,𝜈‖𝑤‖𝑝

𝑝.
(3.67)

On the other hand, by using (3.12) combined with assumption (𝜙3) and Lemma 2.3.13, we
obtain that

𝜆(𝑝 − 𝑞)‖t𝜆,𝜈𝑤‖𝑝
𝑝 > (𝑞 − 𝑚) min{‖t𝜆,𝜈𝑤‖ℓ, ‖t𝜆,𝜈𝑤‖𝑚}.

We consider the proof for the case ‖t𝜆,𝜈𝑤‖ > 1. The proof for the case ‖t𝜆,𝜈𝑤‖ ≤ 1 is
analogous. In view of last estimate, we have that 𝜆(𝑝 − 𝑞)t𝑝

𝜆,𝜈‖𝑤‖𝑝
𝑝 > (𝑞 − 𝑚)t𝑚

𝜆,𝜈‖𝑤‖𝑚. This
inequality implies that 𝑡𝜆,𝜈 ≥ 𝛿 for some 𝛿 := 𝛿(𝑚, 𝑞, 𝑝, 𝜆, 𝑤) > 0 independent on 𝜈 > 0.
Thus, by inequality (3.67) and the continuous embedding 𝑋 →˓ 𝐿𝑝(R𝑁), we deduce that

𝜈𝑡𝑞−𝑚
𝜆,𝜈 ‖𝑤‖𝑞

𝑞,𝑎 ≤ 𝑚‖𝑤‖𝑚 + 𝜆𝑡𝑝−2
𝜆,𝜈 ‖𝑤‖𝑝 ≤ 𝑡𝑝−𝑚

𝜆,𝜈

(︃
𝑚

‖𝑤‖𝑚

𝛿𝑝−𝑚
+ 𝜆𝑆𝑝

𝑝‖𝑤‖𝑝

)︃
.

As a consequence, we infer that 𝜈 ≤ 𝑡𝑝−𝑞
𝜆,𝜈 𝐶 for some 𝐶 := 𝐶(𝜆, 𝑝, 𝑞, 𝑤) > 0 which is

independent on 𝜈 > 0. Since 𝑞 < 𝑝, we conclude that 𝑡𝜆,𝜈 → ∞ as 𝜈 → ∞. Finally, using
once more (𝜙3), Lemma 2.3.13 and the fact that t𝜆,𝜈𝑤 ∈ 𝒩 +

𝜆,𝜈 , we obtain that

ℰ+
𝜆,𝜈 ≤ ℐ𝜆,𝜈(t𝜆,𝜈𝑤) = ℐ𝜆,𝜈(t𝜆,𝜈𝑤) − 1

𝑝
ℐ ′

𝜆,𝜈(t𝜆,𝜈𝑤)(t𝜆,𝜈𝑤)

≤
(︃

1 − ℓ

𝑝

)︃
t𝑚
𝜆,𝜈‖𝑤‖𝑚 + −𝜈t𝑞

𝜆,𝜈

(︃
1
𝑞

− 1
𝑝

)︃
‖𝑤‖𝑞

𝑞,𝑎,

(3.68)

for all 𝜈 > 𝜈𝑛(𝜆) with 𝜆 > 0 fixed. Therefore, since ℓ ≤ 𝑚 < 𝑞 < 𝑝 < ℓ*
𝑠 and 𝑡𝜆,𝜈 → ∞ as

𝜈 → ∞, we deduce from estimate (3.68) that ℰ+
𝜆,𝜈 → −∞ as 𝜈 → ∞ for each 𝜆 > 0 fixed,

which ends the proof of item (𝑖𝑖𝑖).
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Now we are in position to prove the asymptotic behavior for solution 𝑢𝜆,𝜈 and 𝑣𝜆,𝜈 as
𝜈 → ∞.

Proposition 3.4.7. Assume that (𝜙1)-(𝜙4), (𝐻1)-(𝐻2) and (𝑉0)-(𝑉1) hold. Then, the weak

solutions 𝑢𝜆,𝜈 and 𝑣𝜆,𝜈 obtained respectively in Propositions 3.2.29 and 3.2.30 has the following

asymptotic behavior:

(i) For each 𝜆 > 0 fixed, it holds that 𝑢𝜆,𝜈 → 0 in 𝑋 as 𝜈 → ∞. In particular, ℰ−
𝜆,𝜈 → 0 as

𝜈 → ∞.

(ii) For each 𝜆 > 0 fixed, it holds that ‖𝑣𝜆,𝜈‖ → ∞ as 𝜈 → ∞.

Proof. (𝑖) By Proposition 3.4.5 (𝑖𝑖) there exists 𝑢𝜆 ∈ 𝑋 in such that 𝑢𝜆,𝜈 ⇀ 𝑢𝜆 in 𝑋.
Proceeding as in the proof of Proposition 3.4.1 (𝑖), we also obtain that 𝑢𝜆,𝜈 → 𝑢𝜆 in 𝑋 as
𝜈 → ∞. But in view of (𝜙3), Lemma 2.3.13, the continuous embedding 𝑋 →˓ 𝐿𝑝(R𝑁) and
Lemma 3.4.5 (𝑖𝑖), we have that

𝜈‖𝑢𝜆,𝜈‖𝑞
𝑞,𝑎 = 𝒥 ′

𝑠,Φ,𝑉 (𝑢𝜆,𝜈)𝑢𝜆,𝜈 + 𝜆‖𝑢𝜆,𝜈‖𝑝
𝑝 ≤ 𝑚 max{‖𝑢𝜆,𝜈‖ℓ, ‖𝑢𝜆,𝜈‖𝑚} + 𝜆𝑆𝑝

𝑝‖𝑢𝜆,𝜈‖𝑝 ≤ 𝐶1,

where 𝐶1 > 0 is independent on 𝜈 > 𝜈𝑛(𝜆). Then, the last inequality gives us that
‖𝑢𝜆,𝜈‖𝑞,𝑎 → 0 as 𝜈 → ∞, proving that 𝑢𝜆 = 0. Therefore, 𝑢𝜆,𝜈 → 0 in 𝑋 as 𝜈 → ∞,
which ends the proof of item (𝑖).

(𝑖𝑖) By using (𝜙3), Lemma 2.3.13 and the fact that 𝑣𝜆,𝜈 ∈ 𝒩 +
𝜆,𝜈 , we infer that

ℰ+
𝜆,𝜈 = ℐ𝜆,𝜈(𝑣𝜆,𝜈) − 1

𝑞
ℐ ′

𝜆,𝜈(𝑣𝜆,𝜈)(𝑣𝜆,𝜈) ≥
(︃

1 − 𝑚

𝑝

)︃
𝒥𝑠,Φ,𝑉 (𝑣𝜆,𝜈) + 𝜆

(︃
1
𝑝

− 1
𝑞

)︃
‖𝑣𝜆,𝜈‖𝑝

𝑝,

(3.69)
for all 𝜈 > 𝜈𝑛(𝜆) and 𝜆 > 0 fixed. Then, since 𝑚 < 𝑞 < 𝑝 < ℓ*

𝑠, it follows from continuous
embedding 𝑋 →˓ 𝐿𝑝(R𝑁) and estimate (3.69) that

ℰ+
𝜆,𝜈 ≥ 𝜆𝑆𝑝

𝑝

(︃
1
𝑝

− 1
𝑞

)︃
‖𝑣𝜆,𝜈‖𝑝.

Therefore, combining the last estimate with the Lemma 3.4.6 (𝑖𝑖𝑖) we conclude that ‖𝑣𝜆,𝜈‖ →

∞ as 𝜈 → ∞ for each 𝜆 > 0. This finishes the proof.

3.5 THE EXTREMAL CASES

In this section, our main goal is study the existence of solution for the problem (𝒫𝜆,𝜈)
taking into account the extremal cases 𝜈 = 𝜈𝑛 and 𝜆 = 𝜆*(= 𝜆*). We start recalling that
𝒩 0

𝜆,𝜈𝑛
is not empty for all 𝜆 > 0.
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The case 𝜈 = 𝜈𝑛

The first existence result when 𝜈 = 𝜈𝑛 is state as follows:

Proposition 3.5.1. Assume that (𝜙1)-(𝜙4), (𝐻1)-(𝐻2) and (𝑉0)-(𝑉1) hold. Suppose also

that 𝜆 ∈ (0, 𝜆*) and 𝜈 = 𝜈𝑛. Then, the problem (𝒫𝜆,𝜈) has at least one nontrivial solution

𝑢 ∈ 𝒩 0
𝜆,𝜈𝑛

.

Proof. We consider a sequence (𝜈𝑘)𝑘∈N ⊂ R such that 𝜈𝑘 > 𝜈𝑛 for each 𝑘 ∈ N and 𝜈𝑘 → 𝜈𝑛

as 𝑘 → ∞. Applying the Theorem 3.1.1, we obtain a sequence (𝑢𝑘)𝑘∈N ∈ 𝒩 −
𝜆,𝜈𝑘

which is a
critical point for the functional ℐ𝜆,𝜈𝑘

and ℰ−
𝜆,𝜈𝑘

= ℐ𝜆,𝜈𝑘
(𝑢𝑘) for all 𝑘 ∈ N. Precisely,

ℐ ′
𝜆,𝜈𝑘

(𝑢𝑘)𝑤 = 0, for all 𝑤 ∈ 𝑋 and ℐ ′′
𝜆,𝜈𝑘

(𝑢𝑘)(𝑢𝑘, 𝑢𝑘) < 0, (3.70)

for all 𝑘 ∈ N. Now, by using Proposition 3.2.34 and inequality (3.46), we obtain

ℰ−
𝜆,𝜈1 ≥ ℰ−

𝜆,𝜈𝑘
= ℐ𝜆,𝜈𝑘

(𝑢𝑘) ≥ 𝑝(𝑞 − 𝑚) − 𝑚(𝑞 − ℓ)
𝑝𝑞

min{‖𝑢𝑘‖ℓ, ‖𝑢𝑘‖𝑚},

Consequently, (𝑢𝑘)𝑘∈N is bounded in 𝑋. Hence, there exists 𝑢 ∈ 𝑋 such that, up to a
subsequence, 𝑢𝑘 ⇀ 𝑢 in 𝑋. Using the same ideas employed in the Remark 3.2.22, we
deduce that 𝑢 ̸= 0. Moreover, by using (3.70), Hölder inequality and compact embedding
𝑋 →˓ 𝐿𝑟(R𝑁) for each 𝑟 ∈ (𝑚, ℓ*

𝑠), we have that

𝒥𝑠,Φ,𝑉 (𝑢𝑘)(𝑢𝑘 − 𝑢) = 𝜈𝑘

∫︁
R𝑁

𝑎(𝑥)|𝑢𝑘|𝑞−2𝑢𝑘(𝑢𝑘 − 𝑢)𝑑𝑥 −
∫︁
R𝑁

|𝑢𝑘|𝑝−2𝑢𝑘(𝑢𝑘 − 𝑢)𝑑𝑥 = 𝑜𝑘(1).

Thence, by (𝑆+)-condition (see Proposition 2.3.17), we infer that 𝑢𝑘 → 𝑢 in 𝑋. Therefore,
since ℐ𝜆,𝜈 is of class 𝐶2, the strong convergence combined with (3.70) imply that
ℐ ′′

𝜆,𝜈𝑛
(𝑢)(𝑢, 𝑢) ≤ 0 and ℐ ′

𝜆,𝜈𝑛
(𝑢)𝑤 = 0 for all 𝑤 ∈ 𝑋, that is, 𝑢 ∈ 𝒩 −

𝜆,𝜈𝑛
∪ 𝒩 0

𝜆,𝜈𝑛
and is

a critical point for the functional ℐ𝜆,𝜈𝑛 . But according to Proposition 3.2.18, we know that
𝒩 −

𝜆,𝜈𝑛
is empty. This finishes the proof.

Analogously, we also obtain the following result:

Proposition 3.5.2. Assume that (𝜙1)-(𝜙4), (𝐻1)-(𝐻2) and (𝑉0)-(𝑉1) hold. Suppose also

that 𝜆 ∈ (0, 𝜆*) and 𝜈 = 𝜈𝑛. Then, the problem (𝒫𝜆,𝜈) has at least one nontrivial solution

𝑣 ∈ 𝒩 0
𝜆,𝜈𝑛

.

Proof. Let (𝜈𝑘)𝑘∈N be a sequence such that 𝜈𝑘 > 𝜈𝑛 for each 𝑘 ∈ N and 𝜈𝑘 → 𝜈𝑛 as 𝑘 → ∞.
According to Theorem 3.1.2, there exists a sequence (𝑣𝑘)𝑘∈N ∈ 𝒩 −

𝜆,𝜈𝑘
which is a critical point
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for the functional ℐ𝜆,𝜈𝑘
and ℰ+

𝜆,𝜈𝑘
= ℐ𝜆,𝜈𝑘

(𝑣𝑘) for all 𝑘 ∈ N. Using the Proposition 3.2.34 and
proceeding as in (3.45), we obtain that

ℰ+
𝜆,𝜈1 ≥ ℰ+

𝜆,𝜈𝑘
= ℐ𝜆,𝜈𝑘

(𝑣𝑘) ≥ min{‖𝑢𝑘‖ℓ, ‖𝑢𝑘‖𝑚} −
[︃

𝜈𝑘

𝑞
‖𝑎‖𝑟‖𝑣𝑘‖𝑞−𝑝

𝑝 − 𝜆

𝑝

]︃
‖𝑣𝑘‖𝑝

𝑝.

which proves that (𝑣𝑘)𝑘∈N is bounded in 𝑋. The rest of the proof follows the same ideas
discussed in the proof of Proposition 4.2. For this reason, we omit the details.

Cases 𝜆 = 𝜆* and 𝜆 = 𝜆*

In this section, we investigate the existence of solution for the problem (𝒫𝜆,𝜈) taking
into account the cases 𝜆 = 𝜆* and 𝜆 = 𝜆*. The main strategy is to consider a sequence
(𝜈𝑘)𝑘∈N ⊂ R such that 𝜈𝑘 > 𝜈𝑛(𝜆*) for each 𝑘 ∈ N and 𝜈𝑘 → 𝜈𝑛 as 𝑘 → ∞, in order to apply
theorem 3.1.1, and finally control the behavior of ℐ𝜆,𝜈𝑘

when 𝜈𝑘 approaches 𝜈𝑛.

Proposition 3.5.3. Assume that (𝜙1)-(𝜙4), (𝐻1)-(𝐻2) and (𝑉0)-(𝑉1) hold. Suppose also

that 𝜆 = 𝜆* and 𝜈 > 𝜈𝑛(𝜆*). Then, the problem (𝒫𝜆,𝜈) has at least one nontrivial solution

𝑢 ∈ 𝒩 −
𝜆*,𝜈 ∪ 𝒩 0

𝜆*,𝜈 .

Proof. Let (𝜆𝑘)𝑘∈N be a sequence such that 𝜆𝑘 < 𝜆* and 𝜆𝑘 → 𝜆* as 𝑘 → ∞. Firstly, arguing
as in the proof of Proposition 3.4.1, we deduce that

lim sup
𝑘→∞

𝜈𝑛(𝜆𝑘) ≤ 𝜈𝑛(𝜆*) < 𝜈,

which implies that 𝜈𝑛(𝜆𝑘) < 𝜈 for all 𝑘 ∈ N enough large. Then, we can apply the Proposition
3.2.35 to obtain a sequence (𝑢𝑘)𝑘∈N ∈ 𝒩 −

𝜆𝑘,𝜈 which is a critical point for the functional ℐ𝜆𝑘,𝜈

and ℰ−
𝜆𝑘,𝜈 = ℐ𝜆𝑘,𝜈(𝑢𝑘) for all 𝑘 ∈ N enough large. Now, using once more the Proposition

3.2.33, we have that

lim sup
𝑘→∞

ℰ−
𝜆𝑘,𝜈 ≤ lim sup

𝑘→∞
ℐ𝜆𝑘,𝜈(t−

𝜆𝑘,𝜈(𝑢𝜆*,𝜈)𝑢𝜆*,𝜈) = ℐ𝜆*,𝜈(t−
𝜆*,𝜈(𝑢𝜆*,𝜈)𝑢𝜆*,𝜈) = ℰ−

𝜆*,𝜈 ,

where 𝑢𝜆*,𝜈 ∈ 𝒩 −
𝜆𝑘,𝜈 ∪ 𝒩 0

𝜆𝑘,𝜈 is obtained in Proposition 3.2.29. Therefore, by using the same
ideas employed in the proof of Proposition 3.5.1, we deduce that there exists 𝑢 ∈ 𝑋 ∖ {0}

such that 𝑢𝑘 → 𝑢 in X as 𝑘 → ∞. Furthermore, taking into account that ℐ𝜆,𝜈 is of class
𝐶2, we conclude that 𝑢 ∈ 𝒩 −

𝜆*,𝜈 ∪ 𝒩 0
𝜆*,𝜈𝑘

and is a critical point for the functional ℐ𝜆*,𝜈 . This
finishes the proof.

A similar result is obtained considering the case 𝜆 = 𝜆*.
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Proposition 3.5.4. Assume that (𝜙1)-(𝜙4), (𝐻1)-(𝐻2) and (𝑉0)-(𝑉1) hold. Suppose also

that 𝜆 = 𝜆* and 𝜈 > 𝜈𝑛(𝜆*). Then, the problem (𝒫𝜆,𝜈) has at least one nontrivial solution

𝑣 ∈ 𝒩 +
𝜆*,𝜈 ∪ 𝒩 0

𝜆*,𝜈 .
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4 A SURVEY ON FRACTIONAL MUSIELAK-SOBOLEV SPACES

In this chapter, we first review some recent results on generalized 𝛷-functions. We
then focus on the relevant functional space structure provided by Musielak-Orlicz spaces.
Furthermore, we describe the basic tools and properties used to deal with the general fractional
Musielak-Sobolev spaces 𝑊 𝑠,Φ𝑥,𝑦(Ω) associated with Musielak functions

Φ : Ω × Ω × [0, ∞) → [0, ∞)

that satisfy some suitable assumptions, which will be mentioned later. Finally, we establish
some abstract results on these spaces, and then we apply the developed theory to study the
existence of solutions to a very general class of nonlocal problem.

In the work of Azroul et al. (2020) it was proved that 𝑊 𝑠,Φ𝑥,𝑦(Ω) is a reflexive Banach
space. However, it seems that some important details were forgotten. Moreover, if Φ satisfies
the Δ2-condition and

𝑡 ↦→ Φ(𝑥, 𝑦,
√

𝑡) is convex for all (𝑥, 𝑦) ∈ Ω × Ω, (4.1)

then 𝑊 𝑠,Φ𝑥,𝑦(Ω) is a uniformly convex space. The proofs are inspired by results obtained by
Mihăilescu and Rădulescu (2008) for generalized Orlicz-Sobolev spaces.

In the works by Bahrouni, Ounaies and Tavares (2020) and Bahrouni, Bahrouni and Xiang
(2020a), the convexity assumption (4.1) has been used by to obtain the (𝑆+)-property for a
suitable functional (see Definition 4.5.7). The (𝑆+)- property plays an important role in the
study of solutions for differential equations in Orlicz-Sobolev and Musielak-Sobolev spaces, as
evidenced in the works by Mihăilescu and Rădulescu (2008), Fan (2012), Liu and Zhao (2015)
and Liu and Dai (2018). Recently, the (𝑆+)-property was obtained by Bahrouni, Ounaies and
Tavares (2020) and Bahrouni, Bahrouni and Xiang (2020a) for a very wide class of operators
associated to the fractional Orlicz-Sobolev spaces. In these works, in order to prove that the
space is uniformly convex and the (𝑆+)-property, the authors assumed Δ2-condition and the
convexity assumption (4.1).

It is important to mention that hypothesis (4.1) is restrictive, since it excludes classical
examples of functions with balanced growth, for instance, Φ(𝑡) = 𝑡𝑝 with 1 < 𝑝 < 2, which
satisfies Δ2-condition, but does not satisfy (4.1). In this chapter, we will extend these results
assuming only that Φ and its conjugate function satisfy the Δ2-condition.
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The aim of this chapter is to extend and complement the previous results on the perspective
of the class of fractional Musielak-Sobolev space 𝑊 𝑠,Φ𝑥,𝑦(Ω). In the abstract point of view,
our main contributions are the following:

(i) We prove that 𝑊 𝑠,Φ𝑥,𝑦(Ω) is uniformly convex and the Radon-Riesz property with respect
to the modular function.

(ii) We prove the (𝑆+)-property.

(iii) We prove a Brezis-Lieb type Lemma to the modular function and other convergence
results.

(iv) We establish several monotonicity properties.

(v) We obtain an existence and uniqueness result for a very general class of nonlocal
problems.

It is important to emphasize that items (𝑖)-(𝑖𝑖𝑖) are obtained without assuming the convexity
assumption (4.1).

It is worth noting that these spaces enable the presence of many particular functions. For
instance, we can consider the following special cases:

• Double-phase growth: Φ𝑥,𝑦(𝑡) = 𝑡𝑝 +𝑎(𝑥, 𝑦)𝑡𝑞 with 1 ≤ 𝑝 < 𝑞 < ∞ and 𝑎 ∈ 𝐿∞(Ω×Ω)

a non-negative function.

• Variable exponent: Φ𝑥,𝑦(𝑡) = 𝑡𝑝(𝑥,𝑦), where 𝑝 : Ω×Ω → (0, ∞) is a measurable function
lower and upper bounded by constants 1 ≤ 𝑝− ≤ 𝑝+ < ∞.

• Logarithmic perturbation of power : Φ𝑥,𝑦(𝑡) = 𝑡𝑝(𝑥,𝑦) log(1 + 𝑡), where 𝑝 ∈ 𝐿∞(Ω × Ω)

is as in the previous example.

• Anisotropic case: Φ𝑥,𝑦(𝑡) = 𝑎(𝑥, 𝑦)𝑡𝑝, with 1 ≤ 𝑝 < ∞ and 𝑎 ∈ 𝐿∞(Ω × Ω) satisfying
0 < 𝑎− ≤ 𝑎(𝑥, 𝑦) ≤ 𝑎+ < ∞.

The chapter is organized as follows. In the forthcoming section, we collect some preliminary
results about 𝛷-function and we establish some notation that will be used throughout this
chapter. The Section 4.2 is devoted to a review of Musielak-Orlicz spaces and their main
properties. In Section 4.3, we introduce Musielak-Sobolev fractional spaces and show some
standard results that require additional assumptions about the function Φ. The Section 4.4 is
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dedicated to Uniform convexity e Radon-Riesz property with respect to the modular function.
In the Section 4.5, we prove Brezis-Lieb type Lemma to the modular function, monotonicity
results and (𝑆+)-property. In the Section 4.6, we apply a monotonicity result to establish
existence and uniqueness of solutions for a very general class of nonlocal problems. Finally, in
Section 4.7, we present some examples of functions Φ for which the existence result may be
applied.

4.1 MUSIELAK FUNCTIONS

Next, we present a generalization of the concept of 𝑁 -functions in such way they can
depend on the spatial variable. Let (Ω, Σ, 𝜇) be a complete measure space satisfying the
natural assumption that our measure 𝜇 is not identically zero or infinity.

We start by recalling some definitions and properties employed by Diening et al. (2017),
Harjulehto and Hästö (2019a) and Musielak (1983), which are needed to prove the uniform
convexity of the fractional Musielak-Sobolev spaces.

Definition 4.1.1. A function 𝑔 : (0, ∞) → R is said to be almost increasing if there exists

a constant 𝑎 ≥ 1 such that 𝑔(𝑠) ≤ 𝑎𝑔(𝑡), for all 0 < 𝑠 < 𝑡. Similarly, we define almost

decreasing.

Let 𝑝, 𝑞 > 0. The function 𝑔 is said to satisfy the condition:

(aInc)𝑝 if 𝑡 ↦→ 𝑔(𝑡)
𝑡𝑝 is almost increasing.

(aDec)𝑞 if 𝑡 ↦→ 𝑔(𝑡)
𝑡𝑞 is almost decreasing.

When 𝑎 = 1, we use the notation and (Inc)𝑝 and (Dec)𝑞.

Definition 4.1.2. We say that a function Φ : Ω × [0, ∞) → [0, ∞] is a generalized 𝛷-

prefunction if 𝑥 ↦→ Φ(𝑥, |𝑢(𝑥)|) is 𝜇-measurable for all measurable function 𝑢 : Ω → R,

lim
𝑡→0+

Φ(𝑥, 𝑡) = Φ(𝑥, 0) = 0 and lim
𝑡→∞

Φ(𝑥, 𝑡) = ∞, 𝜇-a.e. 𝑥 ∈ Ω.

A generalized 𝛷-prefunction Φ is said to be a

(i) generalized weak 𝛷-function if 𝑡 ↦→ Φ(𝑥, 𝑡) satisfies (aInc)1 for 𝜇-a.e. 𝑥 ∈ Ω.

(ii) generalized 𝛷-function if 𝑡 ↦→ Φ(𝑥, 𝑡) is left-continuous and convex for 𝜇-a.e. 𝑥 ∈ Ω.
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(iii) Musielak function if 𝑡 ↦→ Φ(𝑥, 𝑡) it is finite, convex and positive for 𝑡 > 0 and 𝜇-a.e.

𝑥 ∈ Ω.

When Φ is independent of the spatial variable 𝑥, that is, Φ(𝑥, 𝑡) = Φ(𝑡), Φ is called a

weak 𝛷-function, 𝛷-function or Orlicz function, respectively. The sets of generalized weak

𝛷-function, 𝛷-function and Musielak function are denoted by 𝛷𝑤(Ω, 𝜇) and 𝛷(Ω, 𝜇) and

𝛷𝑀(Ω, 𝜇), respectively.

Remark 4.1.3. Next, we present some remarks regarding these classes of functions.

(i) If Φ(𝑥, ·) is convex and Φ(𝑥, 0) = 0, then it is not hard to see that Φ(𝑥, ·) is increasing

for 𝜇-a.e 𝑥 ∈ Ω and satisfies (Inc)1. Therefore, we have that

𝛷𝑀(Ω, 𝜇) ⊂ 𝛷(Ω, 𝜇) ⊂ 𝛷𝑤(Ω, 𝜇).

(ii) Equivalently, a Musielak function can be represented for 𝜇-almost every point as follows:

Φ(𝑥, 𝑡) =
∫︁ 𝑡

0
𝜑(𝑥, 𝜏) 𝑑𝜏,

where 𝜑(𝑥, ·) is the right-hand derivative of Φ(𝑥, ·). Moreover, 𝜑(𝑥, ·) is positive, right-

continuous and increasing in (0, ∞).

(iii) In some references, the generalized Φ-function is also called of the generalized Young

function. Note that it can be zero for 𝑡 > 0 and 𝜇-a.e. 𝑥 ∈ Ω.

Example 4.1.4. Here are some examples of functions.

(i) Let Φ𝑝, Φ∞ : [0, ∞) → [0, ∞] be functions given by

Φ𝑝(𝑡) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑡𝑝

𝑝
, if 𝑝 ∈ [1, ∞),

∞ · 𝜒(1,∞)(𝑡), if 𝑝 = ∞.

We have that Φ𝑝 is a 𝛷-function for all 𝑝 ∈ [1, ∞]. However, for each 𝑝 ∈ [1, ∞), Φ𝑝 is

continuous and positive, while Φ∞ is only left-continuous but not positive. Namely, Φ𝑝 with

𝑝 ∈ [0, ∞) is a Orlicz function, while Φ∞ is only a 𝛷-function.

(ii) Let 𝑝 : Ω → [0, ∞] and 𝑎 : Ω → [0, ∞) be measurable functions and let

1 ≤ 𝑟 < 𝑞 < ∞. We denote 𝑝∞ := lim sup|𝑥|→∞ 𝑝(𝑥) and 𝑡∞ := ∞ · 𝜒(1,∞)(𝑡). For 𝑡 ≥ 1, we

define the following functions:

(a) Φ1(𝑥, 𝑡) = 𝑎(𝑥)𝑡𝑝(𝑥).

(b) Φ2(𝑥, 𝑡) = 𝑡𝑝(𝑥) log(1 + 𝑡).



97

(c) Ψ1(𝑥, 𝑡) = min{𝑡𝑝(𝑥), 𝑡𝑝∞}.

(d) Ψ2(𝑥, 𝑡) = 𝑡𝑟 + 𝑎(𝑥)𝑡𝑞.

We point out that Ψ1 ∈ 𝛷𝑤(Ω, 𝜇)∖𝛷(Ω, 𝜇) if 𝑝 is non-constant. Moreover, Φ2, Ψ2 ∈ 𝛷𝑀(Ω, 𝜇)

if 𝑝 is finite 𝜇-a.e., while Φ1, Φ2 ∈ 𝛷(Ω, 𝜇) ∖ 𝛷𝑀(Ω, 𝜇) when 𝑎 positive and 𝑝 = ∞ 𝜇-a.e..

Definition 4.1.5. Two weak 𝛷-functions Φ, Ψ : Ω× [0, ∞) → [0, ∞] are said to be equivalent

in the sense of Young, denoted by Φ ≃ Ψ, if there exists 𝐿 ≥ 1 such that

Φ(𝑥, 𝑡/𝐿) ≤ Ψ(𝑥, 𝑡) ≤ Φ(𝑥, 𝐿𝑡), for 𝜇-a.e. 𝑥 ∈ Ω.

Definition 4.1.6. We say that Φ ∈ 𝛷𝑤(Ω, 𝜇) satisfies the Δ2-condition if there exists a

constant 𝐾 > 0 such that

Φ(𝑥, 2𝑡) ≤ 𝐾Φ(𝑥, 𝑡), for 𝜇-a.e. 𝑥 ∈ Ω and 𝑡 ∈ R.

We emphasize that (aDec)𝑞 is a qualitative version of Δ2-condition.

Proposition 4.1.7. If Φ ∈ 𝛷𝑤(Ω, 𝜇), then Δ2 is equivalent to (aDec)𝑞 for some 𝑞 ≥ 1. In

particular, if Φ ∈ 𝛷(Ω, 𝜇), then Δ2 is equivalent to (Dec)𝑞 for some 𝑞 ≥ 1.

Definition 4.1.8. For Φ ∈ 𝛷𝑤(Ω, 𝜇), the function ̃︀Φ : Ω × [0, ∞) → [0, ∞] defined by

̃︀Φ(𝑥, 𝑡) := sup
𝑠≥0

(𝑡𝑠 − Φ(𝑥, 𝑠)), for 𝜇-a.e. 𝑥 ∈ Ω and 𝑡 ∈ R, (4.2)

is called the complementary or conjugate function of Φ in the sense of Young.

Remark 4.1.9. Here are some observations regarding the conjugate function.

(i) We point out that although the function ̃︀Φ(𝑥, ·) is convex, it does not necessarily have

finite values and can vanish at 𝑡 > 0. For example, if Φ(𝑥, 𝑡) = 𝑡, then ̃︀Φ(𝑥, 𝑡) = ∞·𝜒(1,∞)(𝑡).

(ii) If ̃︀Φ(𝑥, ·) is finite for 𝜇-a.e. 𝑥 ∈ Ω, it is also a Musielak function and can be represented

as follows: ̃︀Φ(𝑥, 𝑡) =
∫︁ 𝑡

0
̃︀𝜑(𝑥, 𝜏) 𝑑𝜏,

where ̃︀𝜑(𝑥, 𝑡) = sup{𝑠 : 𝜑(𝑥, 𝑠) ≤ 𝑡}, for a.e. 𝑥 ∈ Ω and 𝑡 ∈ R.

If 𝜑(𝑥, ·) it is strictly increasing and continuous, then ̃︀𝜑(𝑥, ·) is the inverse of 𝜑(𝑥, ·) for 𝜇-a.e.

𝑥 ∈ Ω. Furthermore, in view of definition (4.2) one may deduce the Young’s type inequality

𝑠𝑡 ≤ Φ(𝑥, 𝑠) + ̃︀Φ(𝑥, 𝑡), for 𝜇-a.e. 𝑥 ∈ Ω and 𝑠, 𝑡 ≥ 0. (4.3)
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In general, we have the following results that can be found in (HARJULEHTO; HÄSTÖ,
2019b).

Proposition 4.1.10. Let Φ ∈ 𝛷𝑤(Ω, 𝜇). Then,

(i) ̃︀Φ ∈ 𝛷(Ω, 𝜇) and ̃︀̃︀Φ ≃ Φ. In particular, if Φ ∈ 𝛷(Ω, 𝜇), then ̃︀̃︀Φ = Φ and

Φ(𝑥, 𝑡) := sup
𝑠≥0

(𝑡𝑠 − ̃︀Φ(𝑥, 𝑠)), for 𝜇-a.e. 𝑥 ∈ Ω and 𝑡 ≥ 0.

(ii) if 𝑡 ↦→ Φ(𝑥, 𝑡) satisfies (aInc)𝑝 with 𝑝 ≥ 1, then there exists Ψ ∈ 𝛷(Ω, 𝜇) such that

Φ ≃ Ψ and Ψ
1
𝑝 is convex.

Another especially useful function, called generalized 𝑁 -function (𝑁 stands for nice), is
defined below.

Definition 4.1.11. Let Ω be an open set in R𝑁 . A function Φ : Ω × R → [0, ∞) is said to

be a generalized 𝑁 -function if satisfies the following conditions:

(i) Φ(·, 𝑡) is measurable for all 𝑡 ≥ 0.

(ii) Φ(𝑥, ·) is 𝑁 -function for 𝜇-a.e. 𝑥 ∈ Ω.

We denote by 𝒩 (Ω, 𝜇) the set of all generalized 𝑁 -functions defined on Ω. If Ω is an open

subset of R𝑁 , Σ is the Borel 𝜎-algebra and 𝜇 is the Lebesgue measure, we abbreviate this

notation as 𝒩 (Ω) or we simply say that it is a generalized 𝑁 -function on Ω.

Remark 4.1.12. It is important to stress that, if we consider the even extension to R of

a function Φ ∈ 𝛷𝑀(Ω, 𝜇), that is, Φ(𝑥, 𝑡) = Φ(𝑥, −𝑡) for all 𝑡 < 0, then any generalized

𝑁 -function is also a Musielak function. Moreover, Φ ∈ 𝒩 (Ω, 𝜇) implies ̃︀Φ ∈ 𝒩 (Ω, 𝜇).

Although the presence of spatial variable adds several technical difficulties that will be
mentioned throughout this chapter, some definitions and properties that were presented in
Chapter 2 are extended point-wise uniformly to the generalized 𝑁 -function case.

The following result establishes conditions equivalent to the Δ2-condition.

Lemma 4.1.13. Let Φ, ̃︀Φ ∈ 𝛷𝑀(Ω, 𝜇) be generalized conjugate 𝑁 -functions. Then, the

following statements are equivalents:

(i) Φ satisfies Δ2-condition.
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(ii) There exists 1 < 𝑚 < ∞ such that

ess sup
𝑥∈Ω

𝜑(𝑥, 𝑡)𝑡
Φ(𝑥, 𝑡) ≤ 𝑚, for all 𝑡 > 0.

(iii) There exists 1 < ̃︀ℓ < ∞ such that

̃︀ℓ ≤ ess inf
𝑥∈Ω

̃︀𝜑(𝑥, 𝑡)𝑡̃︀Φ(𝑥, 𝑡)
, for all 𝑡 > 0.

Summarizing, Φ and ̃︀Φ also satisfy the Δ2-condition if, and only if, there exist ℓ, 𝑚 ∈ (1, ∞)

such that
ℓ ≤ 𝜑(𝑥, 𝑡)𝑡

Φ(𝑥, 𝑡) ≤ 𝑚 for a.e. 𝑥 ∈ Ω and 𝑡 ̸= 0. (4.4)

4.2 MUSIELAK-ORLICZ SPACES

In this section, we present the Musielak-Orlicz spaces. Such spaces represent, at the same
time, a generalization of Orlicz spaces presented in the chapter 2 and Lebesgue spaces with
variable exponent employed in the monograph of Diening et al. (2017).

For the sake of completeness, we first present general semimodular spaces investigated by
Nakano (1950), as well as a fundamental concept in the theory of Banach function spaces.
After this, we will consider spaces where modular is generated by the appropriate 𝛷-function,
the called Musielak-Orlicz space.

Definition 4.2.1. Let 𝑋 be a vector space defined over R.

(i) A function 𝐽 : 𝑋 → [0, ∞] is said to be a semimodular on 𝑋 if the following properties

hold:

(a) 𝒥 is even, convex and left-continuous, that is, lim
𝜆→1−

𝐽(𝜆𝑥) = 𝐽(𝑥) for all 𝑥 ∈ 𝑋.

(b) 𝐽(0) = 0 and if 𝐽(𝜆𝑥) = 0 for all 𝜆 > 0, then 𝑥 = 0.

(ii) A semimodular 𝐽 is said to be continuous if lim
𝜆→1

𝐽(𝜆𝑥) = 𝐽(𝑥) for all 𝑥 ∈ 𝑋.

(iii) A semimodular 𝐽 is said to be a modular if 𝐽(𝑥) = 0 implies 𝑥 = 0.

(iv) A semimodular 𝐽 satisfies the Δ2-condition if there exists a constant 𝐾 > 0 such that

𝐽(2𝑥) ≤ 𝐾𝐽(𝑥) for all 𝑥 ∈ 𝑋.
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(v) If 𝐽 is a semimodular or modular on 𝑋, then the set

𝑋𝐽 := {𝑥 ∈ 𝑋 : 𝒥 (𝜆𝑥) < ∞ for some 𝜆 > 0}

is called a semimodular space or modular space, respectively.

Proposition 4.2.2. Let 𝐽 be a semimodular on 𝑋. Then, 𝑋𝐽 is a normed space when endowed

with the so-called Luxemburg norm defined by

‖𝑥‖𝐽 := inf
{︂

𝜆 > 0 : 𝐽
(︂

𝑥

𝜆

)︂
≤ 1

}︂
,

where the infimum of the empty set is by definition infinity.

Definition 4.2.3. Let (𝑋, ‖ · ‖𝑋) be a normed space with 𝑋 ⊂ 𝐿0(Ω, 𝜇). The set

𝑋 ′ :=
{︃

𝑣 ∈ 𝐿0(Ω, 𝜇) : sup
𝑢∈𝑋,‖𝑢‖𝑋≤1

∫︁
Ω

|𝑢𝑣| 𝑑𝜇 < ∞
}︃

,

with the norm

‖𝑣‖𝑋′ := sup
𝑢∈𝑋,‖𝑢‖𝑋≤1

∫︁
Ω

|𝑢𝑣| 𝑑𝜇,

is called the associate space of 𝑋.

The space 𝑋 is said to be a Banach function space, if the following conditions hold:

(i) (𝑋, ‖ · ‖𝑋) is circular: ‖𝑢‖𝑋 = ‖|𝑢|‖𝑋 for all 𝑢.

(ii) (𝑋, ‖ · ‖𝑋) is Solid: If 𝑢 ∈ 𝑋, 𝑣 ∈ 𝐿0(Ω, 𝜇) and 0 ≤ |𝑣| ≤ |𝑢|, then 𝑣 ∈ 𝑋 and

‖𝑣‖𝑋 ≤ ‖𝑢‖𝑋 .

(iii) (𝑋, ‖ · ‖𝑋) satisfies Fatou property: If |𝑢𝑘| ↗ |𝑢| 𝜇-a.e. with (𝑢𝑘)𝑘∈N ⊂ 𝑋 and

sup𝑘∈N ‖𝑢𝑘‖𝑋 < ∞, then 𝑢 ∈ 𝑋 and ‖𝑢𝑘‖𝑋 ↗ ‖𝑢‖𝑋 .

(iv) If 𝐴 ∈ Σ and 𝜇(𝐴) < ∞, then 𝜒𝐴 ∈ 𝑋

(v) If 𝐴 ∈ Σ and 𝜇(𝐴) < ∞, then 𝜒𝐴 ∈ 𝑋 ′.

Given a function Φ ∈ 𝛷(Ω, 𝜇), the Musielak-Orlicz space is defined as the modular space

𝐿Φ𝑥(Ω, 𝜇) := (𝐿0(Ω, 𝜇))𝐽Φ =
{︁
𝑢 ∈ 𝐿0(Ω, 𝜇) : 𝐽Φ(𝜆𝑢) < ∞ for some 𝜆 > 0

}︁
,

where the modular function 𝐽Φ : 𝐿0(Ω, 𝜇) → [0, ∞] is defined by

𝐽Φ(𝑢) =
∫︁

Ω
Φ(𝑥, |𝑢(𝑥)|) 𝑑𝜇.
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The Musielak-Orlicz spaces are also called generalized Orlicz spaces in the literature. They
provide a good framework when endowed with the Luxemburg norm

‖𝑢‖Φ𝑥 := inf
{︂

𝜆 > 0 : 𝐽Φ

(︂
𝑢

𝜆

)︂
≤ 1

}︂
.

Using the Young’s type inequality (4.3) for Φ and ̃︀Φ, one may deduce the following Hölder’s
type inequality ⃒⃒⃒⃒∫︁

Ω
𝑢𝑣 𝑑𝑥

⃒⃒⃒⃒
≤ 2‖𝑢‖Φ𝑥‖𝑣‖̃︀Φ𝑥

,

for all 𝑢 ∈ 𝐿Φ𝑥(Ω) and 𝑣 ∈ 𝐿̃︀Φ𝑥(Ω), see (DIENING et al., 2017, Lemma 2.6.5).
On the other hand, additional hypotheses are needed on 𝛷-functions for several classical

Real Analysis results to be valid in the associated Musielak-Orlicz spaces. In fact, in several
references, we can find that 𝐿Φ𝑥(Ω, 𝜇) is a Banach space (complete space) if 𝜇 is 𝜎-finite.
See, for instance, (MUSIELAK, 1983) and (DIENING et al., 2017). However, if this assumption
is relaxed, it is needed to require the proper condition on the generalized 𝛷-function defined
below. In this case, 𝐿Φ𝑥(Ω, 𝜇) will be a Banach function space, see (MÉNDEZ; LANG, 2019).

Definition 4.2.4. A function Φ ∈ 𝛷(Ω, 𝜇) (or the space 𝐿Φ𝑥(Ω, 𝜇)) is said to be proper if

the following conditions hold:

(i) If 𝐴 ∈ Σ and 𝜇(𝐴) < ∞, then 𝜒𝐴 ∈ 𝐿Φ𝑥(Ω, 𝜇).

(ii) If 𝐴 ∈ Σ and 𝜇(𝐴) < ∞, then there exists a constant 𝐶(𝐴) > 0 such that∫︁
Ω

𝜒𝐴(𝑥)𝑢(𝑥) 𝑑𝜇 ≤ 𝐶(𝐴)‖𝑢‖Φ𝑥 ,

for all 𝑢 ∈ 𝐿Φ𝑥(Ω, 𝜇).

Under the above condition, we can declare the following result:

Proposition 4.2.5. Let (Ω, Σ, 𝜇) be a measure space and Φ ∈ 𝛷(Ω, 𝜇). Then, the following

assertions hold:

(i) If (Ω, Σ, 𝜇) is 𝜎-finite, then 𝐿Φ𝑥(Ω, 𝜇) is a Banach space.

(ii) If Φ ∈ 𝛷(Ω, 𝜇) is proper, then 𝐿Φ𝑥(Ω, 𝜇) is a Banach function space. Consequently, it

is a Banach space.

In general, we have that the properties (𝑖), (𝑖𝑖), (𝑖𝑖𝑖) in Definition 4.2.3 always hold.
Actually, as pointed out by Harjulehto and Hästö (2019b), a sufficient condition for Φ to
be proper, that is, the other two hold, is the weight condition (A0) defined as follows.
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Definition 4.2.6. A function Φ ∈ 𝛷(Ω, 𝜇) is said to satisfy the condition (A0) if there exists

𝛽 ∈ (0, 1] such that

𝛽 ≤ Φ−1(𝑥, 1) ≤ 1
𝛽

for 𝜇-a.e. 𝑥 ∈ Ω, (A0)

where Φ−1(𝑥, ·) is the left-continuous inverse of Φ(𝑥, ·) defined by

Φ−1(𝑥, 𝑡) = inf{𝑠 ≥ 0 : Φ(𝑥, 𝑠) ≥ 𝑡} for 𝜇-a.e. 𝑥 ∈ Ω.

One has that

Φ(𝑥, Φ−1(𝑥, 𝑡)) = 𝑡 and Φ−1(𝑥, Φ(𝑥, 𝑡)) ≤ 𝑡 for 𝑡 ≥ 0 and 𝜇-a.e. 𝑥 ∈ Ω.

Next, we present an equivalent formulation of the condition (A0) and some consequences.

Proposition 4.2.7. Let Φ ∈ 𝛷(Ω, 𝜇). Then, the following assertions hold:

(i) Φ satisfies (A0) if and only if there exists 𝛼 ∈ (0, 1] such Φ(𝑥, 𝛼) ≤ 1 ≤ Φ(𝑥, 1/𝛼) for

𝜇-a.e. 𝑥 ∈ Ω.

(ii) If there exists 𝜆 > 0 such that 0 < 𝐶1 ≤ Φ(𝑥, 𝜆) ≤ 𝐶2 < ∞, then Φ satisfies (A0).

(iii) If Φ satisfies (A0), then ̃︀Φ satisfies (A0).

(iv) If Ω has measure finite and Φ satisfies (A0) and (aInc)𝑝 with 𝑝 ∈ [1, ∞), Then,

𝐿Φ𝑥(Ω, 𝜇) →˓ 𝐿𝑝(Ω, 𝜇).

The results in the following Proposition are well known and can be found in (HARJULEHTO;

HÄSTÖ, 2019b).

Lemma 4.2.8. Let Φ, Ψ ∈ 𝛷(Ω, 𝜇). Then, the following statements hold:

(i) 𝐽Φ (𝑢) ≤ 1 if and only if ‖𝑢‖Φ𝑥 ≤ 1.

(ii) If Φ ≃ Ψ, then 𝐿Φ𝑥(Ω, 𝜇) = 𝐿Ψ𝑥(Ω, 𝜇) and the norms ‖·‖Φ𝑥 and ‖·‖Ψ𝑥 are equivalents.

From now on, we present some basic properties of Musielak-Orlicz spaces that require some
additional structure. It is natural that some restrictions are necessary, since these properties
do not even hold for the full of classical Lebesgue spaces.

We first need the following concept of uniform convexity for the 𝛷-function and
semimodular.
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Definition 4.2.9. A function Φ ∈ 𝛷(Ω, 𝜇) is said to be uniformly convex if, for given 𝜀 > 0,

there exists 𝛿 := 𝛿(𝜀) ∈ (0, 1) such that

Φ
(︂

𝑥,
𝑠 + 𝑡

2

)︂
≤ (1 − 𝛿)Φ(𝑥, 𝑠) + Φ(𝑥, 𝑡)

2 for 𝜇-a.e. 𝑥 ∈ Ω,

and for all 𝑠, 𝑡 ∈ [0, ∞) with |𝑠 − 𝑡| > 𝜀 max{|𝑠|, |𝑡|}.

This definition can be formulated for values in R as follows:

Lemma 4.2.10. Let Φ ∈ 𝛷(Ω, 𝜇) be uniformly convex. Then, for all 𝜀0 > 0 there exists

𝛿0 > 0 such that

Φ
(︂

𝑥,

⃒⃒⃒⃒
𝑠 + 𝑡

2

⃒⃒⃒⃒)︂
≤ (1 − 𝛿)Φ(𝑥, |𝑠|) + Φ(𝑥, |𝑡|)

2 for 𝜇-a.e. 𝑥 ∈ Ω,

and for all 𝑠, 𝑡 ∈ R with |𝑠 − 𝑡| > 𝜀 max{|𝑠|, |𝑡|}.

Example 4.2.11. It is well-known that if Φ(𝑥, 𝑡) = 𝑡𝑝 with 𝑝 ∈ (1, ∞), then Φ is uniformly

convex, see (DIENING et al., 2017, Remark 2.4.6).

Definition 4.2.12. A semimodular function 𝐽 on a space 𝑋 is called uniformly convex if for

all 𝜀 > 0 there exists 𝛿 := 𝛿(𝜀) ∈ (0, 1) such that

𝐽
(︂

𝑢 − 𝑣

2

)︂
≤ 𝜀

𝐽(𝑢) + 𝐽(𝑣)
2 or 𝐽

(︂
𝑢 + 𝑣

2

)︂
≤ (1 − 𝛿)𝐽(𝑢) + 𝒥 (𝑣)

2 , (4.5)

for all 𝑢, 𝑣 ∈ 𝑋𝐽 .

The following results provide a relationship between the uniform convexity of the space
and the semimodular function, and can be found in (DIENING et al., 2017).

Proposition 4.2.13. Let 𝐽 be a uniformly convex semimodular on 𝑋 satisfying Δ2-condition.

Then, the following statements hold:

(i) 𝑋𝐽 is uniformly convex with respect to Luxemburg norm.

(ii) If 𝑥𝑘 ⇀ 𝑥 in 𝑋𝐽 , 𝐽(𝑥𝑘) → 𝐽(𝑥) and 𝐽(𝑥) < ∞, then 𝐽(𝜆(𝑥𝑘 − 𝑥)) → 0 for all 𝜆 > 0.

Proposition 4.2.14. Let Φ ∈ 𝛷(Ω, 𝜇) be uniformly convex. Then, 𝐽Φ is uniformly convex.

Consequently, (𝐿Φ𝑥(Ω, 𝜇), ‖ · ‖Φ𝑥) is uniformly convex if Φ satisfies Δ2-condition.

Another paramount result obtained by Harjulehto and Hästö (2019b) describes that, even
though non-convex in general, every weak 𝛷 function can be described in terms of an equivalent
𝛷-function uniformly convex under some conditions.
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Proposition 4.2.15. Let Φ ∈ 𝛷𝑤(Ω, 𝜇). Then, the following conditions are equivalent:

(i) Φ is equivalent to a uniformly convex Ψ ∈ 𝛷(Ω, 𝜇).

(ii) 𝑡 ↦→ Φ(𝑥, 𝑡) satisfies (aInc)𝑝 for some 𝑝 > 1.

(ii) ̃︀Φ satisfies Δ2-condition.

As a consequence of Propositions 4.2.14, 4.2.15 and 4.2.5, we deduce that for a measurable
space not necessarily 𝜎-finite, every Musielak space is a Reflexive Banach space if Φ and it is
conjugate function satisfy Δ2-condition.

Proposition 4.2.16. Let Φ ∈ 𝛷(Ω, 𝜇) be proper. If Φ and ̃︀Φ satisfy Δ2-condition, then

𝐿Φ𝑥(Ω, 𝜇) is a Reflexive Banach space.

We now present conditions that guarantee the separability of spaces. Such property is tied
to both the structure of the measure and of the Musielak function.

Firstly, we point out that under Δ2-condition, the separability of the measure implies
separability of the space, but it is necessary an additional property under the generalized 𝛷-
function (MÉNDEZ; LANG, 2019, Theorem 2.3.2), called local integrability and is defined as
follows.

Definition 4.2.17. A function Φ ∈ 𝛷(Ω, 𝜇) is said to be locally integrable if, for every 𝜆 > 0

and every subset 𝐴 ⊂ Ω with 𝜇(𝐴) < ∞, one has∫︁
𝐴

Φ(𝑥, 𝜆) 𝑑𝜇 < ∞.

Remark 4.2.18. Below are some key observations about the Integrability local.

(i) In general, a simple function does not necessarily belong to 𝐿Φ𝑥(Ω, 𝜇). For example, if

Ω = (0, 1) and Φ : (0, 1)× [0, ∞) → [0, ∞) is defined by Φ(𝑥, 𝑡) = 𝑡
|𝑥| , then Φ is a 𝛷-function,

but 𝑢 ≡ 1 /∈ 𝐿Φ𝑥(0, 1). Indeed, we have∫︁ 1

0
Φ(𝑥, 𝜆|𝑓 |) 𝑑𝑥 =

∫︁ 1

0

𝜆

𝑥
𝑑𝑥 = ∞,

for all 𝜆 > 0.

(ii) If Φ ∈ 𝛷(Ω, 𝜇) satisfies Δ2-condition and there exists 𝛼 ∈ (0, 1] such that Φ(𝑥, 𝛼) ≤ 1

for 𝜇-a.e. 𝑥 ∈ Ω, then Φ is locally integrable.

(iii) When Φ ∈ 𝛷(Ω, 𝜇) is locally integrable, we have that the set of simple functions

is contained in 𝐿Φ𝑥(Ω, 𝜇) if Φ-satisfies Δ2-condition. Moreover, this property is used to

approximate a function in 𝐿Φ𝑥(Ω, 𝜇) by simple functions.
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On the other hand, if we drop local integrability, we have to assume that the measure is
𝜎-finite, see (HARJULEHTO; HÄSTÖ, 2019b). In summary, we can state the following result:

Proposition 4.2.19. Let (Ω, Σ, 𝜇) be a measure space separable. If Φ ∈ 𝛷(Ω, 𝜇) satisfies

Δ2-condition, then, 𝐿Φ(Ω, 𝜇) is separable if one of the following conditions holds:

(i) Φ is locally integrable.

(ii) 𝜇 is 𝜎-finite.

The next result is a generalization of the well known Riesz representation theorem to the
classical Lebesgue spaces.

Proposition 4.2.20. (MÉNDEZ; LANG, 2019, Theorem 2.4.4) Let (Ω, Σ, 𝜇) be 𝜎-finite and let

Φ ∈ 𝛷𝑀(Ω, 𝜇) be proper and locally integrable. Then, the linear functional

𝒯 : 𝐿
̃︀Φ𝑥(Ω, 𝜇) →

(︁
𝐿Φ𝑥(Ω, 𝜇)

)︁*

⟨𝒯 (𝑣), 𝑢⟩ =
∫︁

Ω
𝑢(𝑥)𝑣(𝑥) 𝑑𝜇

is an isomorphism if and only if Φ satisfies Δ2-condition.

Remark 4.2.21. It is worthwhile to mention that the Musielak-Orlicz space includes as

examples the classical Lebesgue spaces 𝐿𝑝(Ω, 𝜇) with 1 ≤ 𝑝 ≤ ∞. However, most of the time

we work with the class of Musielak or generalized 𝑁 -functions that have better properties. On

the other hand, the special cases 𝑝 = 1 and 𝑝 = ∞ are not covered, because, just like in the

classical theory, it is also often treated differently.

We finish this section with a version of Lemmas 2.1.5 and 2.2.7 for Musielak-Orlicz case
that will be used ahead.

Lemma 4.2.22. Assume that Φ ∈ Φ𝑀(Ω, 𝜇) satisfies (4.4). Then, the following estimates

hold:

(i) 𝜉−
0 (𝜎)Φ(𝑥, 𝑡) ≤ Φ(𝑥, 𝜎𝑡) ≤ 𝜉+

0 (𝜎)Φ(𝑥, 𝑡), for a.e. 𝑥 ∈ Ω and 𝜎, 𝑡 ≥ 0.

(ii) 𝜉−
0 (‖𝑢‖Φ𝑥) ≤ 𝐽Φ(𝑢) ≤ 𝜉+

0 (‖𝑢‖Φ𝑥), for all 𝑢 ∈ 𝐿Φ𝑥(Ω).

(iii) 𝜉−
1 (𝜎)̃︀Φ(𝑥, 𝑡) ≤ ̃︀Φ(𝑥, 𝜎𝑡) ≤ 𝜉+

1 (𝜎)̃︀Φ(𝑥, 𝑡), for a.e. 𝑥 ∈ Ω and 𝜎, 𝑡 ≥ 0.

(iv) 𝜉−
1 (‖𝑢‖̃︀Φ𝑥

) ≤ 𝐽̃︀Φ(𝑢) ≤ 𝜉+
1 (‖𝑢‖̃︀Φ𝑥

), for all 𝑢 ∈ 𝐿̃︀Φ𝑥(Ω).
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Recall that we use the following notation:

𝜉−
0 (𝑡) = min{𝑡ℓ, 𝑡𝑚}, 𝜉+

0 (𝑡) = max{𝑡ℓ, 𝑡𝑚},

𝜉−
1 (𝑡) = min{𝑡

̃︀ℓ, 𝑡̃︀𝑚}, 𝜉+
1 (𝑡) = max{𝑡

̃︀ℓ, 𝑡̃︀𝑚}, 𝑡 ≥ 0,

where ̃︀ℓ = ℓ
ℓ−1 and ̃︁𝑚 = 𝑚

𝑚−1 .
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4.3 FRACTIONAL MUSIELAK-SOBOLEV SPACES

In this section, we introduce some preliminary concepts about the fractional Musielak-
Sobolev spaces. For a more complete discuss on this subject, we refer the readers to works
(AZROUL et al., 2020; AZROUL et al., 2021).

Given a Musielak function Φ ∈ 𝛷𝑀(Ω×Ω), we consider the Musielak-function ̂︀Φ : Ω×R →

[0, ∞) given by ̂︀Φ(𝑥, 𝑡) := Φ(𝑥, 𝑥, 𝑡) =
∫︁ 𝑡

0
̂︀𝜑(𝑥, 𝜏) 𝑑𝜏,

where ̂︀𝜑(𝑥, 𝑡) = 𝜑(𝑥, 𝑥, 𝑡) for any (𝑥, 𝑡) ∈ Ω ×R. Given a parameter 𝑠 ∈ (0, 1), the fractional

Musielak-Sobolev space is defined as follows

𝑊 𝑠,Φ𝑥,𝑦(Ω) =
{︂

𝑢 ∈ 𝐿
̂︀Φ𝑥(Ω) : 𝐽𝑠,Φ (𝜆𝑢) < ∞ for some 𝜆 > 0

}︂
,

where the semimodular function 𝐽𝑠,Φ is defined by

𝐽𝑠,Φ(𝑢) :=
∫︁

Ω

∫︁
Ω

Φ (𝑥, 𝑦, |𝐷𝑠𝑢(𝑥, 𝑦)|) 𝑑𝜇, for 𝑠 ∈ (0, 1),

and the 𝑠-Hölder quotient 𝐷𝑠𝑢 and the measure 𝜇 are defined as

𝐷𝑠𝑢(𝑥, 𝑦) := 𝑢(𝑥) − 𝑢(𝑦)
|𝑥 − 𝑦|𝑠

and 𝑑𝜇 := 𝑑𝑥𝑑𝑦

|𝑥 − 𝑦|𝑁
.

We have known that 𝜇 is not a regular Borel measure on the set Ω × Ω.
The space 𝑊 𝑠,Φ𝑥,𝑦(Ω) is endowed with the norm

‖𝑢‖𝑊 𝑠,Φ𝑥,𝑦 (Ω) := ‖𝑢‖̂︀Φ𝑥
+ [𝑢]𝑠,Φ𝑥,𝑦 ,

where the term [·]𝑠,Φ𝑥,𝑦 is the so called (𝑠, Φ𝑥,𝑦)-Gagliardo seminorm defined by

[𝑢]𝑠,Φ𝑥,𝑦 := inf
{︂

𝜆 > 0 : 𝐽𝑠,Φ

(︂
𝑢

𝜆

)︂
≤ 1

}︂
.

In light of Proposition 2.1 in Azroul et al. (2020), ‖·‖𝑊 𝑠,Φ𝑥,𝑦 (Ω) is equivalent to Luxemburg
norm given by

‖𝑢‖(Ω) := inf
{︂

𝜆 > 0 : 𝒥𝑠,Φ

(︂
𝑢

𝜆

)︂
≤ 1

}︂
,

with the relation

1
2‖𝑢‖𝑊 𝑠,Φ𝑥,𝑦 (Ω) ≤ ‖𝑢‖(Ω) ≤ 2‖𝑢‖𝑊 𝑠,Φ𝑥,𝑦 (Ω), for all 𝑢 ∈ 𝑊 𝑠,Φ𝑥,𝑦(Ω),

where the modular function 𝒥𝑠,Φ : 𝐿̂︀Φ𝑥(Ω) → [0, ∞] is defined by

𝒥𝑠,Φ(𝑢) = 𝐽̂︀Φ(𝑢) + 𝐽𝑠,Φ(𝑢).
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Furthermore, It follows from definition that a function 𝑢 ∈ 𝐿̂︀Φ𝑥
(Ω) belongs to 𝑊 𝑠,Φ𝑥,𝑦(Ω) if

and only if 𝐷𝑠𝑢 ∈ 𝐿Φ𝑥,𝑦(𝑑𝜇) := 𝐿Φ𝑥,𝑦(Ω × Ω, 𝑑𝜇) and [𝑢]𝑠,Φ𝑥,𝑦 = ‖𝐷𝑠𝑢‖𝐿Φ𝑥,𝑦 (𝑑𝜇).

Remark 4.3.1. Note that for the case Φ𝑥,𝑦(𝑡) = Φ(𝑡), that is, when Φ is independent of the

spatial variables 𝑥 and 𝑦, we have that 𝐿Φ(Ω) and 𝑊 𝑠,Φ(Ω) are Orlicz spaces and fractional

Orlicz-Sobolev spaces, respectively.

It is worthwhile to mention that some details in respect to proof of basic results seems to be
missed in the previous works on the subject in the literature. For instance, in the paper of Azroul
et al. (2020) it is pointed out that it is not necessary to suppose that inf𝑥,𝑦∈Ω Φ𝑥,𝑦(𝑡) > 0 to
prove that 𝑊 𝑠,Φ𝑥,𝑦(Ω) is Banach space. However, it seems not clear that the measure 𝜇 has
the 𝜎-finite property. For this reason, we introduce an alternative proof by assuming that the
Musielak-function satisfies the weighted condition (A0).

Proposition 4.3.2. Assume that Φ ∈ 𝛷𝑀(Ω × Ω) satisfies (A0). Then, 𝑊 𝑠,Φ𝑥,𝑦(Ω) is a

Banach space. Moreover, 𝑊 𝑠,Φ𝑥,𝑦(Ω) is reflexive if Φ and ̃︀Φ satisfy the Δ2-condition.

Proof. In order to deduce these properties, let us consider the linear operator 𝑇 : 𝑊 𝑠,Φ𝑥,𝑦(Ω) →

𝐿̂︀Φ𝑥
(Ω) × 𝐿Φ𝑥,𝑦(𝑑𝜇) defined by 𝑇 (𝑢) = (𝑢, 𝐷𝑠𝑢) . It is not hard to see that 𝑇 is well-defined

and it is an isometry. Since 𝐿̂︀Φ𝑥
(Ω) and 𝐿Φ𝑥,𝑦(𝑑𝜇) are Banach spaces by Proposition 4.2.3, it

is sufficiently to prove that 𝑇
(︁
𝑊 𝑠,Φ𝑥,𝑦(Ω)

)︁
is a closed in 𝐿̂︀Φ𝑥(Ω) × 𝐿Φ𝑥,𝑦(𝑑𝜇). For this end,

assume that (𝑢𝑘, 𝐷𝑠𝑢𝑘) → (𝑢, 𝑣) in 𝐿̂︀Φ𝑥(Ω) × 𝐿Φ𝑥,𝑦(𝑑𝜇). By Proposition 4.2.7, we know that
𝐿̂︀Φ𝑥(Ω) →˓ 𝐿1

𝑙𝑜𝑐(Ω) and 𝐿Φ𝑥,𝑦(𝑑𝜇) →˓ 𝐿1
𝑙𝑜𝑐(𝑑𝜇). Then, passing to a subsequence, we have

that 𝑢𝑘 → 𝑢 and 𝐷𝑠𝑢𝑘 → 𝑣 a.e. Thus, 𝐷𝑠𝑢𝑘 → 𝐷𝑠𝑢 a.e., which implies that 𝑣 = 𝐷𝑠𝑢 This
proves that 𝑇

(︁
𝑊 𝑠,Φ𝑥,𝑦(Ω)

)︁
is closed. Therefore, 𝑊 𝑠,Φ𝑥,𝑦(Ω) is a Banach space. The reflexivity

follows from Proposition 4.2.16.

The following definition was employed by Azroul et al. (2020).

Definition 4.3.3. A function Φ ∈ 𝛷𝑀(Ω×Ω) is said to be satisfies the fractional boundedness

condition if

Φ𝑥,𝑦(1) ≤ 𝐶, for a.e. (𝑥, 𝑦) ∈ Ω × Ω, (ℬ𝑓 )

for some constant 𝐶 > 0.

Remark 4.3.4. Due to condition (ℬ𝑓 ), for any 𝑠 ∈ (0, 1) and an open set Ω with finite

measure, we have that 𝐶2
0(Ω) ⊂ 𝑊 𝑠,Φ𝑥,𝑦(Ω) without to use the local integrability condition
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which is necessary in the local case, see (AZROUL et al., 2020, Theorem 2.2). Therefore, the

boundedness condition is used to obtain a well definition of fractional Muselak-Sobolev spaces.

In the following, we prove that 𝐶1
0(Ω) ⊂ 𝑊 𝑠,Φ𝑥,𝑦(Ω) hold true for arbitrary domain.

Proposition 4.3.5. Let Ω ⊆ R𝑁 be an open set. If Φ ∈ 𝛷𝑀(Ω × Ω) satisfies (ℬ𝑓 ), then

𝐶1
0(Ω) ⊂ 𝑊 𝑠,Φ𝑥,𝑦(Ω).

Proof. We can assume that supp (𝑢) ⊂ 𝐵𝑅(0) ∩ Ω with 𝑅 > 1. Let 𝜆 = 1
2‖𝑢‖𝐶1(Ω)

. By
monotonicity of ̂︀Φ𝑥 and (ℬ𝑓 ), we have∫︁

Ω
̂︀Φ𝑥 (𝜆|𝑢(𝑥)|) 𝑑𝑥 ≤

∫︁
𝐵𝑅(0)

̂︀Φ𝑥(1) 𝑑𝑥 ≤ 𝐶|𝐵𝑅(0)| = 𝐶𝑁𝜔𝑁𝑅𝑁 < ∞.

Now, we estimate 𝐽𝑠,Φ. Firstly, observe that for each 𝑥 ∈ Ω, we can write∫︁
Ω

Φ𝑥,𝑦 (𝜆|𝐷𝑠𝑢(𝑥, 𝑦)|) 𝑑𝑦

|𝑥 − 𝑦|𝑁
=
(︃∫︁

Ω∩𝐵1(𝑥)
+
∫︁

Ω∖𝐵1(𝑥)

)︃
Φ𝑥,𝑦 (𝜆|𝐷𝑠𝑢(𝑥, 𝑦)|) 𝑑𝑦

|𝑥 − 𝑦|𝑁

=: 𝐽1 + 𝐽2.

Since 𝑢 ∈ 𝐶1
0(R𝑁), we have that

|𝑢(𝑥) − 𝑢(𝑦)| ≤
∫︁ 1

0
|∇𝑢(𝑦 + 𝑡(𝑥 − 𝑦)) · (𝑥 − 𝑦)|𝑑𝑡 ≤ ‖∇𝑢‖∞|𝑥 − 𝑦|.

This inequality together with the convexity and monotonicity of Φ𝑥,𝑦(·) and (ℬ𝑓 ) gives us

𝐽1 ≤
∫︁

Ω∩𝐵1(𝑥)
Φ𝑥,𝑦

(︁
𝜆‖∇𝑢‖∞|𝑥 − 𝑦|1−𝑠

)︁ 𝑑𝑦

|𝑥 − 𝑦|𝑁

≤
∫︁

𝐵1(0)
Φ𝑥,𝑦(1) 𝑑ℎ

|ℎ|𝑁+𝑠−1

≤ 𝐶
𝑁𝜔𝑁

1 − 𝑠
.

(4.6)

Similarly, it follows from (ℬ𝑓 ) that

𝐽2 ≤
∫︁

Ω∖𝐵1(𝑥)
Φ𝑥,𝑦

(︃
𝜆

2‖𝑢‖∞

|𝑥 − 𝑦|𝑠

)︃
𝑑𝑦

|𝑥 − 𝑦|𝑁
≤ 𝐶

∫︁
R𝑁 ∖𝐵1(0)

𝑑ℎ

|ℎ|𝑁+𝑠
= 𝐶

𝑁𝜔𝑁

𝑠
. (4.7)

Combining (4.6) and (4.7), we deduce∫︁
Ω

Φ𝑥,𝑦 (𝜆|𝐷𝑠𝑢(𝑥, 𝑦)|) 𝑑𝑦

|𝑥 − 𝑦|𝑁
= 𝐽1 + 𝐽2 ≤ 𝐶(𝑛, 𝑠), for all 𝑥 ∈ Ω. (4.8)

Observe that this ends the proof when Ω has finite measure.
In the sequence, we consider the case when Ω has infinite measure. For this end, assume

that 𝑥 ∈ Ω ∖ 𝐵2𝑅(0). Then, 𝑢(𝑥) = 0 and we have that∫︁
Ω

Φ𝑥,𝑦 (𝜆|𝐷𝑠𝑢(𝑥, 𝑦)|) 𝑑𝑦

|𝑥 − 𝑦|𝑁
=
∫︁

Ω∩𝐵𝑅(0)
Φ𝑥,𝑦

(︃
𝜆

|𝑢(𝑦)|
|𝑥 − 𝑦|𝑠

)︃
𝑑𝑦

|𝑥 − 𝑦|𝑁
.
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Since |𝑥 − 𝑦| ≥ |𝑥| − |𝑦| ≥ |𝑥| − 𝑅 ≥ 1
2 |𝑥|, from the monotonicity and convexity of Φ𝑥,𝑦(·),

we infer that∫︁
Ω

Φ𝑥,𝑦 (𝜆|𝐷𝑠𝑢(𝑥, 𝑦)|) 𝑑𝑦

|𝑥 − 𝑦|𝑁
≤ 2𝑁

|𝑥|𝑁
∫︁

Ω∩𝐵𝑅(0)
Φ𝑥,𝑦

(︃
𝜆

2𝑠|𝑢(𝑦)|
|𝑥|𝑠

)︃
𝑑𝑦

≤ 2𝑁

|𝑥|𝑁+𝑠

∫︁
𝐵𝑅(0)

Φ𝑥,𝑦(1) 𝑑𝑦

≤ 𝐶𝑁𝜔𝑁𝑅𝑁 2𝑁

|𝑥|𝑁+𝑠
.

(4.9)

Hence, it follows from (4.8) and (4.9) that
∫︁
R𝑛

Φ𝑥,𝑦 (𝜆|𝐷𝑠𝑢(𝑥, 𝑦)|) 𝑑𝑦

|𝑥 − 𝑦|𝑁
≤ 𝐶(𝑁, 𝑠)

(︃
𝜒𝐵2𝑅(0)(𝑥) + 1

|𝑥|𝑁+𝑠
𝜒𝐵2𝑅(0)𝑐(𝑥)

)︃
∈ 𝐿1(Ω).

Therefore, by Tonelli’s Theorem, we conclude that 𝐽𝑠,Φ (𝜆𝑢) < ∞.

In the remainder of this chapter, unless otherwise stated, we will consider an open set
Ω ⊂ R𝑁 , 𝑁 ≥ 1 and Φ : Ω × Ω × R → R a Carathéodory function defined by

Φ𝑥,𝑦(𝑡) := Φ(𝑥, 𝑦, 𝑡) =
∫︁ |𝑡|

0
𝜑(𝑥, 𝑦, 𝜏) 𝑑𝜏,

where 𝜑 : Ω × Ω × [0, ∞) → [0, ∞) is given by

𝜑(𝑥, 𝑦, 𝑡) =

⎧⎪⎪⎨⎪⎪⎩
𝑡𝜙(𝑥, 𝑦, 𝑡), if 𝑡 ̸= 0,

0, if 𝑡 = 0,

being 𝜙 : Ω × Ω × (0, ∞) → (0, ∞) a Carathéodory function satisfying the following
assumptions:

(𝜑1) lim𝑡→0+ 𝑡𝜙𝑥,𝑦(𝑡) = 0 and lim𝑡→∞ 𝑡𝜙𝑥,𝑦(𝑡) = ∞ for a.e. (𝑥, 𝑦) ∈ Ω × Ω, where
𝜙𝑥,𝑦(𝑡) := 𝜙(𝑥, 𝑦, 𝑡).

(𝜑2) for a.e. (𝑥, 𝑦) ∈ Ω × Ω, 𝑡 ↦→ 𝑡𝜙𝑥,𝑦(𝑡) is increasing on (0, ∞).

(𝜑3) there exist 1 < ℓ ≤ 𝑚 < ∞ such that

ℓ ≤ 𝑡2𝜙𝑥,𝑦(𝑡)
Φ𝑥,𝑦(𝑡) ≤ 𝑚, for a.e. (𝑥, 𝑦) ∈ Ω × Ω and 𝑡 > 0.

(𝜑4) there exist constants 𝐶1, 𝐶2 > 0 such that

𝐶1 ≤ Φ𝑥,𝑦(1) ≤ 𝐶2 for a.e. (𝑥, 𝑦) ∈ Ω × Ω.
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We also consider the function ̂︀Φ : Ω × R → R given by

̂︀Φ𝑥(𝑡) := ̂︀Φ(𝑥, 𝑡) =
∫︁ |𝑡|

0
̂︀𝜑(𝑥, 𝜏) 𝑑𝜏, (4.10)

where ̂︀𝜑𝑥(𝑡) := ̂︀𝜑(𝑥, 𝑡) = 𝜑(𝑥, 𝑥, 𝑡) for all (𝑥, 𝑡) ∈ Ω × [0, ∞). The assumption (𝜑3) implies
that

ℓ ≤ 𝑡2 ̂︀𝜙𝑥(𝑡)̂︀Φ𝑥(𝑡)
≤ 𝑚, for all 𝑥 ∈ Ω and 𝑡 > 0,

with ̂︀𝜙𝑥(𝑡) := ̂︀𝜙(𝑥, 𝑡) = 𝜙(𝑥, 𝑥, 𝑡) for all (𝑥, 𝑡) ∈ Ω × (0, ∞).
Next, we list some remarks on our assumptions.

Remark 4.3.6. In contrast to the assumption (𝜑3), if (4.1) holds, then

Φ𝑥,𝑦(
√

𝑠) ≥ Φ𝑥,𝑦(
√

𝑡) + 𝑑

𝑑𝜏

⃒⃒⃒⃒
𝜏=𝑡

Φ𝑥,𝑦(
√

𝜏)(𝑠 − 𝑡), for a.e. (𝑥, 𝑦) ∈ Ω × Ω and 𝑠, 𝑡 > 0.

In particular,

Φ𝑥,𝑦(𝑠) ≥ Φ𝑥,𝑦(𝑡) + 𝜙𝑥,𝑦(𝑡)
2 (𝑠2 − 𝑡2), for a.e. (𝑥, 𝑦) ∈ Ω × Ω and 𝑠, 𝑡 > 0.

By fixing 𝑡 > 0 and making 𝑠 → 0+, we get

2 ≤ 𝑡2𝜙𝑥,𝑦(𝑡)
Φ𝑥,𝑦(𝑡) , for a.e. (𝑥, 𝑦) ∈ Ω × Ω and 𝑡 > 0.

Thus, if the condition (4.1) is required, then the case 1 < ℓ ≤ 𝑚 < 2 is not contemplated.

Therefore, assumption (𝜑3) is more general.

Remark 4.3.7. In light of assumptions (𝜑1) − (𝜑2), Φ𝑥,𝑦 and ̂︀Φ𝑥, as well as their conjugate

functions, are generalized 𝑁 -functions and, due to (𝜑3), satisfy the Δ2-condition. Using the

convexity and differentiability of Φ, one can prove that Φ and ̃︀Φ satisfy the following inequality

̃︀Φ𝑥,𝑦(𝑡𝜙𝑥,𝑦(𝑡)) ≤ Φ𝑥,𝑦(2𝑡), for a.e. (𝑥, 𝑦) ∈ Ω × Ω and 𝑡 ≥ 0. (4.11)

We observe that (𝜑4) is equivalent to weight condition (A0) thanks to Δ2-condition.

A fractional version of Lemma 4.2.22 can be stated as follows:

Lemma 4.3.8. (AZROUL et al., 2020, Lemma 2.2 and Proposition 2.3) Let Φ ∈ 𝛷𝑀(Ω × Ω)

be satisfying (𝜑3) and let 𝑠 ∈ (0, 1). Then, the following assertions hold:

(i) 𝜉−
0 (𝜎)Φ𝑥,𝑦(𝑡) ≤ Φ𝑥,𝑦(𝜎𝑡) ≤ 𝜉+

0 (𝜎)Φ𝑥,𝑦(𝑡), for all (𝑥, 𝑦) ∈ Ω × Ω and 𝜎, 𝑡 ≥ 0.

(ii) 𝜉−
0 ([𝑢]𝑠,Φ) ≤ 𝐽𝑠,Φ(𝑢) ≤ 𝜉+

0 ([𝑢]𝑠,Φ), for all 𝑢 ∈ 𝑊 𝑠,Φ𝑥,𝑦(Ω).
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(iii) 𝜉−
0 (‖𝑢‖(Ω)) ≤ 𝒥𝑠,Φ(𝑢) ≤ 𝜉+

0 (‖𝑢‖(Ω)), for all 𝑢 ∈ 𝑊 𝑠,Φ𝑥,𝑦(Ω).

In particular, this lemma together with (𝜑4) gives that

Φ𝑥,𝑦(𝑡) ≤ 𝜉+
0 (𝑡)Φ𝑥,𝑦(1) ≤ 𝜉+

0 (𝑡) sup
𝑥,𝑦

Φ𝑥,𝑦(1) < ∞,

Φ𝑥,𝑦(𝑡) ≥ 𝜉−
0 (𝑡)Φ𝑥,𝑦(1) ≥ 𝜉−

0 (𝑡) inf
𝑥,𝑦

Φ𝑥,𝑦(1) > 0, 𝑡 > 0.

(4.12)

In the article by Azroul et al. (2021), some embedding results and a version of the Poincaré
inequality for fractional Musielak-Sobolev spaces are presented. However, we believe that
certain steps in the proofs lack clarity and require additional justification. Specifically, the
estimates employed in the proofs are not evidently uniform due to their dependence on spatial
variables. Controlling these spatial variables represents one of the significant challenges in
the study of fractional Musielak-Sobolev spaces. Unfortunately, we have not yet been able to
produce a convincing proof.

On the other hand, some results obtained by these authors remain valid and are summarized
as follows:

Proposition 4.3.9. (AZROUL et al., 2021, Lemma 2.3) Let Ω ⊂ R𝑁 be a bounded open

set, and let 0 < 𝑠′ < 𝑠 < 1. Assume that (𝜑1)-(𝜑4) hold. Then, the space 𝑊 𝑠,Φ𝑥,𝑦(Ω) is

continuously embedded in 𝑊 𝑠′,𝑞(Ω) for all 𝑞 ∈ [1, ℓ]. Consequently, 𝑊 𝑠,Φ(R𝑁) →˓ 𝑊 𝑠′,𝑞
𝑙𝑜𝑐 (R𝑁).

As a consequence of the classical theory of fractional Sobolev spaces, the following
embedding result holds:

Corollary 4.3.10. Let Ω ⊂ R𝑁 be a bounded open set with 𝐶0,1-regularity, and let

0 < 𝑠′ < 𝑠 < 1. We define

ℓ*
𝑠′ =

⎧⎪⎪⎨⎪⎪⎩
𝑁ℓ

𝑁−𝑠′ℓ
if 𝑁 > 𝑠′ℓ,

∞ if 𝑁 ≤ 𝑠′ℓ.

Assume that (𝜑1)-(𝜑4) hold. Then, the following embeddings are valid:

(i) If 𝑠′ℓ < 𝑁 , then 𝑊 𝑠,Φ(Ω) →˓ 𝐿𝑟(Ω) for all 𝑟 ∈ [1, ℓ*
𝑠′ ], and the embedding of 𝑊 𝑠,Φ(Ω)

into 𝐿𝑟(Ω) is compact for all 𝑟 ∈ [1, ℓ*
𝑠′).

(ii) If 𝑠′ℓ = 𝑁 , then 𝑊 𝑠,Φ(Ω) →˓ 𝐿𝑟(Ω) for all 𝑟 ∈ [1, ∞], and the embedding of 𝑊 𝑠,Φ(Ω)

into 𝐿𝑟(Ω) is compact for all 𝑟 ∈ [1, ∞).

(iii) If 𝑠′ℓ > 𝑁 , then embedding 𝑊 𝑠,Φ(Ω) →˓ 𝐿∞(Ω) is compact.
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We also consider the following work space

𝑊
𝑠,Φ𝑥,𝑦

0 (Ω) := {𝑢 ∈ 𝑊 𝑠,Φ𝑥,𝑦(R𝑁) : 𝑢 = 0 a.e. in R𝑁 ∖ Ω},

where Ω ⊂ R𝑁 is a domain (bounded or not).

Proposition 4.3.11. Let Ω ⊂ R𝑁 be a bounded open set. Assume that (𝜑1)-(𝜑4) hold. Then

𝑊
𝑠,Φ𝑥,𝑦

0 (Ω) is a closed subspace of 𝑊 𝑠,Φ𝑥,𝑦(Ω).

Proof. Firstly, let us prove that 𝑊
𝑠,Φ𝑥,𝑦

0 (Ω) is a subset of 𝑊 𝑠,Φ𝑥,𝑦(Ω). Given 𝑢 ∈ 𝑊
𝑠,Φ𝑥,𝑦

0 (Ω),
since 𝑢 ∈ 𝑊 𝑠,Φ𝑥,𝑦(R𝑁) and 𝑢 = 0 a.e. in R𝑁 ∖ Ω, we deduce

∫︁
Ω
̂︀Φ𝑥(𝑢(𝑥)) 𝑑𝑥 =

∫︁
R𝑁

̂︀Φ𝑥(𝑢(𝑥)) 𝑑𝑥 < ∞

and ∫︁
Ω

∫︁
Ω

Φ𝑥,𝑦(𝐷𝑠𝑢(𝑥, 𝑦)) 𝑑𝜇 ≤
∫︁
R𝑁

∫︁
R𝑁

Φ𝑥,𝑦(𝐷𝑠𝑢(𝑥, 𝑦)) 𝑑𝜇 < ∞.

Then, 𝑢 ∈ 𝑊 𝑠,Φ𝑥,𝑦(Ω), and the claim is proved. Clearly, 𝑊
𝑠,Φ𝑥,𝑦

0 (Ω) is a subspace of
𝑊 𝑠,Φ𝑥,𝑦(Ω). Now, let (𝑢𝑛)𝑛∈N ⊂ 𝑊

𝑠,Φ𝑥,𝑦

0 (Ω) be a sequence such that 𝑢𝑛 → 𝑢 in 𝑊 𝑠,Φ𝑥,𝑦(Ω).
Then, by Proposition 4.3.9, 𝑢𝑛(𝑥) → 𝑢(𝑥) a.e. in R𝑁 . By using the property that 𝑢𝑛 = 0
a.e. in R𝑁 ∖ Ω for all 𝑛 ∈ N, it is not hard to see that 𝑢 = 0 a.e. in R𝑁 ∖ Ω. Therefore,
𝑢 ∈ 𝑊

𝑠,Φ𝑥,𝑦

0 (Ω), and this ends the proof.

4.4 UNIFORM CONVEXITY

In this section, we are interested in the uniform convexity of
(︁
𝑊 𝑠,Φ𝑥,𝑦(Ω), ‖ · ‖(Ω)

)︁
. For

this purpose, we assume that

(𝜑3)′ for a.e. (𝑥, 𝑦) ∈ Ω×Ω, 𝑡 ↦→ 𝜙𝑥,𝑦(𝑡) is a differentiable function on (0, ∞) and there exist
1 < ℓ ≤ 𝑚 < ∞ such that

ℓ − 1 ≤
𝑑
𝑑𝑡

(𝑡𝜙𝑥,𝑦(𝑡))
𝜙𝑥,𝑦(𝑡) ≤ 𝑚 − 1, for a.e. (𝑥, 𝑦) ∈ Ω × Ω and 𝑡 > 0.

By straightforward computations, we can verify that (𝜑3)′ implies (𝜑3).

Lemma 4.4.1. If (𝜑1), (𝜑2) and (𝜑3)′ hold, then Φ is uniformly convex function.
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Proof. First, let us prove that the function 𝑡 ↦→ Φ𝑥,𝑦(𝑡 1
ℓ ) is convex for 𝑡 > 0 and a.e.

(𝑥, 𝑦) ∈ Ω × Ω. Indeed, by direction calculation, we have that
𝑑2

𝑑𝑡2

[︁
Φ𝑥,𝑦

(︁
𝑡

1
ℓ

)︁]︁
= 𝑑

𝑑𝑡

[︃
𝑑

𝑑𝑡
Φ𝑥,𝑦

(︁
𝑡

1
ℓ

)︁]︃

= 𝑑

𝑑𝑡

[︂1
ℓ
𝑡

1
ℓ 𝜙𝑥,𝑦

(︁
𝑡

1
ℓ

)︁
𝑡

1
ℓ

−1
]︂

= 1
ℓ

[︃
𝑑

𝑑𝑠
(𝑠𝜙𝑥,𝑦(𝑠))

⃒⃒⃒⃒
𝑠=𝑡

1
ℓ

1
ℓ

(︁
𝑡

1
ℓ

−1
)︁ (︁

𝑡
1
ℓ

−1
)︁

+ 𝑡
1
ℓ 𝜙𝑥,𝑦

(︁
𝑡

1
ℓ

)︁(︂1
ℓ

− 1
)︂

𝑡
1
ℓ

−2
]︃

= 1
ℓ

[︃
1
ℓ

𝑑

𝑑𝑠
(𝑠𝜙𝑥,𝑦(𝑠))

⃒⃒⃒⃒
𝑠=𝑡

1
ℓ

(︁
𝑡

1
ℓ

−1
)︁2

+ 𝜙𝑥,𝑦

(︁
𝑡

1
ℓ

)︁ (︂1
ℓ

− 1
)︂ (︁

𝑡
1
ℓ

−1
)︁2
]︃

= 1
ℓ

(︁
𝑡

1
ℓ

−1
)︁2

𝜙𝑥,𝑦(𝑠)
⃒⃒⃒⃒
𝑠=𝑡

1
ℓ

[︃
1
ℓ

𝑑
𝑑𝑠

(𝑠𝜙𝑥,𝑦(𝑠))
𝜙𝑥,𝑦(𝑠)

⃒⃒⃒⃒
𝑠=𝑡

1
ℓ

+ 1
ℓ

− 1
]︃

.

This and the hypothesis (𝜑3)′ imply
𝑑2

𝑑𝑡2

[︁
Φ𝑥,𝑦

(︁
𝑡

1
ℓ

)︁]︁
≥ 1

ℓ

(︁
𝑡

1
ℓ

−1
)︁2

𝜙𝑥,𝑦(𝑠)
⃒⃒⃒⃒
𝑠=𝑡

1
ℓ

[︂1
ℓ
(ℓ − 1) + 1

ℓ
− 1

]︂
= 0,

which shows the statement.
It remains to show that the 𝑁 -function Φ is uniformly convex. To this end, let 𝜀 > 0 and

let 𝑡, 𝑠 ≥ 0 be such that |𝑡 − 𝑠| > 𝜀 max{𝑡, 𝑠}. We know that the function 𝑡 ↦→ 𝑡ℓ is uniformly
convex, that is, there exists 𝛿Φ := 𝛿Φ(𝜀, ℓ) > 0 such that(︂

𝑡 + 𝑠

2

)︂ℓ

≤ (1 − 𝛿Φ)𝑡ℓ + 𝑠ℓ

2
This inequality together with the convexity of 𝑡 ↦→ Φ𝑥,𝑦(𝑡 1

ℓ ) gives us

Φ𝑥,𝑦

(︂
𝑡 + 𝑠

2

)︂
≤ Φ𝑥,𝑦

⎛⎝(︃(1 − 𝛿Φ)𝑡ℓ + 𝑠ℓ

2

)︃ 1
ℓ

⎞⎠ ≤ (1 − 𝛿Φ)Φ𝑥,𝑦(𝑡) + Φ𝑥,𝑦(𝑠)
2 .

This completes the proof of the uniform convexity of Φ.

Finally, we are able to prove our first main result, which can be stated as follows.

Theorem 4.4.2. Let 𝑠 ∈ (0, 1) and assume that (𝜑1), (𝜑2) and (𝜑3)′ hold. Then, the following

assertions hold:

(i) 𝑊 𝑠,Φ𝑥,𝑦(Ω) is a uniformly convex space with respect to norm ‖ · ‖(Ω);

(ii) If 𝑢𝑛 ⇀ 𝑢 in 𝑊 𝑠,Φ𝑥,𝑦(Ω) and 𝒥𝑠,Φ(𝑢𝑛) → 𝒥𝑠,Φ(𝑢), then 𝑢𝑛 → 𝑢 in 𝑊 𝑠,Φ𝑥,𝑦(Ω).

Proof. (𝑖) To prove the uniform convexity of the space 𝑊 𝑠,Φ𝑥,𝑦(Ω), let us consider the product
space 𝐿̂︀Φ𝑥(Ω)×𝐿Φ𝑥,𝑦(𝑑𝜇) with Luxemburg equivalent norm ‖ · ‖̂︀Φ,Φ generated by the modular
function

𝒥̂︀Φ,Φ(𝑢, 𝑣) =
∫︁

Ω
̂︀Φ𝑥(|𝑢(𝑥)|) 𝑑𝑥 +

∫︁
Ω

∫︁
Ω

Φ𝑥,𝑦(|𝑣(𝑥, 𝑦)|) 𝑑𝜇 = 𝐽̂︀Φ(𝑢) + 𝐽Φ(𝑣),
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for all 𝑢 ∈ 𝐿̂︀Φ𝑥(Ω) and 𝑣 ∈ 𝐿Φ𝑥,𝑦(𝑑𝜇). Now, consider the linear operator

𝑇 :
(︁
𝑊 𝑠,Φ𝑥,𝑦(Ω), ‖ · ‖(Ω)

)︁
→
(︂

𝐿
̂︀Φ𝑥(Ω) × 𝐿Φ𝑥,𝑦(𝑑𝜇), ‖ · ‖̂︀Φ,Φ

)︂
defined by 𝑇 (𝑢) = (𝑢, 𝐷𝑠𝑢). It is not hard to see that 𝑇 is well-defined and it is an isometric
embedding. Thus, 𝑇

(︁
𝑊 𝑠,Φ𝑥,𝑦(Ω)

)︁
is a closed subspace of

(︁
𝐿̂︀Φ𝑥(Ω) × 𝐿Φ𝑥,𝑦(𝑑𝜇), ‖ · ‖̂︀Φ,Φ

)︁
.

Since
(︁
𝐿̂︀Φ𝑥(Ω) × 𝐿Φ𝑥,𝑦(𝑑𝜇), ‖ · ‖̂︀Φ,Φ

)︁
is Banach space, in order to prove that 𝑊 𝑠,Φ𝑥,𝑦(Ω) is

uniformly convex space, it is sufficient to show that
(︁
𝐿̂︀Φ𝑥(Ω) × 𝐿Φ𝑥,𝑦(𝑑𝜇), ‖ · ‖̂︀Φ,Φ

)︁
is uniformly

convex space.
Firstly, by using Lemma 4.4.1 the 𝑁 -funtions ̂︀Φ and Φ are uniformly convex. Let us fix

𝜀 > 0. For 𝜀/2, let 𝛿0 > 0 as in Lemma 4.2.10 for ̂︀Φ and Φ. Assume that (𝑢1, 𝑣1), (𝑢2, 𝑣2) ∈

𝐿̂︀Φ𝑥(Ω) × 𝐿Φ𝑥,𝑦(𝑑𝜇) satisfying

𝒥̂︀Φ,Φ

(︃
(𝑢1, 𝑣1) − (𝑢2, 𝑣2)

2

)︃
> 𝜀

𝒥̂︀Φ,Φ(𝑢1, 𝑣1) + 𝒥̂︀Φ,Φ(𝑢2, 𝑣2)
2 . (4.13)

We prove that the second inequality of Definition 4.2.12 holds for 𝛿 = 𝛿0𝜀
2 . For this, we define

the sets
𝑈 =

{︂
𝑥 ∈ Ω : |𝑢1(𝑥) − 𝑢2(𝑥)| >

𝜀

2 max{|𝑢1(𝑥)|, |𝑢2(𝑥)|}
}︂

and

𝑉 =
{︂

(𝑦, 𝑧) ∈ Ω × Ω : |𝑣1(𝑦, 𝑧) − 𝑣2(𝑦, 𝑧)| >
𝜀

2 max{|𝑣1(𝑦, 𝑧)|, |𝑣2(𝑦, 𝑧)|}
}︂

.

For a.e. 𝑥 ∈ Ω ∖ 𝑈 , it follows from convexity ̂︀Φ that

̂︀Φ𝑥

(︃
|𝑢1(𝑥) − 𝑢2(𝑥)|

2

)︃
≤ ̂︀Φ𝑥

(︃
𝜀

2
|𝑢1(𝑥)| + |𝑢2(𝑥)|

2

)︃

≤ 𝜀

2
̂︀Φ𝑥(|𝑢1(𝑥)|) + ̂︀Φ𝑥(|𝑢2(𝑥)|)

2 .

Then,
𝐽̂︀Φ
(︂

𝜒Ω∖𝑈
𝑢1 − 𝑢2

2

)︂
≤ 𝜀

2
𝐽̂︀Φ(𝜒Ω∖𝑈𝑢1) + 𝐽̂︀Φ(𝜒Ω∖𝑈𝑢2)

2 . (4.14)

Analogously, for a.e. (𝑦, 𝑧) ∈ (Ω × Ω) ∖ 𝑉 , we have

𝐽Φ

(︂
𝜒(Ω×Ω)∖𝑉

𝑣1 − 𝑣2

2

)︂
≤ 𝜀

2
𝐽Φ(𝜒(Ω×Ω)∖𝑉 𝑣1) + 𝐽Φ(𝜒(Ω×Ω)∖𝑉 𝑣2)

2 . (4.15)

By the additivity of the integral, (4.14) and (4.15), we obtain

𝒥̂︀Φ,Φ

(︃
(𝜒Ω∖𝑈𝑢1, 𝜒(Ω×Ω)∖𝑉 𝑣1) − (𝜒Ω∖𝑈𝑢2, 𝜒(Ω×Ω)∖𝑉 𝑣2)

2

)︃

= 𝒥̂︀Φ,Φ

(︂
𝜒Ω∖𝑈

𝑢1 − 𝑢2

2 , 𝜒(Ω×Ω)∖𝑉
𝑣1 − 𝑣2

2 )
)︂

≤ 𝜀

2
𝒥̂︀Φ,Φ(𝜒Ω∖𝑈𝑢1, 𝜒(Ω×Ω)∖𝑉 𝑣1) + 𝒥̂︀Φ,Φ(𝜒Ω∖𝑈𝑢2, 𝜒(Ω×Ω)∖𝑉 𝑣2)

2

≤ 𝜀

2
𝒥̂︀Φ,Φ(𝑢1, 𝑣1) + 𝒥̂︀Φ,Φ(𝑢2, 𝑣2)

2 .
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This inequality jointly with (4.13) and aditivity of the integral give us

𝒥̂︀Φ,Φ

(︃
(𝜒𝑈𝑢1, 𝜒𝑉 𝑣1) − (𝜒𝑈𝑢2, 𝜒𝑉 𝑣2)

2

)︃

= 𝒥̂︀Φ,Φ

(︃
(𝑢1, 𝑣1) − (𝑢2, 𝑣2

2

)︃
− 𝒥̂︀Φ,Φ

(︃
(𝜒Ω∖𝑈𝑢1, 𝜒(Ω×Ω)∖𝑉 𝑣1) − (𝜒Ω∖𝑈𝑢2, 𝜒(Ω×Ω)∖𝑉 𝑣2)

2

)︃

> 𝜀
𝒥̂︀Φ,Φ(𝑢1, 𝑣1) + 𝒥̂︀Φ,Φ(𝑢2, 𝑣2)

2 − 𝜀

2
𝒥̂︀Φ,Φ(𝑢1, 𝑣1) + 𝒥̂︀Φ,Φ(𝑢2, 𝑣2)

2

= 𝜀

2
𝒥̂︀Φ,Φ(𝑢1, 𝑣1) + 𝒥̂︀Φ,Φ(𝑢2, 𝑣2)

2 .

(4.16)
On the other side, it follows from uniform convexity of Φ and definition of 𝑈 and 𝑉 that

𝒥̂︀Φ,Φ

(︃
(𝜒𝑈𝑢1, 𝜒𝑉 𝑣1) + (𝜒𝑈𝑢2, 𝜒𝑉 𝑣2)

2

)︃
= 𝐽̂︀Φ

(︂
𝜒𝑈

𝑢1 + 𝑢2

2

)︂
+ 𝐽Φ

(︂
𝜒𝑉

𝑣1 + 𝑣2

2

)︂

≤ (1 − 𝛿0)
𝐽̂︀Φ(𝜒𝑈𝑢1) + 𝐽̂︀Φ(𝜒𝑈𝑢2)

2 + (1 − 𝛿0)
𝐽Φ(𝜒𝑉 𝑣1) + 𝐽Φ(𝜒𝑉 𝑣2)

2

= (1 − 𝛿0)
𝒥̂︀Φ,Φ(𝜒𝑈𝑢1, 𝜒𝑉 𝑣1) + 𝒥̂︀Φ,Φ(𝜒𝑈𝑢2, 𝜒𝑉 𝑣2)

2 .

(4.17)

Since the following inequality hold

1
2
[︁̂︀Φ𝑥(𝜒Ω∖𝑈𝑢1) + ̂︀Φ𝑥(𝜒Ω∖𝑈𝑢2)

]︁
− ̂︀Φ𝑥

(︃
𝜒Ω∖𝑈(𝑥)𝑢1(𝑥) + 𝑢2(𝑥)

2

)︃
≥ 0

and
1
2
[︁
Φ𝑥,𝑦(𝜒(Ω×Ω)∖𝑉 𝑣1) + Φ𝑦,𝑧(𝜒(Ω×Ω)∖𝑉 𝑣2)

]︁
− Φ𝑥,𝑦

(︂
𝜒(Ω×Ω)∖𝑉

𝑣1 + 𝑣2

2

)︂
≥ 0,

we deduce
𝒥̂︀Φ,Φ(𝑢1, 𝑣1) + 𝒥̂︀Φ,Φ(𝑢2, 𝑣2)

2 − 𝒥̂︀Φ,Φ

(︃
(𝑢1, 𝑣1) + (𝑢2, 𝑣2)

2

)︃

≥
𝒥̂︀Φ,Φ(𝜒𝑈𝑢1, 𝜒𝑉 𝑣1) + 𝒥̂︀Φ,Φ(𝜒𝑈𝑢2, 𝜒𝑉 𝑣2)

2 − 𝒥̂︀Φ,Φ

(︃
(𝜒𝑈𝑢1, 𝜒𝑉 𝑣1) + (𝜒𝑈𝑢2, 𝜒𝑉 𝑣2)

2

)︃
.

This inequality, (4.16), (4.17) and convexity imply

𝒥̂︀Φ,Φ(𝑢1, 𝑣1) + 𝒥̂︀Φ,Φ(𝑢2, 𝑣2)
2 − 𝒥̂︀Φ,Φ

(︃
(𝑢1, 𝑣1) + (𝑢2, 𝑣2)

2

)︃

≥ 𝛿0
𝒥̂︀Φ,Φ(𝜒𝑈𝑢1, 𝜒𝑉 𝑣1) + 𝒥̂︀Φ,Φ(𝜒𝑈𝑢2, 𝜒𝑉 𝑣2)

2

≥ 𝛿0𝒥̂︀Φ,Φ

(︃
(𝜒𝑈𝑢1, 𝜒𝑉 𝑣1) − (𝜒𝑈𝑢2, 𝜒𝑉 𝑣2)

2

)︃

≥ 𝛿0
𝜀

2
𝒥̂︀Φ,Φ(𝑢1, 𝑣1) + 𝒥̂︀Φ,Φ(𝑢2, 𝑣2)

2 .

Hence,

𝒥̂︀Φ,Φ

(︃
(𝑢1, 𝑣1) + (𝑢2, 𝑣2)

2

)︃
≤
(︃

1 − 𝛿0𝜀

2

)︃ 𝒥̂︀Φ,Φ(𝑢1, 𝑣1) + 𝒥̂︀Φ,Φ(𝑢2, 𝑣2)
2 ,
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which proves the uniform convexity of the modular 𝒥̂︀Φ,Φ. Finally, by Proposition 4.2.13, we
conclude that

(︁
𝐿̂︀Φ𝑥(Ω) × 𝐿Φ𝑥,𝑦(𝑑𝜇), ‖ · ‖̂︀Φ,Φ

)︁
is uniformly convex.

(𝑖𝑖) By recalling that Φ satisfies Δ2-condition, the required property also follows from
Proposition 4.2.13.

Remark 4.4.3. In Theorem 4.4.2 the domain Ω could be unbounded or R𝑁 itself.

4.5 MONOTONICITY AND CONVERGENCE RESULTS

Inspired by Bahrouni, Bahrouni and Xiang (2020b), we introduce a version of the classical
Lemma of Brézis and Lieb (1983), to modular functions.

Proposition 4.5.1 (Brezis-Lieb type Lemma). Assume that (𝜑1) − (𝜑3) hold. Let (𝑢𝑛)𝑛∈N be

a bounded sequence in 𝑊 𝑠,Φ𝑥,𝑦(Ω) such that 𝑢𝑛(𝑥) → 𝑢(𝑥) a.e. in Ω. Then, 𝑢 ∈ 𝑊 𝑠,Φ𝑥,𝑦(Ω)

and

lim
𝑛→∞

(𝒥𝑠,Φ(𝑢𝑛) − 𝒥𝑠,Φ(𝑢𝑛 − 𝑢)) = 𝒥𝑠,Φ(𝑢).

Proof. Firstly, by the boundedness of (𝑢𝑛)𝑛∈N, Fatou’s Lemma and Lemmas 4.2.22 (𝑖𝑖) and
4.3.8 (𝑖𝑖), we have ∫︁

Ω
̂︀Φ𝑥(|𝑢|) 𝑑𝑥 ≤ lim inf

𝑛→∞

∫︁
Ω
̂︀Φ𝑥(|𝑢𝑛|) 𝑑𝑥 < ∞,

that is, 𝑢 ∈ 𝐿̂︀Φ𝑥(Ω), and
∫︁

Ω

∫︁
Ω

Φ𝑥,𝑦(|𝐷𝑠𝑢|) 𝑑𝜇 ≤ lim inf
𝑛→∞

∫︁
Ω

∫︁
Ω

Φ𝑥,𝑦(|𝐷𝑠𝑢𝑛|) 𝑑𝜇 < ∞.

Hence, 𝑢 ∈ 𝑊 𝑠,Φ𝑥,𝑦(Ω).
In order to complete the proof, it only remains to show that

lim
𝑛→∞

(𝐽𝑠,Φ(𝑢𝑛) − 𝐽𝑠,Φ(𝑢𝑛 − 𝑢)) = 𝐽𝑠,Φ(𝑢) (4.18)

and
lim

𝑛→∞

(︁
𝐽̂︀Φ(𝑢𝑛) − 𝐽̂︀Φ(𝑢𝑛 − 𝑢)

)︁
= 𝐽̂︀Φ(𝑢). (4.19)

In view of the Mean Value Theorem, for each (𝑥, 𝑦) ∈ Ω × Ω, there exists 𝑧𝑛 := 𝑧𝑛(𝑥, 𝑦)

between |𝐷𝑠𝑢𝑛(𝑥, 𝑦) − 𝐷𝑠𝑢(𝑥, 𝑦)| and |𝐷𝑠𝑢𝑛(𝑥, 𝑦)| such that

|Φ𝑥,𝑦(|𝐷𝑠𝑢𝑛|) − Φ𝑥,𝑦(|𝐷𝑠𝑢𝑛 − 𝐷𝑠𝑢|)| = 𝑧𝑛𝜙𝑥,𝑦(𝑧𝑛)||𝐷𝑠𝑢𝑛| − |𝐷𝑠𝑢𝑛 − 𝐷𝑠𝑢||,
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where we have used that Φ′
𝑥,𝑦(𝑡) = 𝑡𝜙𝑥,𝑦(𝑡), for all 𝑡 ≥ 0. Thus, by using (𝜙2), we have

|Φ𝑥,𝑦(|𝐷𝑠𝑢𝑛|) − Φ𝑥,𝑦(|𝐷𝑠𝑢𝑛 − 𝐷𝑠𝑢|)| ≤ 𝑧𝑛𝜙𝑥,𝑦(𝑧𝑛)|𝐷𝑠𝑢|

≤ (|𝐷𝑠𝑢𝑛| + |𝐷𝑠𝑢𝑛 − 𝐷𝑠𝑢|)𝜙𝑥,𝑦(|𝐷𝑠𝑢𝑛| + |𝐷𝑠𝑢𝑛 − 𝐷𝑠𝑢|)|𝐷𝑠𝑢|.

For any 𝜀 ∈ (0, 1), the Young’s inequality (4.3) and (4.11) imply in

(|𝐷𝑠𝑢| + |𝐷𝑠𝑢𝑛 − 𝐷𝑠𝑢|)𝜙𝑥,𝑦(|𝐷𝑠𝑢| + |𝐷𝑠𝑢𝑛 − 𝐷𝑠𝑢|)|𝐷𝑠𝑢|

≤ 𝜀̃︀Φ𝑥,𝑦

(︁
(|𝐷𝑠𝑢| + |𝐷𝑠𝑢𝑛 − 𝐷𝑠𝑢|)𝜙𝑥,𝑦(|𝐷𝑠𝑢| + |𝐷𝑠𝑢𝑛 − 𝐷𝑠𝑢|)

)︁
+ 𝐶𝜀Φ𝑥,𝑦(|𝐷𝑠𝑢|)

≤ 𝜀2𝑚Φ𝑥,𝑦(|𝐷𝑠𝑢| + |𝐷𝑠𝑢𝑛 − 𝐷𝑠𝑢|) + 𝐶𝜀Φ𝑥,𝑦(|𝐷𝑠𝑢|)

≤ 𝜀𝐶𝑚Φ𝑥,𝑦(|𝐷𝑠𝑢𝑛 − 𝐷𝑠𝑢|) + 𝐶𝜀,𝑚Φ𝑥,𝑦(|𝐷𝑠𝑢|),

where 𝐶𝑚 := 22𝑚−1 and 𝐶𝜀,𝑚 := 𝜀22𝑚−1 + 𝐶𝜀. Therefore, we obtain

|Φ𝑥,𝑦(|𝐷𝑠𝑢𝑛|) − Φ𝑥,𝑦(|𝐷𝑠𝑢𝑛 − 𝐷𝑠𝑢|)| ≤ 𝜀𝐶𝑚Φ𝑥,𝑦(|𝐷𝑠𝑢𝑛 −𝐷𝑠𝑢|)+𝐶𝜀,𝑚Φ𝑥,𝑦(|𝐷𝑠𝑢|). (4.20)

Next, for 𝑛 ∈ N, we define

𝒲𝜀,𝑛(𝑥, 𝑦) =
[︁

|Φ𝑥,𝑦(|𝐷𝑠𝑢𝑛|) − Φ𝑥,𝑦(|𝐷𝑠𝑢𝑛 − 𝐷𝑠𝑢|) − Φ𝑥,𝑦(|𝐷𝑠𝑢|)|−𝜀𝐶𝑚Φ𝑥,𝑦(|𝐷𝑠𝑢𝑛−𝐷𝑠𝑢|)
]︁+

,

where 𝑎+ := max{𝑎, 0}, for all 𝑎 ∈ R. Note that 𝒲𝜀,𝑛(𝑥, 𝑦) → 0, as 𝑛 → ∞, a.e. in Ω × Ω.
Moreover, it follows from (4.20) that

|Φ𝑥,𝑦(|𝐷𝑠𝑢𝑛|) − Φ𝑥,𝑦(|𝐷𝑠𝑢𝑛 − 𝐷𝑠𝑢|) − Φ𝑥,𝑦(|𝐷𝑠𝑢|)|

≤ |Φ𝑥,𝑦(|𝐷𝑠𝑢𝑛|) − Φ𝑥,𝑦(|𝐷𝑠𝑢𝑛 − 𝐷𝑠𝑢|)| + |Φ𝑥,𝑦(|𝐷𝑠𝑢|)|

≤ 𝜀𝐶𝑚Φ𝑥,𝑦(|𝐷𝑠𝑢𝑛 − 𝐷𝑠𝑢|) + (𝐶𝜀,𝑚 + 1)Φ𝑥,𝑦(|𝐷𝑠𝑢|),

which implies that

𝒲𝜀,𝑛(𝑥, 𝑦)|𝑥 − 𝑦|−𝑁 ≤ (𝐶𝜀,𝑚 + 1)Φ𝑥,𝑦(|𝐷𝑠𝑢|)|𝑥 − 𝑦|−𝑁 ∈ 𝐿1(Ω × Ω).

Hence, in light of Lebesgue’s Dominated Convergence Theorem, there holds∫︁
Ω

∫︁
Ω

𝒲𝜀,𝑛(𝑥, 𝑦) 𝑑𝜇 → 0, as 𝑛 → ∞.

This fact and the following inequality

|𝐽𝑠,Φ(𝑢𝑛) − 𝐽𝑠,Φ(𝑢𝑛 − 𝑢) − 𝐽𝑠,Φ(𝑢)|

≤
∫︁

Ω

∫︁
Ω

|Φ𝑥,𝑦(|𝐷𝑠𝑢𝑛|) − Φ𝑥,𝑦(|𝐷𝑠𝑢𝑛 − 𝐷𝑠𝑢|) − Φ𝑥,𝑦(|𝐷𝑠𝑢|)| 𝑑𝜇

≤
∫︁

Ω

∫︁
Ω

(𝒲𝜀,𝑛(𝑥, 𝑦) + 𝜀𝐶𝑚Φ𝑥,𝑦(|𝐷𝑠𝑢𝑛 − 𝐷𝑠𝑢|)) 𝑑𝜇

≤
∫︁

Ω

∫︁
Ω

𝒲𝜀,𝑛(𝑥, 𝑦) 𝑑𝜇 + 𝜀𝐶𝑚𝐽𝑠,Φ(𝑢𝑛 − 𝑢),
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imply that
lim

𝑛→∞
|𝐽𝑠,Φ(𝑢𝑛) − 𝐽𝑠,Φ(𝑢𝑛 − 𝑢) − 𝐽𝑠,Φ(𝑢)| ≤ 𝜀𝐶𝑚𝐾,

for some constant 𝐾 > 0. Therefore, by making 𝜀 → 0 we obtain the assertion (4.18).
Similarly, we can show that (4.19) is valid. This prove the desired result.

Due to Lemma 4.3.8 (𝑖𝑖) and Brezis-Lieb-type Lemma we obtain the following convergence
result:

Corollary 4.5.2. Assume that (𝜑1) − (𝜑3) hold. Let 𝑢, 𝑢𝑛 ∈ 𝑊 𝑠,Φ𝑥,𝑦(Ω), 𝑛 ∈ N. Then, the

following assertions are equivalent:

(i) lim
𝑛→∞

‖𝑢𝑛 − 𝑢‖(Ω) = 0.

(ii) lim
𝑛→∞

𝒥𝑠,Φ(𝑢𝑛 − 𝑢) = 0.

(iii) 𝑢𝑛(𝑥) → 𝑢(𝑥) for a.e 𝑥 ∈ Ω and lim
𝑛→∞

𝒥𝑠,Φ(𝑢𝑛) = 𝒥𝑠,Φ(𝑢).

Now, we recall some definitions of operators of monotone type that we will use throughout
this section.

Definition 4.5.3. Let 𝑋 be a reflexive Banach space with norm ‖ · ‖𝑋 and let 𝐴 : 𝑋 → 𝑋*

be an operator. Then, 𝐴 is said to be

(i) monotone (strictly monotone) if ⟨𝐴𝑢 − 𝐴𝑣, 𝑢 − 𝑣⟩ ≥ 0 (> 0), for all 𝑢, 𝑣 ∈ 𝑋 with

𝑢 ̸= 𝑣;

(ii) uniformly monotone if ⟨𝐴𝑢 − 𝐴𝑣, 𝑢 − 𝑣⟩ ≥ 𝛼(‖𝑢 − 𝑣‖)‖𝑢 − 𝑣‖ for all 𝑢, 𝑣 ∈ 𝑋, where

𝛼 : [0, ∞) → [0, ∞) is strictly increasing with 𝛼(0) = 0 and 𝛼(𝑡) → ∞, as 𝑡 → ∞;

(iii) pseudomonotone if 𝑢𝑛 ⇀ 𝑢 weakly in 𝑋 and lim sup𝑛→∞ ⟨𝐴𝑢𝑛, 𝑢𝑛 − 𝑢⟩ ≤ 0 imply

⟨𝐴𝑢, 𝑢 − 𝑣⟩ ≤ lim inf
𝑛→∞

⟨𝐴𝑢𝑛, 𝑢𝑛 − 𝑣⟩ , for all 𝑣 ∈ 𝑋;

(iv) coercive if there exists a function 𝛽 : [0, ∞) → R such that lim𝑡→∞ 𝛽(𝑡) = ∞ and

⟨𝐴𝑢, 𝑢⟩
‖𝑢‖𝑋

≥ 𝛽(‖𝑢‖𝑋), for all 𝑢 ∈ 𝑋.

Under the assumptions (𝜑1) − (𝜑3), the property listed in the following lemma is valid.
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Lemma 4.5.4. Let 𝑠 ∈ (0, 1) and assume that (𝜑1) − (𝜑4) hold. Then, 𝒥𝑠,Φ belongs to

𝐶1
(︁
𝑊 𝑠,Φ𝑥,𝑦(Ω),R

)︁
and its Gâteaux derivative is given by

⟨𝒥 ′
𝑠,Φ(𝑢), 𝑣⟩ =

∫︁
Ω
̂︀𝜙𝑥(|𝑢(𝑥)|)𝑢(𝑥)𝑣(𝑥) 𝑑𝑥 +

∫︁
Ω

∫︁
Ω

𝜙𝑥,𝑦 (|𝐷𝑠𝑢(𝑥, 𝑦)|) 𝐷𝑠𝑢(𝑥, 𝑦)𝐷𝑠𝑣(𝑥, 𝑦) 𝑑𝜇

= ⟨𝐽 ′̂︀Φ(𝑢), 𝑣⟩ + ⟨𝐽 ′
𝑠,Φ(𝑢), 𝑣⟩,

for all 𝑢, 𝑣 ∈ 𝑊 𝑠,Φ𝑥,𝑦(Ω).

Proof. The proof is similar to Lemma 3.1 of Azroul et al. (2020) and we omit here.

Next, we shall prove some monotonicity properties of the operator 𝒥 ′
𝑠,Φ : 𝑋 → 𝑋*, where

𝑋 = 𝑊 𝑠,Φ𝑥,𝑦(Ω) or 𝑋 = 𝑊
𝑠,Φ𝑥,𝑦

0 (Ω) if Ω is a bounded domain.

Proposition 4.5.5. Assume that (𝜑1) − (𝜑4) hold. The operator 𝒥 ′
𝑠,Φ : 𝑋 → 𝑋* satisfies the

following properties:

(i) 𝒥 ′
𝑠,Φ is bounded, coercive and monotone;

(ii) 𝒥 ′
𝑠,Φ is pseudomonotone.

Proof. (𝑖) Since Φ𝑥,𝑦 is convex, it follows that 𝒥𝑠,Φ is convex. Then, 𝒥 ′
𝑠,Φ is a monotone

operator. Next, we shall prove that 𝒥 ′
𝑠,Φ is bounded. For this, let 𝑢, 𝑣 ∈ 𝑊 𝑠,Φ𝑥,𝑦(Ω) ∖ {0}.

It follows from Young’s inequality (4.3), (4.11), Lemma 4.3.8 (𝑖) and the definition of the
Luxemburg norm that⃒⃒⃒⃒

⃒
⟨

𝒥 ′
𝑠,Φ(𝑢), 𝑣

‖𝑣‖(Ω)

⟩⃒⃒⃒⃒
⃒ ≤

∫︁
Ω
̂︀𝜙𝑥(|𝑢|)|𝑢|

⃒⃒⃒⃒
⃒ 𝑣

‖𝑣‖(Ω)

⃒⃒⃒⃒
⃒ 𝑑𝑥 +

∫︁
Ω

∫︁
Ω

𝜙𝑥,𝑦(|𝐷𝑠𝑢|)|𝐷𝑠𝑢|
⃒⃒⃒⃒
⃒ 𝐷𝑠𝑣

‖𝑣‖(Ω)

⃒⃒⃒⃒
⃒ 𝑑𝜇

≤
∫︁

Ω

[︃̃︀̂︀Φ𝑥

(︁ ̂︀𝜙𝑥(|𝑢|)|𝑢|
)︁

+ ̂︀Φ𝑥

(︃
|𝑣|

‖𝑣‖(Ω)

)︃]︃
𝑑𝑥

+
∫︁

Ω

∫︁
Ω

[︃̃︀Φ𝑥,𝑦

(︁
𝜙𝑥,𝑦(|𝐷𝑠𝑢|)|𝐷𝑠𝑢|

)︁
+ Φ𝑥,𝑦

(︃
|𝐷𝑠𝑣|
‖𝑣‖(Ω)

)︃]︃
𝑑𝜇

≤
∫︁

Ω

[︃
2𝑚 ̂︀Φ𝑥

(︃
‖𝑢‖(Ω)

|𝑢|
‖𝑢‖(Ω)

)︃
+ ̂︀Φ𝑥

(︃
|𝑣|

‖𝑣‖(Ω)

)︃]︃
d𝑥

+
∫︁

Ω

∫︁
Ω

[︃
2𝑚Φ𝑥,𝑦

(︃
‖𝑢‖(Ω)

|𝐷𝑠𝑢|
‖𝑢‖(Ω)

)︃
+ Φ𝑥,𝑦

(︃
|𝐷𝑠𝑣|
‖𝑣‖(Ω)

)︃]︃
𝑑𝜇

≤ 2𝑚𝜉+
0 (‖𝑢‖(Ω))𝒥 ′

𝑠,Φ

(︃
𝑢

‖𝑢‖(Ω)

)︃
+ 𝒥 ′

𝑠,Φ

(︃
𝑣

‖𝑣‖(Ω)

)︃

≤ 2𝑚𝜉+
0 (‖𝑢‖(Ω)) + 1

≤ 2𝑚
(︁
𝜉+

0 (‖𝑢‖(Ω)) + 1
)︁

.
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Hence,

‖𝒥 ′
𝑠,Φ(𝑢)‖* = sup

𝑣 ∈𝑊 𝑠,Φ𝑥,𝑦 (Ω)∖{0}

⟨
𝒥 ′

𝑠,Φ(𝑢), 𝑣
⟩

‖𝑣‖(Ω)
≤ 2𝑚

(︁
𝜉+

0 (‖𝑢‖(Ω)) + 1
)︁

,

which implies that 𝒥 ′
𝑠,Φ is bounded. It remains to prove that 𝒥 ′

𝑠,Φ is coercive. For each
𝑢 ∈ 𝑊 𝑠,Φ𝑥,𝑦(Ω) ∖ {0}, it follows from condition (𝜑3) and Lemma 4.3.8 (𝑖𝑖) that

⟨𝒥 ′
𝑠,Φ(𝑢), 𝑢⟩

‖𝑢‖
= 1

‖𝑢‖(Ω)

[︂∫︁
Ω
̂︀𝜙𝑥(|𝑢|)(𝑢)2 𝑑𝑥 +

∫︁
Ω

∫︁
Ω

𝜙𝑥,𝑦(|𝐷𝑠𝑢|)(𝐷𝑠𝑢)2 𝑑𝜇
]︂

≥ ℓ

‖𝑢‖(Ω)

[︂∫︁
Ω
̂︀Φ𝑥(|𝑢|) 𝑑𝑥 +

∫︁
Ω

∫︁
Ω

Φ𝑥,𝑦 (|𝐷𝑠𝑢|) 𝑑𝜇
]︂

≥ ℓ

‖𝑢‖(Ω)
min{‖𝑢‖ℓ

(Ω), ‖𝑢‖𝑚
(Ω)}

= ℓ min{‖𝑢‖ℓ−1
(Ω) , ‖𝑢‖𝑚−1

(Ω) }.

Hence, since 𝑚 ≥ ℓ > 1, we conclude that

lim
‖𝑢‖(Ω)→∞

⟨𝒥 ′
𝑠,Φ(𝑢), 𝑢⟩
‖𝑢‖(Ω)

= ∞,

which proves that 𝒥 ′
𝑠,Φ(𝑢) is coercive.

(𝑖𝑖) By Lemma 4.5.4, 𝒥 ′
𝑠,Φ is continuous. Thus, since 𝒥 ′

𝑠,Φ is monotone, it follows from
Proposition 27.6 of Zeidler (2013) that 𝒥 ′

𝑠,Φ is pseudomonotone.

Now, let us assume the following conditions for a.e. (𝑥, 𝑦) ∈ Ω × Ω:

(𝜑5) 𝑡 ↦→ 𝜙𝑥,𝑦(𝑡) is a 𝐶1-function on (0, ∞).

(𝜑6) 𝑡 ↦→ 𝜙𝑥,𝑦(𝑡) is increasing in (0, ∞).

Under these conditions, we can state another monotonicity property of the operator 𝒥 ′
𝑠,Φ,

which is motivated by the work of Montenegro (1999).

Proposition 4.5.6. Suppose that (𝜑1), (𝜑3), (𝜑4), (𝜑5) and (𝜑6) hold. Then, 𝒥 ′
𝑠,Φ is uniformly

monotone.

Proof. Let 𝑎𝑥,𝑦(𝑡) = 𝜙𝑥,𝑦(|𝑡|)𝑡. In view of (𝜑5) and (𝜑6), we obtain

𝑎′
𝑥,𝑦(𝑡) = 𝜙′

𝑥,𝑦(|𝑡|) 𝑡2

|𝑡|
+ 𝜙𝑥,𝑦(|𝑡|) ≥ 𝜙𝑥,𝑦(|𝑡|), for all 𝑡 ̸= 0. (4.21)

For any 𝜉, 𝜂 ∈ R and 0 < 𝑡 ≤ 1
4 there holds

1
4 |𝜉 − 𝜂| ≤ |𝑡𝜉 + (1 − 𝑡)𝜂|.
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This fact combined with (𝜑3), (𝜑6), (4.21) and Lemma 4.3.8 (𝑖), imply that

(𝜙𝑥,𝑦(|𝜉|)𝜉 − 𝜙𝑥,𝑦(|𝜂|)𝜂) (𝜉 − 𝜂) =
∫︁ 1

0

𝑑

𝑑𝑡

(︂
𝑎𝑥,𝑦(𝑡𝜉 + (1 − 𝑡)𝜂)

)︂
(𝜉 − 𝜂) 𝑑𝑡

=
∫︁ 1

0
𝑎′

𝑥,𝑦(𝑡𝜉 + (1 − 𝑡)𝜂)(𝜉 − 𝜂)2 𝑑𝑡

≥
∫︁ 1

0
𝜙𝑥,𝑦(|𝑡𝜉 + (1 − 𝑡)𝜂|)(𝜉 − 𝜂)2 𝑑𝑡

≥
∫︁ 1

4

0
𝜙𝑥,𝑦(|𝑡𝜉 + (1 − 𝑡)𝜂|)(𝜉 − 𝜂)2 𝑑𝑡

≥
∫︁ 1

4

0
16𝜙𝑥,𝑦

(︂1
4 |𝜉 − 𝜂|

)︂(︂1
4 |𝜉 − 𝜂|

)︂2
𝑑𝑡

≥ 4ℓΦ𝑥,𝑦

(︂1
4 |𝜉 − 𝜂|

)︂
≥ 41−𝑚ℓΦ𝑥,𝑦 (|𝜉 − 𝜂|) .

Thus, using the above inequality and Lemma 4.3.8 (𝑖𝑖), we have
⟨
𝒥 ′

𝑠,Φ(𝑢) − 𝒥 ′
𝑠,Φ(𝑣), 𝑢 − 𝑣

⟩
=
∫︁

Ω
( ̂︀𝜙𝑥(|𝑢|)𝑢 − ̂︀𝜙𝑥(|𝑣|)𝑣) (𝑢 − 𝑣) d𝑥

+
∫︁

Ω

∫︁
Ω

(𝜙𝑥,𝑦(|𝐷𝑠𝑢|)𝐷𝑠𝑢 − 𝜙𝑥,𝑦(|𝐷𝑠𝑣|)𝐷𝑠𝑣) (𝐷𝑠𝑢 − 𝐷𝑠𝑣) 𝑑𝜇

≥ 41−𝑚ℓ
[︂∫︁

Ω
̂︀Φ𝑥 (|𝑢 − 𝑣|) d𝑥 +

∫︁
Ω

∫︁
Ω

Φ𝑥,𝑦 (|𝐷𝑠𝑢 − 𝐷𝑠𝑣|) 𝑑𝜇
]︂

≥ 41−𝑚ℓ min{‖𝑢 − 𝑣‖ℓ
(Ω), ‖𝑢 − 𝑣‖𝑚

(Ω)}

= 41−𝑚ℓ min{‖𝑢 − 𝑣‖ℓ−1
(Ω) , ‖𝑢 − 𝑣‖𝑚−1

(Ω) }‖𝑢 − 𝑣‖(Ω).

Therefore, considering the function 𝛼(𝑡) = 41−𝑚ℓ min{𝑡ℓ−1, 𝑡𝑚−1} for 𝑡 ≥ 0, we conclude that
𝒥 ′

𝑠,Φ is uniformly monotone.

Definition 4.5.7. We say that 𝒥 ′
𝑠,Φ satisfies the (𝑆+)-property if for a given (𝑢𝑛)𝑛∈N ⊂

𝑊 𝑠,Φ𝑥,𝑦(Ω) satisfying 𝑢𝑛 ⇀ 𝑢 weakly in 𝑊 𝑠,Φ𝑥,𝑦(Ω) and

lim sup
𝑛→∞

⟨𝒥 ′
𝑠,Φ(𝑢𝑛), 𝑢𝑛 − 𝑢⟩ ≤ 0,

there holds 𝑢𝑛 → 𝑢 strongly in 𝑊 𝑠,Φ𝑥,𝑦(Ω).

Theorem 4.5.8. Let Ω ⊂ R𝑁 be a bounded domain with 𝐶0,1-regularity and assume that

(𝜑1) − (𝜑4) hold. Then, 𝒥 ′
𝑠,Φ satisfies the (𝑆+)-property.

Proof. Suppose that 𝑢𝑛 ⇀ 𝑢 weakly in 𝑊 𝑠,Φ𝑥,𝑦(Ω) and

lim sup
𝑛→∞

⟨𝒥 ′
𝑠,Φ(𝑢𝑛), 𝑢𝑛 − 𝑢⟩ ≤ 0.
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By Corollary 4.5.2, in order to prove that 𝑢𝑛 → 𝑢 strongly in 𝑊 𝑠,Φ𝑥,𝑦(Ω), it is sufficient to
show that

lim
𝑛→∞

𝐽𝑠,Φ(𝑢𝑛 − 𝑢) = lim
𝑛→∞

∫︁
Ω

∫︁
Ω

Φ𝑥,𝑦(|𝐷𝑠𝑢𝑛 − 𝐷𝑠𝑢|) 𝑑𝜇 = 0 (4.22)

and
lim

𝑛→∞
𝐽̂︀Φ(𝑢𝑛 − 𝑢) = lim

𝑛→∞

∫︁
Ω
̂︀Φ𝑥(|𝑢𝑛 − 𝑢|) 𝑑𝑥 = 0. (4.23)

Since the embedding 𝑊 𝑠,Φ𝑥,𝑦(Ω) →˓ 𝐿1(Ω) is compact (see Corollary 4.3.10), we have that
𝑢𝑛(𝑥) → 𝑢(𝑥) a.e in Ω. Then, 𝐷𝑠𝑢𝑛(𝑥, 𝑦) → 𝐷𝑠𝑢(𝑥, 𝑦) a.e. in Ω × Ω, which implies that

lim
𝑛→∞

Φ𝑥,𝑦(|𝐷𝑠𝑢𝑛(𝑥, 𝑦) − 𝐷𝑠𝑢(𝑥, 𝑦)|)|𝑥 − 𝑦|−𝑁 = 0, a.e. in Ω × Ω. (4.24)

In view from (4.24) and Vitali’s Theorem (RAO, 2004), to prove (4.22), it is sufficient to prove
that the sequence

ℎ𝑛(𝑥, 𝑦) := Φ𝑥,𝑦(|𝐷𝑠𝑢𝑛(𝑥, 𝑦) − 𝐷𝑠𝑢(𝑥, 𝑦)|)|𝑥 − 𝑦|−𝑁 , 𝑛 ∈ N

is equi-integrable over Ω × Ω, that is, the following conditions hold:

(i) for all 𝜀 > 0, there 𝛿𝜀 > 0 such that, if 𝐴 × 𝐵 ⊂ Ω × Ω and |𝐴 × 𝐵| < 𝛿𝜀, then
∫︁

𝐴

∫︁
𝐵

ℎ𝑛(𝑥, 𝑦) 𝑑𝑥𝑑𝑦 < 𝜀, for all 𝑛 ∈ N.

(ii) for all 𝜀 > 0, there exists a subset 𝐴𝜀 × 𝐵𝜀 ⊂ Ω × Ω such that |𝐴𝜀 × 𝐵𝜀| < ∞ and
∫︁

Ω∖𝐴𝜀

∫︁
Ω∖𝐵𝜀

ℎ𝑛(𝑥, 𝑦) 𝑑𝑥𝑑𝑦 < 𝜀, for all 𝑛 ∈ N.

Firstly, note that Lemma 4.5.4 and the weak convergence 𝑢𝑛 ⇀ 𝑢 in 𝑊
𝑠,Φ𝑥,𝑦

0 (Ω) imply
that

lim
𝑛→∞

⟨
𝒥 ′

𝑠,Φ(𝑢), 𝑢𝑛 − 𝑢
⟩

= 0.

Thus,
lim sup

𝑛→∞

⟨
𝒥 ′

𝑠,Φ(𝑢𝑛) − 𝒥 ′
𝑠,Φ(𝑢), 𝑢𝑛 − 𝑢

⟩
≤ 0.

Hence, the monotonicity of operator 𝒥 ′
𝑠,Φ jointly with the limit just above implies that

0 ≤ lim inf
𝑛→∞

⟨
𝒥 ′

𝑠,Φ(𝑢𝑛) − 𝒥 ′
𝑠,Φ(𝑢), 𝑢𝑛 − 𝑢

⟩
≤ lim sup

𝑛→∞

⟨
𝒥 ′

𝑠,Φ(𝑢𝑛) − 𝒥 ′
𝑠,Φ(𝑢), 𝑢𝑛 − 𝑢

⟩
≤ 0,

that is,
lim

𝑛→∞

⟨
𝒥 ′

𝑠,Φ(𝑢𝑛) − 𝒥 ′
𝑠,Φ(𝑢), 𝑢𝑛 − 𝑢

⟩
= 0. (4.25)
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For 𝑛 ∈ N, define

𝑓𝑛(𝑥, 𝑦) :=
(︂

𝜙𝑥,𝑦(|𝐷𝑠𝑢𝑛|)𝐷𝑠𝑢𝑛 − 𝜙𝑥,𝑦(|𝐷𝑠𝑢|)𝐷𝑠𝑢
)︂

(𝐷𝑠𝑢𝑛 − 𝐷𝑠𝑢) .

Since (𝜑2) holds, a direct computation infers

(𝑡𝜙𝑥,𝑦(|𝑡|) − 𝑠𝜙𝑥,𝑦(|𝑠|))(𝑡 − 𝑠) ≥ 0, for all (𝑥, 𝑦) ∈ Ω × Ω and 𝑠, 𝑡 ∈ R, (4.26)

see for instance Lemma 7.5 of Alves, Gonçalves and Santos (2014) or Proposition 2.5 obtained
by Carvalho, Goncalves and Silva (2015). The inequality (4.26) combined with the limit (4.25)
imply that the sequence (𝑓𝑛(𝑥, 𝑦)|𝑥−𝑦|−𝑁)𝑛∈N converges to 0 in 𝐿1(Ω×Ω). Thus, by converse
Vitali’s Theorem, (𝑓𝑛(𝑥, 𝑦)|𝑥 − 𝑦|−𝑁)𝑛∈N is equi-integrable over Ω × Ω.

Now, observe that

𝑓𝑛(𝑥, 𝑦) = 𝜙𝑥,𝑦(|𝐷𝑠𝑢𝑛|)(𝐷𝑠𝑢𝑛)2 + 𝜙𝑥,𝑦(|𝐷𝑠𝑢|)(𝐷𝑠𝑢)2

− 𝜙𝑥,𝑦(|𝐷𝑠𝑢𝑛|)𝐷𝑠𝑢𝑛𝐷𝑠𝑢 − 𝜙𝑥,𝑦(|𝐷𝑠𝑢|)𝐷𝑠𝑢𝐷𝑠𝑢𝑛.
(4.27)

For each 𝜀 ∈ (0, 1), using Young’s inequality (4.3), (4.11), (4.27), Lemma 4.3.8 (𝑖) and (𝜙3),
we obtain

𝜙𝑥,𝑦(|𝐷𝑠𝑢𝑛|)(𝐷𝑠𝑢𝑛)2 = 𝑓𝑛(𝑥, 𝑦) − 𝜙𝑥,𝑦(|𝐷𝑠𝑢|)(𝐷𝑠𝑢)2 + 𝜙𝑥,𝑦(|𝐷𝑠𝑢𝑛|)𝐷𝑠𝑢𝑛𝐷𝑠𝑢

+ 𝜙𝑥,𝑦(|𝐷𝑠𝑢|)𝐷𝑠𝑢𝐷𝑠𝑢𝑛

≤ 𝑓𝑛(𝑥, 𝑦) + 𝜀̃︀Φ𝑥,𝑦(𝜙𝑥,𝑦(|𝐷𝑠𝑢𝑛|)|𝐷𝑠𝑢𝑛|) + 𝐶𝜀Φ𝑥,𝑦(|𝐷𝑠𝑢|)

+ ̃︀𝐶𝜀
̃︀Φ𝑥,𝑦(𝜙𝑥,𝑦(|𝐷𝑠𝑢|)|𝐷𝑠𝑢|) + 𝜀Φ𝑥,𝑦(|𝐷𝑠𝑢𝑛|)

≤ 𝑓𝑛(𝑥, 𝑦) + (𝐶𝜀 + 2𝑚 ̃︀𝐶𝜀)Φ𝑥,𝑦(|𝐷𝑠𝑢|)

+ 𝜀(1 + 2𝑚)ℓ−1𝜙𝑥,𝑦(|𝐷𝑠𝑢𝑛|)(𝐷𝑠𝑢𝑛)2.

Thus, by choosing 0 < 𝜀 < ℓ
1+2𝑚 sufficiently small and using (𝜙3), we obtain 𝐶 :=

𝐶(𝜀, ℓ, 𝑚) > 0 such that

Φ𝑥,𝑦(|𝐷𝑠𝑢𝑛|) ≤ ℓ−1𝜙𝑥,𝑦(|𝐷𝑠𝑢𝑛|)(𝐷𝑠𝑢𝑛)2

≤ 𝐶 (𝑓𝑛(𝑥, 𝑦) + Φ𝑥,𝑦(|𝐷𝑠𝑢|)) .
(4.28)

Hence, using that Φ𝑥,𝑦 is convex, Lemma 4.3.8 (𝑖) and (4.28), we obtain

ℎ𝑛(𝑥, 𝑦) = Φ𝑥,𝑦

(︁
|𝐷𝑠𝑢𝑛 − 𝐷𝑠𝑢|

)︁
|𝑥 − 𝑦|−𝑁 ≤ Φ𝑥,𝑦

(︃
2|𝐷𝑠𝑢𝑛| + 2|𝐷𝑠𝑢|

2

)︃
|𝑥 − 𝑦|−𝑁

≤
(︁
2𝑚−1Φ𝑥,𝑦(|𝐷𝑠𝑢𝑛|) + 2𝑚−1Φ𝑥,𝑦(|𝐷𝑠𝑢|)

)︁
|𝑥 − 𝑦|−𝑁

≤ 2𝑚−1𝐶 (𝑓𝑛(𝑥, 𝑦) + Φ𝑥,𝑦(|𝐷𝑠𝑢|)) |𝑥 − 𝑦|−𝑁 + 2𝑚−1Φ𝑥,𝑦(|𝐷𝑠𝑢|)|𝑥 − 𝑦|−𝑁 ,
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which implies that the sequence (ℎ𝑛)𝑛∈N is also equi-integrable. Therefore, (4.22) holds by
Vitali’s Theorem.

Using arguments similar to those above, we can prove that (4.23) holds.

Remark 4.5.9. We point out that in Theorem 4.5.8 we can consider the condition (𝜑3)

with ℓ ≥ 1 and therefore the space 𝑊 𝑠,Φ𝑥,𝑦(Ω) is non-reflexive. Also, it is not used that

𝑡 ↦→ Φ𝑥,𝑦(
√

𝑡) is convex. Thus, Theorem 4.5.8 can be seen as a generalization of the result

obtained by Bahrouni, Ounaies and Tavares (2020) in Lemma 3.4.

In the sequel, we will give an alternative proof for the (𝑆+)-property in domain arbitrary
assuming a stronger hypothesis than (𝜑2), namely:

(𝜑2)′ 𝑡 ↦→ 𝑡𝜙𝑥,𝑦(𝑡) is strictly increasing.

Theorem 4.5.10. Assume that (𝜑1), (𝜑2)′, (𝜑3) and (𝜑4) hold. Then, 𝒥 ′
𝑠,Φ satisfies (𝑆+)-

property.

Proof. Using the same techniques as in the proof of Theorem 4.5.8, we conclude that the
sequence (𝑓𝑛(𝑥, 𝑦))𝑛∈N defined by

𝑓𝑛(𝑥, 𝑦) := (𝜙𝑥,𝑦(|𝐷𝑠𝑢𝑛|)𝐷𝑠𝑢𝑛 − 𝜙𝑥,𝑦(|𝐷𝑠𝑢|)𝐷𝑠𝑢) (𝐷𝑠𝑢𝑛 − 𝐷𝑠𝑢)

converges to 0 in 𝐿1(Ω × Ω, 𝑑𝜇). Then, by conversely of Lebesgue’s Theorem, there exist
𝑔 ∈ 𝐿1(Ω × Ω, 𝑑𝜇) and a subsequence, still denoted by (𝑓𝑛)𝑛∈N, such that |𝑓𝑛| ≤ 𝑔 and
𝑓𝑛 → 0 𝜇-a.e. in Ω × Ω. Thus, by inequality (4.28), we obtain 𝐶 := 𝐶(𝜀, ℓ, 𝑚) > 0 such that

Φ𝑥,𝑦(|𝐷𝑠𝑢𝑛(𝑥, 𝑦)|) ≤ ℓ−1𝜙𝑥,𝑦(|𝐷𝑠𝑢𝑛(𝑥, 𝑦)|)(𝐷𝑠𝑢𝑛)2(𝑥, 𝑦)

≤ 𝐶 (𝑔(𝑥, 𝑦) + Φ𝑥,𝑦(|𝐷𝑠𝑢(𝑥, 𝑦)|)) ∈ 𝐿1(Ω × Ω, 𝑑𝜇).
(4.29)

On the other hand, since (𝜑2)′ holds, the inequality (4.26) becomes

(𝑡𝜙𝑥,𝑦(|𝑡|) − 𝑠𝜙𝑥,𝑦(|𝑠|))(𝑡 − 𝑠) > 0, for a.e. (𝑥, 𝑦) ∈ Ω × Ω and 𝑡 ̸= 𝑠. (4.30)

We proceed as in Lemma 6 present in Dal Maso and Murat (1998) to prove that 𝐷𝑠𝑢𝑛(𝑥, 𝑦)

converges to 𝐷𝑠𝑢(𝑥, 𝑦) 𝜇-a.e. in Ω × Ω. Indeed, we assume by contradiction that there exist
𝜀 > 0 and a subsequence, still denoted by (𝑢𝑛)𝑛∈N, such that |𝐷𝑠𝑢𝑛 − 𝐷𝑠𝑢| ≥ 𝜀 for all 𝑛. Let
𝑡𝑛 = 𝜀|𝐷𝑠𝑢𝑛 − 𝐷𝑠𝑢|−1 and we consider the sequence

𝑣𝑛(𝑥, 𝑦) = 𝑡𝑛𝐷𝑠𝑢𝑛(𝑥, 𝑦) + (1 − 𝑡𝑛)𝐷𝑠𝑢(𝑥, 𝑦), (𝑥, 𝑦) ∈ Ω × Ω.
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Observe that |𝑣𝑛 − 𝐷𝑠𝑢| = 𝑡𝑘|𝐷𝑠𝑢𝑛 − 𝐷𝑠𝑢| = 𝜀. This means that (𝑣𝑛)𝑛∈N is bounded in
R. Thus, a subsequence, still denoted by (𝑣𝑛)𝑛∈N, converges to some measurable function
𝑣 : Ω × Ω → R where |𝑣 − 𝐷𝑠𝑢| = 𝜀. Since (4.30) holds and 0 < 𝑡𝑛 ≤ 1, it follows that

𝑓𝑛(𝑥, 𝑦) = (𝜙𝑥,𝑦(|𝐷𝑠𝑢𝑛|)𝐷𝑠𝑢𝑛 − 𝜙𝑥,𝑦(|𝑣𝑛|)𝑣𝑛) (𝐷𝑠𝑢𝑛 − 𝐷𝑠𝑢)

+ (𝜙𝑥,𝑦(|𝑣𝑛|)𝑣𝑛 − 𝜙𝑥,𝑦(|𝐷𝑠𝑢|)𝐷𝑠𝑢) (𝐷𝑠𝑢𝑛 − 𝐷𝑠𝑢)

≥ (𝜙𝑥,𝑦(|𝑣𝑛|)𝑣𝑛 − 𝜙𝑥,𝑦(|𝐷𝑠𝑢|)𝐷𝑠𝑢) (𝐷𝑠𝑢𝑛 − 𝐷𝑠𝑢)

≥ (𝜙𝑥,𝑦(|𝑣𝑛|)𝑣𝑛 − 𝜙𝑥,𝑦(|𝐷𝑠𝑢|)𝐷𝑠𝑢) (𝑣𝑛 − 𝐷𝑠𝑢) ≥ 0.

Thereby, this inequality and convergence 𝑓𝑛 → 0 𝜇-a.e. imply

lim
𝑛→∞

(𝜙𝑥,𝑦(|𝑣𝑛|)𝑣𝑛 − 𝜙𝑥,𝑦(|𝐷𝑠𝑢|)𝐷𝑠𝑢) (𝑣𝑛 − 𝐷𝑠𝑢) = 0.

On the other side, from continuity of 𝜙𝑥,𝑦(·) we have

lim
𝑛→∞

(𝜙𝑥,𝑦(|𝑣𝑛|)𝑣𝑛 − 𝜙𝑥,𝑦(|𝐷𝑠𝑢|)𝐷𝑠𝑢) (𝑣𝑛 − 𝐷𝑠𝑢) = (𝜙𝑥,𝑦(|𝑣|)𝑣 − 𝜙𝑥,𝑦(|𝐷𝑠𝑢|)𝐷𝑠𝑢) (𝑣 − 𝐷𝑠𝑢) ,

which implies that (𝜙𝑥,𝑦(|𝑣|)𝑣 − 𝜙𝑥,𝑦(|𝐷𝑠𝑢|)𝐷𝑠𝑢) (𝑣 − 𝐷𝑠𝑢) = 0 𝜇-a.e. Since |𝑣 − 𝐷𝑠𝑢| = 𝜀,
this contradicts the strict monotonicity (4.30), proving the convergence.

Consequently, by Lebesgue’s Dominated Convergence Theorem, 𝐽𝑠,Φ(𝑢𝑛) → 𝐽𝑠,Φ(𝑢).
Analogously, we have 𝐽̂︀Φ(𝑢𝑛) → 𝐽̂︀Φ(𝑢). This shows that 𝒥𝑠,Φ(𝑢𝑛) → 𝒥𝑠,Φ(𝑢). Therefore,
by Corollary 4.5.2, we obtain ‖𝑢𝑛 − 𝑢‖(Ω) → 0, i.e., 𝑢𝑛 → 𝑢 strongly in 𝑊 𝑠,Φ𝑥,𝑦(Ω).

The next result characterizes the strong convergence in the space 𝑊 𝑠,Φ𝑥,𝑦(Ω) under the
assumption (𝜑2)′.

Proposition 4.5.11. Assume that (𝜑1), (𝜑2)′, (𝜑3) and (𝜑4) hold. Let (𝑢𝑛)𝑛∈N be a sequence

in 𝑊 𝑠,Φ𝑥,𝑦(Ω). Then, 𝑢𝑛 → 𝑢 in 𝑊 𝑠,Φ𝑥,𝑦(Ω) if and only if

lim
𝑛→∞

⟨
𝒥 ′

𝑠,Φ(𝑢𝑛) − 𝒥 ′
𝑠,Φ(𝑢), 𝑢𝑛 − 𝑢

⟩
= 0. (4.31)

Proof. If 𝑢𝑛 → 𝑢, then by Proposition 4.5.4 the limit (4.31) holds. Conversely, assuming
(4.31) and arguing as in proof Theorem 4.5.10, we obtain the desired result.

Next, we introduce another monotonicity result in the presence of hypothesis (𝜑2)′.

Proposition 4.5.12. Assume that (𝜑1), (𝜑2)′, (𝜑3) and (𝜑4) hold. Then, 𝒥 ′
𝑠,Φ is a

homeomorphism strictly monotone.
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Proof. The strict monotonicity of 𝒥 ′
𝑠,Φ follows from (4.30). Thus, by Proposition 4.5.5 (𝑖)

and Minty-Browder Theorem (ZEIDLER, 2013, Theorem 26.A), 𝒥 ′
𝑠,Φ is invertible and (𝒥 ′

𝑠,Φ)−1

is strictly monotone and bounded. Therefore, in order to complete the proof of (𝑖𝑖) we only
need to show that (𝒥 ′

𝑠,Φ)−1 is continuous. For this purpose, let (𝑔𝑛)𝑛∈N be a sequence such
that 𝑔𝑛 → 𝑔 strongly in

(︁
𝑊 𝑠,Φ𝑥,𝑦(Ω)

)︁*
. By taking 𝑢𝑛 = (𝒥 ′

𝑠,Φ)−1(𝑔𝑛) and 𝑢 = (𝒥 ′
𝑠,Φ)−1(𝑔), it

follows from the strong convergence of (𝑔𝑛)𝑛∈N and the boundedness of (𝒥 ′
𝑠,Φ)−1 that (𝑢𝑛)𝑛∈N

is bounded in 𝑊 𝑠,Φ𝑥,𝑦(Ω). Thus, up to subsequence 𝑢𝑛 ⇀ 𝑢0 in 𝑊 𝑠,Φ𝑥,𝑦(Ω). Consequently,

lim
𝑛→∞

⟨𝒥 ′
𝑠,Φ(𝑢𝑛) − 𝒥 ′

𝑠,Φ(𝑢0), 𝑢𝑛 − 𝑢0⟩ = lim
𝑛→∞

⟨𝒥 ′
𝑠,Φ(𝑢𝑛) − 𝑔, 𝑢𝑛 − 𝑢0⟩

+ lim
𝑛→∞

⟨𝑔 − 𝒥 ′
𝑠,Φ(𝑢0), 𝑢𝑛 − 𝑢0⟩

= 0.

This fact jointly with Theorem 4.5.10 imply that 𝑢𝑛 → 𝑢0. Hence, by the continuity of the
operator 𝒥 ′

𝑠,Φ we obtain

𝒥 ′
𝑠,Φ(𝑢0) = lim

𝑛→∞
𝒥 ′

𝑠,Φ(𝑢𝑛) = lim
𝑛→∞

𝑔𝑛 = 𝑔 = 𝒥 ′
𝑠,Φ(𝑢),

i.e., 𝑢 = 𝑢0. Therefore, (𝒥 ′
𝑠,Φ)−1 is continuous.

4.6 APPLICATION TO A NONLOCAL FRACTIONAL TYPE PROBLEM

In this section, we investigate the existence of nontrivial solution for the following class of
fractional type problems⎧⎪⎪⎨⎪⎪⎩

ℒ𝑠
𝜙𝑥,𝑦

𝑢 + ̂︀𝜙𝑥(|𝑢|)𝑢 = 𝑓(𝑥), in Ω,

𝑢 = 0, on R𝑁 ∖ Ω,

(4.32)

where 𝑁 ≥ 1, Ω ⊂ R𝑁 is a bounded domain with Lipschitz boundary 𝜕Ω and 𝑓 : Ω → R is
a measurable function that belongs to a suitable Musielak-Orlicz space.

Here, we consider a general nonlocal nonlinear operator of the Φ-Laplacian type ℒ𝑠
Φ𝑥,𝑦

:

𝑊
𝑠,Φ𝑥,𝑦

0 (Ω) →
(︁
𝑊

𝑠,Φ𝑥,𝑦

0 (Ω)
)︁*

defined as follows:

⟨ℒ𝑠
Φ𝑥,𝑦

𝑢, 𝑣⟩ =
∫︁
R𝑁

∫︁
R𝑁

𝜙𝑥,𝑦(|𝐷𝑠𝑢|)𝐷𝑠𝑢𝐷𝑠𝑣 𝑑𝜇.

where 𝑠 ∈ (0, 1), Φ𝑥,𝑦(𝑡) =
∫︀ 𝑡

0 𝜙𝑥,𝑦(𝜏)𝜏 𝑑𝜏 is a Musielak function that satisfies the conditions
(𝜑1) − (𝜑4) and ̂︀𝜙𝑥(𝑡) = 𝜙𝑥,𝑥(𝑡). It is not hard to see that the operator ℒ𝑠

Φ𝑥,𝑦
is well-defined

and coincide with Fréchet derivative of modular function 𝐽𝑠,Φ : 𝑊
𝑠,Φ𝑥,𝑦

0 (Ω) → R defined in
Section 4.3. See also Lemma 4.5.4.
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Remark 4.6.1. Due to the absence of the Poincaré inequality in the considered context, it is

not possible to address the problem without including the nonlinear term ̂︀𝜙𝑥(|𝑡|)𝑡.

In order to define the notion of solution for problem (4.32), we need to require a symmetry
assumption in 𝑥 and 𝑦 for the function 𝜙(𝑥, 𝑦, 𝑡), precisely,

𝜙(𝑥, 𝑦, 𝑡) = 𝜙(𝑦, 𝑥, 𝑡), for all (𝑥, 𝑦) ∈ Ω × Ω and 𝑡 ≥ 0.

Definition 4.6.2. A function 𝑢 ∈ 𝑊
𝑠,Φ𝑥,𝑦

0 (Ω) is said to be a weak solution for Problem (4.32)
if satisfies

⟨ℒ𝑠
Φ𝑥,𝑦

𝑢, 𝑣⟩ +
∫︁

Ω
̂︀𝜙𝑥(|𝑢(𝑥)|)𝑢𝑣 𝑑𝑥 =

∫︁
Ω

𝑓(𝑥)𝑣 𝑑𝑥,

for all 𝑣 ∈ 𝑊
𝑠,Φ𝑥,𝑦

0 (Ω).

The following result is an immediate consequence of the Proposition 4.5.12.

Proposition 4.6.3. Assume that (𝜑1), (𝜑2)′, (𝜑3) and (𝜑4) hold. If 𝑓 ∈ 𝐿
̃︀̂︀Φ𝑥(Ω), then Problem

(4.32) has a unique weak solution.

Proof. By Hölder’s inequality it can be seen that

⟨𝑓, 𝑣⟩ :=
∫︁

Ω
𝑓(𝑥)𝑣(𝑥) 𝑑𝑥, 𝑣 ∈ 𝑊

𝑠,Φ𝑥,𝑦

0 (Ω),

defines a continuous linear functional on 𝑊
𝑠,Φ𝑥,𝑦

0 (Ω), i.e., 𝑓 ∈
(︁
𝑊

𝑠,Φ𝑥,𝑦

0 (Ω)
)︁*

. It follows
from Proposition 4.5.12 that 𝐽 ′

𝑠,Φ is bijective. Therefore, Problem (4.32) has a unique weak
solution.

4.7 SOME CLASSES OF PROBLEMS

In this section, we present some examples of functions Φ𝑥,𝑦 for which the existence result
Theorem 4.6.3 may be applied.

Double phase problem

For 1 < 𝑝 < 𝑞 < ∞ and 𝑎 ∈ 𝐿∞(Ω × Ω) a non-negative symmetric function, we consider
the Musielak function given by

Φ𝑥,𝑦(𝑡) = |𝑡|𝑝

𝑝
+ 𝑎(𝑥, 𝑦) |𝑡|𝑞

𝑞
.
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This gives the operator
ℒ𝑠

Φ𝑥,𝑦
𝑢 = ℒ𝑠

𝑝𝑢 + ℒ𝑠
𝑞,𝑎𝑢,

where (up to multiplicative constant) ℒ𝑠
𝑝 := (−Δ)𝑠

𝑝 is the so called fractional 𝑝-Laplacian
operator and ℒ𝑠

𝑞,𝑎 := (−Δ)𝑠
𝑞,𝑎 is the anisotropic fractional 𝑝-Laplacian defined as

⟨ℒ𝑠
𝑞,𝑎𝑢, 𝑣⟩ =

∫︁
R𝑁

∫︁
R𝑁

𝑎(𝑥, 𝑦) |𝑢(𝑥) − 𝑢(𝑦)|𝑞−2(𝑢(𝑥) − 𝑢(𝑦))(𝑣(𝑥) − 𝑣(𝑦))
|𝑥 − 𝑦|𝑁+𝑠𝑞

𝑑𝑥𝑑𝑦. (4.33)

In this case, the nonlocal operator present in (4.32) is associated with the energy functional

𝐽𝑠,Φ(𝑢) =
∫︁
R𝑁

∫︁
R𝑁

Φ𝑥,𝑦(|𝐷𝑠𝑢|) d𝜇 =
∫︁
R𝑁

∫︁
R𝑁

(︃
|𝐷𝑠𝑢|𝑝

𝑝
+ 𝑎(𝑥, 𝑦) |𝐷𝑠𝑢|𝑞

𝑞

)︃
𝑑𝜇, (4.34)

whose integrand Φ𝑥,𝑦(𝑡) shows an unbalanced growth, precisely

𝐶1|𝑡|𝑝 ≤ Φ𝑥,𝑦(𝑡) ≤ 𝐶2(|𝑡|𝑝 + |𝑡|𝑞), for a.e. (𝑥, 𝑦) ∈ Ω × Ω and for all 𝑡 ∈ R,

with 𝐶1, 𝐶2 > 0. It is not hard to see that Φ𝑥,𝑦(1) ≤ 𝐶 for a.e. (𝑥, 𝑦) ∈ Ω × Ω and

Φ𝑥,𝑦(2𝑡) = |2𝑡|𝑝 + 𝑎(𝑥, 𝑦)|2𝑡|𝑞 ≤ 2𝑞Φ𝑥,𝑦(𝑡), (𝑥, 𝑦) ∈ Ω × Ω, 𝑡 ∈ R,

that is, Φ satisfies the (Δ2)-condition. We note that by direct computation,

𝑡𝜙𝑥,𝑦(𝑡) = Φ′
𝑥,𝑦(𝑡) = |𝑡|𝑝−2𝑡 + 𝑎(𝑥, 𝑦)|𝑡|𝑞−2𝑡, 𝑡 ̸= 0,

and thus, the conditions (𝜑1) − (𝜑4) are satisfied with ℓ = 𝑝 and 𝑚 = 𝑞.
The main feature of the functional integral (4.34) is the change of ellipticity and growth

properties on the set where the weight function 𝑎(·, ·) vanishes. More precisely, the energy
density of 𝐽𝑠,Φ is controlled by 𝐷𝑠𝑢 at an order 𝑞 in the set {(𝑥, 𝑦) ∈ Ω × Ω : 𝑎(𝑥, 𝑦) ̸= 0}

and at an order 𝑝 in the set {(𝑥, 𝑦) ∈ Ω × Ω : 𝑎(𝑥, 𝑦) = 0}. For this reason, this operator is
known as fractional double phase operator. Moreover, it is a special case of functional with non-
standard growth conditions, according to Marcellini (1989) terminology. Due to the unbalanced
growth of Φ𝑥,𝑦(·), the classical fractional Sobolev space is not suitable to analyze (4.32) and
so we have to use the general abstract setting of the new fractional Musielak-Sobolev spaces.

Fractional double phase problems are motivated by numerous local and nonlocal models
arising in many fields of mathematical physics, for instance, composite materials, fractional
quantum mechanics in the study of particles on stochastic fields, fractional superdiffusion,
fractional white-noise limit and several equations that appear in the electromagnetism,
electrostatics, and electrodynamics as a model based on a modification of Maxwell’s Lagrangian
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density. For more details, see the works (AMBROSIO; RĂDULESCU, 2020; ZHANG; TANG;

RĂDULESCU, 2021) and the references therein.
We point out that, in the local case 𝑠 = 1, Zhikov (1987) was the first to investigate

the integral functional of the double phase type in the context of the theory of elasticity and
calculus of variations to describe models of strongly anisotropic materials. For instance, in
the elasticity theory, the weight function 𝑎(·, ·) is called modulating coefficient and dictates
the geometry of composites made of two different materials with distinct power hardening 𝑝

and 𝑞. This terminology, including the name double phase, was introduced by Colombo and
Mingione (2015) when they first studied elliptic equations driven by double phase operator
and their regularity properties.

Fractional 𝑝(𝑥, ·)-Laplacian operator

Given the function Φ𝑥,𝑦(𝑡) = 1
𝑝(𝑥,𝑦) |𝑡|

𝑝(𝑥,𝑦) with 𝑝 ∈ 𝐿0(Ω × Ω) symmetric and satisfying
the following condition

1 < 𝑝− ≤ 𝑝(𝑥, 𝑦) ≤ 𝑝+ < ∞, (𝑥, 𝑦) ∈ Ω × Ω,

as a second example, we have the well-known fractional 𝑝(𝑥, 𝑦)-Laplacian operator

⟨ℒ𝑠
𝑝𝑥,𝑦

𝑢, 𝑣⟩ =
∫︁
R𝑁

∫︁
R𝑁

|𝑢(𝑥) − 𝑢(𝑦)|𝑝(𝑥,𝑦)−2(𝑢(𝑥) − 𝑢(𝑦))(𝑣(𝑥) − 𝑣(𝑦))
|𝑥 − 𝑦|𝑁+𝑠𝑝(𝑥,𝑦) 𝑑𝑥𝑑𝑦.

It is not hard to see that Φ𝑥,𝑦 satisfy conditions (𝜙1)−(𝜙3) with ℓ = 𝑝− and 𝑚 = 𝑝+. This
type of operator has applications in several fields of physics and mathematics, for example,
filtration of fluids in porous media, restricted heating, elastoplasticity, image processing,
optimal control and financial mathematics (ABERQI et al., 2022). For a more comprehensive
study of nonlocal problems of this nature, we refer the reader to works (KAUFMANN; ROSSI;

VIDAL, 2017; BAHROUNI; RĂDULESCU, 2018) and (AZROUL; BENKIRANE; SHIMI, 2019)

Logarithmic perturbation of the 𝑝(𝑥, ·)-Laplacian operator

Given the function Φ𝑥,𝑦(𝑡) = |𝑡|𝑝(𝑥,𝑦) log(1 + |𝑡|) with 𝑝 ∈ 𝐿0(Ω × Ω) symmetric and
satisfying the following condition

1 < 𝑝− ≤ 𝑝(𝑥, 𝑦) ≤ 𝑝+ < ∞, (𝑥, 𝑦) ∈ Ω × Ω,
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as a third example, we can consider the operator

ℒ𝑠
Φ𝑥,𝑦

𝑢(𝑥) :=
∫︁
R𝑁

(︃
𝑝(𝑥, 𝑦)|𝐷𝑠𝑢|𝑝(𝑥,𝑦)−2 log(1 + |𝐷𝑠𝑢|) + |𝐷𝑠𝑢|𝑝(𝑥,𝑦)−1

1 + |𝐷𝑠𝑢|

)︃
𝐷𝑠𝑢

𝑑𝑦

|𝑥 − 𝑦|𝑁+𝑠
,

By direct computations, we have

𝑡𝜙𝑥,𝑦(𝑡) = Φ′
𝑥,𝑦(𝑡) = 𝑝(𝑥, 𝑦)𝑡𝑝(𝑥,𝑦)−1 log(1 + 𝑡) + 𝑡𝑝(𝑥,𝑦)

1 + 𝑡
, (𝑥, 𝑦) ∈ Ω × Ω, 𝑡 > 0, (4.35)

When 𝑝(𝑥, 𝑦) ≡ 𝑝, (−Δ)𝑠
Φ𝑥,𝑦

is a fractional version of the logarithmic perturbation of the
classical fractional 𝑝-Laplacian problem. It is clear that Φ𝑥,𝑦 satisfies the assumptions (𝜙1) and
(𝜙2). It remains to show that (𝜙3) holds. Indeed, note that

𝑝− ≤ 𝑝(𝑥, 𝑦) ≤ 𝑝(𝑥, 𝑦) + 𝑡

(1 + 𝑡) log(1 + 𝑡) = 𝑡2𝜙𝑥,𝑦(𝑡)
Φ𝑥,𝑦(𝑡) , (𝑥, 𝑦) ∈ Ω × Ω, 𝑡 > 0.

In addition,

lim
𝑡→0+

𝑡2𝜙𝑥,𝑦(𝑡)
Φ𝑥,𝑦(𝑡) = 𝑝(𝑥, 𝑦) + 1 and lim

𝑡→∞

𝑡2𝜙𝑥,𝑦(𝑡)
Φ𝑥,𝑦(𝑡) = 𝑝(𝑥, 𝑦), (𝑥, 𝑦) ∈ Ω × Ω.

Thus, since 𝑡2𝜙𝑥,𝑦(𝑡)
Φ𝑥,𝑦(𝑡) is continuous on Ω × Ω × (0, ∞), it follows that

𝑝− ≤ 𝑡2𝜙𝑥,𝑦(𝑡)
Φ𝑥,𝑦(𝑡) ≤ 𝑝+ + 1, (𝑥, 𝑦) ∈ Ω × Ω, 𝑡 > 0.

This we conclude that the condition (𝜙3) is satisfied for ℓ = 𝑝− and 𝑚 = 𝑝+ + 1.
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5 A BOURGAIN-BREZIS-MIRONESCU TYPE FORMULA

In this chapter, we study the asymptotic behavior of anisotropic nonlocal nonstandard
growth seminorms and modulars related to general fractional Musielak-Sobolev spaces as the
fractional parameter goes to 1 without assuming the Δ2-condition. This provides a so-called
Bourgain-Brezis-Mironescu type formula for a very general family of functionals. Precisely,
given 𝑠 ∈ (0, 1) and a Musielak function Φ(𝑥, 𝑦, 𝑡) =

∫︀ 𝑡
0 𝜑(𝑥, 𝑦, 𝜏) 𝑑𝜏 , we consider the energy

functional
𝐽𝑠,Φ(𝑢) =

∫︁
R𝑁

∫︁
R𝑁

Φ(𝑥, 𝑦, |𝐷𝑠𝑢(𝑥, 𝑦)|) 𝑑𝜇,

where the 𝑠-Hölder quotient 𝐷𝑠𝑢 and the measure 𝜇 are defined as

𝐷𝑠𝑢(𝑥, 𝑦) := 𝑢(𝑥) − 𝑢(𝑦)
|𝑥 − 𝑦|𝑠

, 𝑑𝜇 := 𝑑𝑥𝑑𝑦

|𝑥 − 𝑦|𝑁
.

The functional 𝐽𝑠,Φ is well-defined when 𝑢 belongs to the fractional Musielak-Sobolev space
𝑊 𝑠,Φ𝑥,𝑦(R𝑁) presented in Chapter 4. We emphasize that the Δ2-condition on Φ or on its
complementary function is not required in our results.

In order to prove our results, we assume some structural hypotheses on the Musielak
function Φ. First, we impose a boundedness condition on Φ with respect to (𝑥, 𝑦) ∈ R𝑁 ×R𝑁 :
there exist constants 0 < 𝐶1 ≤ 𝐶2 < ∞ such that

𝐶1 ≤ inf
𝑥,𝑦∈R𝑁

Φ(𝑥, 𝑦, 1) ≤ Φ(𝑥, 𝑦, 1) ≤ sup
𝑥,𝑦∈R𝑁

Φ(𝑥, 𝑦, 1) ≤ 𝐶2. (𝐻1)

In order to analyze the behavior as 𝑠 → 1−, we impose the following condition:

𝑦 ↦→ Φ(𝑥, 𝑦, 𝑡) is continuous. (𝐻2)

Our main result, stated in Theorem 5.1.3, establishes that for any 𝑢 ∈ 𝐶2
0(R𝑁), there

exists 𝜆0 > 0 such that

lim
𝑠→1−

(1 − 𝑠)𝐽𝑠,Φ

(︂
𝑢

𝜆

)︂
=
∫︁
R𝑁

𝐻

(︃
𝑥,

|∇𝑢(𝑥)|
𝜆

)︃
𝑑𝑥, for all 𝜆 ≥ 𝜆0,

where the function 𝐻 is given by

𝐻(𝑥, 𝑡) =
∫︁ 1

0

∫︁
S𝑁−1

Φ(𝑥, 𝑥, 𝑡|𝑤𝑁 |𝑟) 𝑑ℋ𝑁−1(𝑤)𝑑𝑟

𝑟

and 𝑤𝑁 is the 𝑁 -th coordinate of any point in S𝑁−1. In Proposition 5.1.2 it is proved that
the limit function 𝐻(𝑥, 𝑡) is in fact equivalent to the Musielak function ̂︀Φ(𝑥, 𝑡) := Φ(𝑥, 𝑥, 𝑡).
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As a consequence, we obtain in Corollary 5.1.6 a BBM type inequality for seminorms. Namely,
we prove that there exists 𝜆0 ≥ 1 such that for any 𝑢 ∈ 𝐶2

0(R𝑁) and 𝜆 ≥ 𝜆0 it holds that

lim sup
𝑠→1−

[[𝑢]]𝑠,Φ ≤ 𝜆‖∇𝑢‖𝐻 .

Examples of functions fulfilling our hypotheses include:

(i) Φ(𝑥, 𝑦, 𝑡) = 𝐴(𝑡) for any Young function 𝐴, that is, a convex function 𝐴 : [0, ∞) → [0, ∞)

with 𝐴(0) = 0. In particular, for 𝐴(𝑡) = 𝑡𝑝 and 𝐴(𝑡) = 𝑡𝑝 log(1 + 𝑡) with 𝑝 ∈ [1, ∞),
𝐴(𝑡) = 𝑒𝑡 − 𝑡 − 1 and 𝐴(𝑡) = 𝑒𝑡𝛼 − 𝑡 with 𝛼 ∈ (1, ∞).

(ii) Φ(𝑥, 𝑦, 𝑡) = 𝑡𝑝 + 𝑎(𝑥, 𝑦)𝑡𝑞 where 𝑡 ≥ 0, 1 ≤ 𝑝 < 𝑞 < ∞ and 𝑎(𝑥, 𝑦) is a non-negative
bounded and continuous function in the second variable.

(iii) Φ(𝑥, 𝑦, 𝑡) = 𝑡𝑝(𝑥,𝑦) with 𝑡 ≥ 0, and 𝑝(𝑥, 𝑦) is a continuous function in the second variable
such that 1 ≤ 𝑝− ≤ 𝑝(𝑥, 𝑦) ≤ 𝑝+ < ∞ for all (𝑥, 𝑦) ∈ R𝑁 × R𝑁 .

(iv) Φ(𝑥, 𝑦, 𝑡) = 𝑎(𝑥, 𝑦)(𝑒𝑡 − 𝑡 − 1) where 𝑎(𝑥, 𝑦) is defined as in (ii).

See Section 5.2 for the precise statement of our results in each particular example.
These examples include equations defined in the fractional Orlicz-Sovolev spaces (ALBERICO

et al., 2021a; ALBERICO et al., 2020; FERNÁNDEZ BONDER; SALORT, 2019; FERNÁNDEZ BONDER;

SALORT, 2021), double phase problems (BARONI; COLOMBO; MINGIONE, 2015; BARONI;

COLOMBO; MINGIONE, 2018) and Sobolev spaces of variable exponent (BAHROUNI; RĂDULESCU,
2018; KIM, 2023; KAUFMANN; ROSSI; VIDAL, 2017).

The limit formula that we obtain in Theorem 5.1.3 is not valid for the entire local Musielak-
Sobolev space 𝑊 1,̂︀Φ𝑥(R𝑁) for an arbitrary Musielak function Φ that satisfies (𝐻1) and (𝐻2),
as demonstrated by some counterexamples in Kim (2023). However, in Section 5.2, we prove
its validity for certain particular classes. In fact, for any Musielak function, the limit formula
holds in the classical Sobolev space as shown in Corollary 5.1.5, which is determined by the
powers ℓ, 𝑚 when assuming the following growth behavior for (𝑥, 𝑦, 𝑡) ∈ R𝑁 × R𝑁 × [0, ∞):
there exist constants 1 ≤ ℓ ≤ 𝑚 < ∞ such that

ℓ ≤ 𝑡𝜑(𝑥, 𝑦, 𝑡)
Φ(𝑥, 𝑦, 𝑡) ≤ 𝑚. (𝐻3)

We have known that Φ(·, ·, 𝑡) and its complementary function satisfy the Δ2-condition if and
only if (𝐻3) holds with ℓ > 1.
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It is worthwhile to mention that we have extended and complemented the case of the
fractional Sobolev space with a variable exponent (i.e., example (iii) above). Our result imposes
a weaker assumption on Φ(𝑥, ·, 𝑡) compared to those required by Kim (2023). Furthermore,
we do not require that neither Φ nor its conjugate function fulfill the Δ2-condition.

The techniques used in our results enable us to study energy functionals where the 𝑠-Hölder
quotient depends only on a direction, that is,

𝐷𝑘
𝑠 𝑢(𝑥, ℎ) := 𝑢(𝑥 − ℎ𝑒𝑘) − 𝑢(𝑥)

|ℎ|𝑠
, with 𝑘 ∈ {1, . . . , 𝑁},

being 𝑒𝑘 the 𝑘-th canonical vector in R𝑁 . More precisely, in Theorem 5.3.1 we prove that, for
𝑢 ∈ 𝐶2

0(R𝑁),

lim
𝑠→1−

(1 − 𝑠)
∫︁
R𝑁

∫︁
R

Φ
(︃

𝑥, 𝑥 − ℎ𝑒𝑘,
|𝐷𝑘

𝑠 𝑢(𝑥, 𝑦)|
𝜆

)︃
𝑑ℎ𝑑𝑥

|ℎ|
=
∫︁
R𝑁

𝐻

(︃
𝑥,

1
𝜆

⃒⃒⃒⃒
⃒𝜕𝑢(𝑥)

𝜕𝑥𝑘

⃒⃒⃒⃒
⃒
)︃

𝑑𝑥,

for all 𝜆 ≥ 𝜆0, where in this case the limit function 𝐻 is defined as

𝐻(𝑥, 𝑡) = 2
∫︁ 1

0
Φ(𝑥, 𝑥, 𝑡𝑟)𝑑𝑟

𝑟
.

The chapter is organized as follows. The forthcoming section contains the proof of our
main results. In Section 5.2, we introduce some application examples considered in this theory.
In Section 5.3, we address the anisotropic case and provide some extensions.

5.1 THE BBM TYPE FORMULA

We begin this section by proving a technical lemma. These result plays a very important
role in the proof of the BBM formula.

Lemma 5.1.1. Assume (𝐻1) and (𝐻2). Then, for any 𝑥 ∈ R𝑁 and 0 ≤ 𝑡 ≤ 1, it holds that

lim
𝑠→1−

(1 − 𝑠)
∫︁ 1

0

∫︁
S𝑁−1

Φ(𝑥, 𝑥 − 𝑟𝑤, 𝑡|𝑤𝑁 |𝑟1−𝑠) 𝑑𝑆𝑤
𝑑𝑟

𝑟
= 𝐻(𝑥, 𝑡),

where

𝐻(𝑥, 𝑡) :=
∫︁ 1

0

∫︁
S𝑁−1

Φ(𝑥, 𝑥, 𝑡|𝑤𝑁 |𝑟) 𝑑𝑆𝑤
𝑑𝑟

𝑟
(5.1)

and 𝑤𝑁 is the 𝑁 -th coordinate of any point in S𝑁−1.

Proof. By performing the change of variables 𝜌 = 𝑟1−𝑠, we deduce that∫︁ 1

0

∫︁
S𝑁−1

Φ(𝑥, 𝑥 − 𝑟𝑤,𝑡|𝑤𝑁 |𝑟1−𝑠) 𝑑𝑆𝑤
𝑑𝑟

𝑟

= 1
1 − 𝑠

∫︁ 1

0

∫︁
S𝑁−1

𝐺
(︁
𝑥, 𝑥 − 𝜌

1
1−𝑠 𝑤, 𝑡|𝑤𝑁 |𝜌

)︁
𝑑𝑆𝑤

𝑑𝜌

𝜌
.
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Since 0 < 𝜌 < 1 and Φ(𝑥, ·, 𝑡) is continuous at 𝑥 by (𝐻2), it follows that

lim
𝑠→1−

Φ
(︁
𝑥, 𝑥 − 𝜌

1
1−𝑠 𝑤, 𝑡|𝑤𝑁 |𝜌

)︁
= Φ (𝑥, 𝑥, 𝑡|𝑤𝑁 |𝜌) .

Moreover, using the convexity of Φ(𝑥, 𝑦, ·) and (𝐻1), we have that

Φ
(︁
𝑥, 𝑥 − 𝜌

1
1−𝑠 𝑤, 𝑡|𝑤𝑁 |𝜌

)︁
𝜌−1 ≤ sup

𝑥,𝑦∈R𝑁

Φ(𝑥, 𝑦, 1)|𝑤𝑁 | ≤ 𝐶2.

Therefore, the result follows by Lebesgue’s Dominated Convergence Theorem.

The next proposition ensures that 𝐻(𝑥, 𝑡) is a Musielak function and that it is equivalent
to ̂︀Φ(𝑥, 𝑡). Thereby, the Musielak-Orlicz spaces 𝐿̂︀Φ𝑥(R𝑁) and 𝐿𝐻𝑥(R𝑁) are the same.

Proposition 5.1.2. The function 𝐻 defined in (5.1) is a Musielak function. Furthermore,

there exist positive constants 𝑐1 and 𝑐2 such that

̂︀Φ(𝑥, 𝑐1𝑡) ≤ 𝐻(𝑥, 𝑡) ≤ 𝑐2
̂︀Φ(𝑥, 𝑡), (5.2)

for any (𝑥, 𝑡) ∈ R𝑁 × [0, ∞).

Proof. We prove first that 𝐻 is a Musielak function. Note that, making use of the change of
variables 𝜌 = 𝑡𝑟, we can write

𝐻(𝑥, 𝑡) =
∫︁ 𝑡

0

∫︁
S𝑁−1

Φ(𝑥, 𝑥, |𝑤𝑁 |𝜌) 𝑑𝑆𝑤
𝑑𝜌

𝜌
=
∫︁ 𝑡

0
ℎ(𝑥, 𝜌) 𝑑𝜌,

where
ℎ(𝑥, 𝜌) =

∫︁
S𝑁−1

Φ(𝑥, 𝑥, |𝑤𝑁 |𝜌)
𝜌

𝑑𝑆𝑤.

It is not hard to see that ℎ(𝑥, ·) > 0 for any 𝑥 ∈ R𝑁 . Finally, since Φ(𝑥, 𝑥, ·) is continuous
and the function 𝑡−1Φ(𝑥, 𝑥, |𝑤𝑁 |𝑡) is increasing in 𝑡 ∈ (0, ∞) for any 𝑥 ∈ R𝑁 , we conclude
that ℎ(𝑥, ·) is right-continuous and increasing.

It remains to prove the equivalence (5.2). Given 𝑥 ∈ R𝑁 and 𝑡 ≥ 0, it follows from the
monotonicity of Φ(𝑥, 𝑦, 𝑡) at 𝑡 that

𝐻(𝑥, 𝑡) ≤
∫︁ 𝑡

0

∫︁
S𝑁−1

Φ(𝑥, 𝑥, 𝜌)
𝜌

𝑑𝑆𝑤𝑑𝜌

≤ 𝑁𝜔𝑁

∫︁ 𝑡

0

Φ(𝑥, 𝑥, 𝜌)
𝜌

𝑑𝜌

≤ 𝑁𝜔𝑁Φ(𝑥, 𝑥, 𝑡),
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where in the last inequality we have used that 𝑡 ↦→ Φ(𝑥,𝑥,𝑡)
𝑡

is increasing. On the other hand,
using again this monotonicity property, we have

𝐻(𝑥, 𝑡) ≥
∫︁ 𝑡

0

∫︁
{𝑤∈S𝑁−1:|𝑤𝑁 |≥ 1

2}
Φ (𝑥, 𝑥, 𝜌/2) 𝑑𝑆𝑤

𝑑𝜌

𝜌

≥
(︃∫︁

{𝑤∈S𝑁−1:|𝑤𝑁 |≥ 1
2}

𝑑𝑆𝑤

)︃(︃∫︁ 𝑡

0

Φ (𝑥, 𝑥, 𝜌/2)
𝜌

𝑑𝜌

)︃

= 𝐶(𝑁)
∫︁ 𝑡

2

0

Φ (𝑥, 𝑥, 𝑟)
𝑟

𝑑𝑟

≥ 𝐶(𝑁)
∫︁ 𝑡

2

𝑡
4

Φ (𝑥, 𝑥, 𝑟)
𝑟

𝑑𝑟 ≥ 𝐶(𝑁)Φ (𝑥, 𝑥, 𝑡/4) ≥ Φ (𝑥, 𝑥, 𝑐1𝑡) ,

where the last inequality hold with 𝑐1 = 1
4 min{1, 𝐶(𝑁)}. This ends the proof.

In the following we establish our main result.

Theorem 5.1.3 (BBM type formula). Let 𝑢 ∈ 𝐶2
0(R𝑁). Assume (𝐻1) and (𝐻2). Then, there

exists 𝜆0 > 0 such that

lim
𝑠→1−

(1 − 𝑠)𝐽𝑠,Φ

(︂
𝑢

𝜆

)︂
=
∫︁
R𝑁

𝐻

(︃
𝑥,

|∇𝑢(𝑥)|
𝜆

)︃
𝑑𝑥 (5.3)

for all 𝜆 ≥ 𝜆0, where 𝐻 was defined in (5.1). In particular, if Φ satisfies Δ2-condition, then

equation (5.3) holds for every 𝜆 > 0.

Proof. Let 𝜆0 = 2‖𝑢‖𝐶2(R𝑁 ). Then, using (𝐻1), we have∫︁
R𝑁

̂︀Φ(︃𝑥,
|𝑢(𝑥)|

𝜆0

)︃
𝑑𝑥 < ∞ and

∫︁
R𝑁

̂︀Φ(︃𝑥,
|∇𝑢(𝑥)|

𝜆0

)︃
𝑑𝑥 < ∞.

Thus, by Proposition 5.2, we also have ∫︀R𝑁 𝐻
(︁
𝑥, |∇𝑢(𝑥)|

𝜆0

)︁
𝑑𝑥 < ∞. For a fixed 𝑥 ∈ R𝑁 and

𝜆 ≥ 𝜆0, we split the integral∫︁
R𝑁

Φ
(︃

𝑥, 𝑥 − ℎ,
|𝐷𝑠𝑢(𝑥, 𝑥 − ℎ)|

𝜆

)︃
𝑑ℎ

|ℎ|𝑁
=
∫︁

|ℎ|<1
Φ
(︃

𝑥, 𝑥 − ℎ,
|𝐷𝑠𝑢(𝑥, 𝑥 − ℎ)|

𝜆

)︃
𝑑ℎ

|ℎ|𝑁

+
∫︁

|ℎ|≥1
Φ
(︃

𝑥, 𝑥 − ℎ,
|𝐷𝑠𝑢(𝑥, 𝑥 − ℎ)|

𝜆

)︃
𝑑ℎ

|ℎ|𝑁

=: 𝐼1 + 𝐼2.

Let us deal with 𝐼2. By using the monotonicity and convexity of 𝐺(𝑥, 𝑦, 𝑡) in 𝑡 and (𝐻1) , we
have that

𝐼2 ≤
∫︁

|ℎ|≥1
Φ
(︃

𝑥, 𝑥 − ℎ,
2‖𝑢‖∞

𝜆|ℎ|𝑠

)︃
𝑑ℎ

|ℎ|𝑁

≤
∫︁

|ℎ|≥1
Φ
(︃

𝑥, 𝑥 − ℎ,
2‖𝑢‖∞

𝜆

)︃
𝑑ℎ

|ℎ|𝑛+𝑠

≤ 𝐶2
𝑁𝜔𝑁

𝑠
,

(5.4)
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from where we obtain
lim

𝑠→1−
(1 − 𝑠)𝐼2 = 0. (5.5)

Let us now estimate 𝐼1. Since 𝑢 is a 𝐶2 function and Φ(𝑥, 𝑦, 𝑡) is locally Lipschitz continuous
in 𝑡, we deduce⃒⃒⃒⃒

⃒Φ
(︃

𝑥, 𝑥 − ℎ,
|𝐷𝑠𝑢(𝑥, 𝑥 − ℎ)|

𝜆

)︃
− Φ

(︃
𝑥, 𝑥 − ℎ,

1
𝜆

⃒⃒⃒⃒
⃒∇𝑢(𝑥) · ℎ

|ℎ|𝑠

⃒⃒⃒⃒
⃒
)︃⃒⃒⃒⃒
⃒

≤ 𝐿

𝜆

|𝑢(𝑥) − 𝑢(𝑥 − ℎ) − ∇𝑢(𝑥) · ℎ|
|ℎ|𝑠

≤ 𝐶|ℎ|2−𝑠,

where 𝐿 is the Lipschitz constant of Φ on the interval [0, ‖∇𝑢‖∞] and 𝐶 depends on the
𝐶2−norm of 𝑢. Since ∫︁

|ℎ|<1
|ℎ|2−𝑠−𝑁 𝑑ℎ = 𝑁𝜔𝑁

2 − 𝑠
,

it follows that

lim
𝑠→1−

(1 − 𝑠)𝐼1 = lim
𝑠→1−

(1 − 𝑠)
∫︁

|ℎ|<1
Φ
(︃

𝑥, 𝑥 − ℎ,
1
𝜆

⃒⃒⃒⃒
⃒∇𝑢(𝑥) · ℎ

|ℎ|𝑠

⃒⃒⃒⃒
⃒
)︃

𝑑ℎ

|ℎ|𝑁
.

Observe that, by using spherical coordinates, we can write
∫︁

|ℎ|<1
Φ
(︃

𝑥, 𝑥 − ℎ,
1
𝜆

⃒⃒⃒⃒
⃒∇𝑢(𝑥) · ℎ

|ℎ|𝑠

⃒⃒⃒⃒
⃒
)︃

𝑑ℎ

|ℎ|𝑁
=
∫︁ 1

0

∫︁
|ℎ|=𝑟

Φ
(︃

𝑥, 𝑥 − ℎ,
1
𝜆

⃒⃒⃒⃒
⃒∇𝑢(𝑥) · ℎ

|𝑟|𝑠

⃒⃒⃒⃒
⃒
)︃

𝑑𝑆ℎ
𝑑𝑟

𝑟𝑁

=
∫︁ 1

0

∫︁
S𝑁−1

𝑟𝑁−1Φ
(︃

𝑥, 𝑥 − 𝑟𝑤,
|∇𝑢(𝑥) · 𝑤|

𝜆
𝑟1−𝑠

)︃
𝑑𝑆𝑤

𝑑𝑟

𝑟𝑁

=
∫︁ 1

0

∫︁
S𝑁−1

Φ
(︃

𝑥, 𝑥 − 𝑟𝑤,
|∇𝑢(𝑥)|

𝜆
|𝑤𝑁 |𝑟1−𝑠

)︃
𝑑𝑆𝑤

𝑑𝑟

𝑟
,

where in the last equality we have performed a rotation such that ∇𝑢(𝑥) = |∇𝑢(𝑥)|𝑒𝑁 . Thus,
in view of Lemma 5.1.1, we have that

lim
𝑠→1−

(1 − 𝑠)𝐼1 = 𝐻

(︃
𝑥,

|∇𝑢(𝑥)|
𝜆

)︃
, (5.6)

for any 𝑥 ∈ R𝑁 . Gathering (5.5) and (5.6), we conclude that, for any 𝑥 ∈ R𝑁 ,

lim
𝑠→1−

(1 − 𝑠)
∫︁
R𝑁

Φ
(︃

𝑥, 𝑥 − ℎ,
|𝐷𝑠𝑢(𝑥, 𝑥 − ℎ)|

𝜆

)︃
𝑑ℎ

|ℎ|𝑁
= 𝐻

(︃
𝑥,

|∇𝑢(𝑥)|
𝜆

)︃
.

In order to complete the proof, it only remains to show the existence of an integrable
majorant for (1 − 𝑠)𝐹𝑠, where

𝐹𝑠(𝑥) :=
∫︁
R𝑁

Φ
(︃

𝑥, 𝑥 − ℎ,
|𝐷𝑠𝑢(𝑥, 𝑥 − ℎ)|

𝜆

)︃
𝑑ℎ

|ℎ|𝑁
.
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Since 𝑢 ∈ 𝐶2
0(R𝑁), we can assume without loss of generality that supp (𝑢) ⊂ 𝐵𝑅(0) with

𝑅 > 1. First we analyze the behavior of 𝐹𝑠(𝑥) for small values of 𝑥. When |𝑥| < 2𝑅 we can
write

|𝐹𝑠(𝑥)| =
(︃∫︁

|ℎ|<1
+
∫︁

|ℎ|≥1

)︃
Φ
(︃

𝑥, 𝑥 − ℎ,
|𝐷𝑠𝑢(𝑥, 𝑥 − ℎ)|

𝜆

)︃
𝑑ℎ

|ℎ|𝑁
:= 𝐼1 + 𝐼2.

By using the expression

|𝑢(𝑥) − 𝑢(𝑥 − ℎ)| ≤
∫︁ 1

0
|∇𝑢(𝑥 − ℎ + 𝑡ℎ) · ℎ| ≤ ‖∇𝑢‖∞|ℎ|

together with the convexity and monotonicity of Φ, and assumption (𝐻1), we obtain

𝐼1 ≤
∫︁

|ℎ|<1
Φ
(︃

𝑥, 𝑥 − ℎ,
‖∇𝑢‖∞|ℎ|1−𝑠

𝜆

)︃
𝑑ℎ

|ℎ|𝑁

≤
∫︁

|ℎ|<1
|ℎ|1−𝑠−𝑛Φ

(︃
𝑥, 𝑥 − ℎ,

‖∇𝑢‖∞

𝜆

)︃
𝑑ℎ

≤
∫︁

|ℎ|<1
|ℎ|1−𝑠−𝑛Φ(𝑥, 𝑥 − ℎ, 1) 𝑑ℎ

≤ 𝐶2
𝑁𝜔𝑁

1 − 𝑠
.

(5.7)

Furthermore, it is follows from (5.4) that

𝐼2 ≤ 𝐶2𝑁𝜔𝑁

𝑠
. (5.8)

On the other hand, when |𝑥| ≥ 2𝑅, 𝑢 vanishes and we have that

𝐹𝑠(𝑥) =
∫︁

𝐵𝑅(0)
Φ
(︃

𝑥, 𝑦,
|𝑢(𝑦)|

𝜆|𝑥 − 𝑦|𝑠

)︃
𝑑𝑦

|𝑥 − 𝑦|𝑁
.

Since |𝑥 − 𝑦| ≥ |𝑥| − |𝑦| ≥ 1
2 |𝑥|, from the monotonicity and convexity of Φ(𝑥, 𝑦, ·), we deduce

that

|𝐹𝑠(𝑥)| ≤ 2𝑁

|𝑥|𝑁
∫︁

𝐵𝑅(0)
Φ
(︃

𝑥, 𝑦,
2𝑠|𝑢(𝑦)|

𝜆|𝑥|𝑠

)︃
𝑑𝑦

≤ 2𝑁

|𝑥|𝑁+𝑠

∫︁
𝐵𝑅(0)

Φ (𝑥, 𝑦, 1) 𝑑𝑦 ≤ 2𝑁

|𝑥|𝑁+ 1
2
𝐶2𝑁𝜔𝑁𝑅𝑁 ,

(5.9)

for any 𝑠 ≥ 1
2 and 2𝑠‖𝑢‖∞ ≤ 𝜆. Finally, from (5.7), (5.8) and (5.9) we obtain that

(1 − 𝑠)|𝐹𝑠(𝑥)| ≤ 𝐶
(︁
𝜒𝐵2𝑅(0) + |𝑥|−𝑁− 1

2 𝜒𝐵2𝑅(0)𝑐

)︁
∈ 𝐿1(R𝑁),

where 𝐶 > 0 is a constant depending on 𝑛 and 𝑢, but independent of 𝑠. Therefore, the result
follows from the Lebesgue’s Dominated Convergence Theorem for any 𝑢 ∈ 𝐶2

0(R𝑁).



139

It is important to emphasize that Theorem 5.1.3 holds for any smooth function, but in
general could be false in the space 𝑊 1,̂︀Φ𝑥(R𝑁), as shown in the following example introduced
by Kim (2023).

Example 5.1.4. Let 𝑝 : R𝑁 × R𝑁 → R be a smooth function such that

1 < 𝑝− ≤ 𝑝(𝑥, 𝑦) ≤ 𝑝+ and 𝑝(𝑥, 𝑦) = 𝑝(|𝑥 − 𝑦|) for all (𝑥, 𝑦) ∈ R𝑁 × R𝑁 . (5.10)

We also consider Φ(𝑥, 𝑦, 𝑡) = 𝑡𝑝(𝑥,𝑦). In this case, ̂︀Φ(𝑥, 𝑡) = 𝑡𝑝 where 𝑝 := 𝑝(𝑥, 𝑦) = 𝑝(0). For

𝑞 ∈ (1, 𝑁), we also assume that

1 < 𝑝 <
𝑁

𝑞
and 𝑝(𝑟) ≥ 𝑁

𝑞 − 1 for 𝑟 = |𝑥 − 𝑦| ≥ 1. (5.11)

For instance, we can consider the following function

𝑝(𝑥, 𝑦) = 𝑁 tanh(|𝑥 − 𝑦|2) + 𝑝−, 1 < 𝑝− <
𝑁

𝑞
<

𝑁

𝑞 − 1 ≤ 𝑝(1).

In this case, 𝑝− = 𝑝 and 𝑝+ = 𝑁 + 𝑝−.

We consider a smooth decreasing function 𝜂 : (0, ∞) → [0, ∞) such that

𝜂(𝑡) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

|𝑡|1−𝑞, if 𝑡 ∈ (0, 1]

0 ≤ 𝜂(𝑡) ≤ 1 if 𝑡 ∈ [1, 2]

0 if 𝑡 ∈ [2, ∞).

We shall show that the function 𝑢 : R𝑁 → R defined by 𝑢(𝑥) = 𝜂(|𝑥|) belongs to

𝑊 1,𝑝(R𝑁) ∖ 𝑊 𝑠,𝑝(·,·)(R𝑁) for all 𝑠 ∈ (0, 1). Indeed, since 𝑢 vanishes in R𝑁 ∖ 𝐵2(0) and

(𝑞 − 1)𝑝 < 𝑞𝑝 < 𝑁 , we have that∫︁
R𝑁

|𝑢(𝑥)|𝑝 𝑑𝑥 =
∫︁

𝐵1(0)
|𝑢(𝑥)|𝑝 𝑑𝑥 +

∫︁
𝐵2(0)∖𝐵1(0)

|𝑢(𝑥)|𝑝 𝑑𝑥

≤
∫︁

𝐵1(0)

1
|𝑥|(𝑞−1)𝑝 𝑑𝑥 + |𝐵2(0) ∖ 𝐵1(0)| < ∞

and

∫︁
R𝑁

|∇𝑢(𝑥)|𝑝 𝑑𝑥 =
∫︁

𝐵1(0)
|∇𝑢(𝑥)|𝑝 𝑑𝑥 +

∫︁
𝐵2(0)∖𝐵1(0)

|∇𝑢(𝑥)|𝑝 𝑑𝑥

≤ (𝑞 − 1)𝑝
∫︁

𝐵1(0)

1
|𝑥|𝑞𝑝

𝑑𝑥 + 𝐶|𝐵2(0) ∖ 𝐵1(0)| < ∞.

Hence, 𝑢 ∈ 𝑊 1,̂︀Φ𝑥(R𝑁) = 𝑊 1,𝑝(R𝑁).
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It remains to show that 𝑢 /∈ 𝑊 𝑠,Φ𝑥,𝑦(R𝑁) = 𝑊 𝑠,𝑝(·,·)(R𝑁) for all 𝑠 ∈ (0, 1). Since 𝑢

vanishes outside 𝐵2(0), we obtain that

𝐽𝑠,Φ(𝑢) =
∫︁
R𝑁

∫︁
R𝑁

|𝑢(𝑥) − 𝑢(𝑦)|𝑝(|𝑥−𝑦|)

|𝑥 − 𝑦|𝑁+𝑠𝑝(|𝑥−𝑦|) 𝑑𝑥𝑑𝑦

≥
∫︁
R𝑁 ∖𝐵2(0)

∫︁
𝐵1(0)

|𝑢(𝑥) − 𝑢(𝑦)|𝑝(|𝑥−𝑦|)

|𝑥 − 𝑦|𝑁+𝑠𝑝(|𝑥−𝑦|) 𝑑𝑥𝑑𝑦

=
∫︁
R𝑁 ∖𝐵2(0)

∫︁
𝐵1(0)

|𝑥|(1−𝑞)𝑝(|𝑥−𝑦|)

|𝑥 − 𝑦|𝑁+𝑠𝑝(|𝑥−𝑦|) 𝑑𝑥𝑑𝑦.

Note that, for any 𝑦 ∈ R𝑁 ∖ 𝐵2(0) and 𝑥 ∈ 𝐵1(0), we have 1 ≤ |𝑥 − 𝑦| ≤ 1 + |𝑦| ≤ 3
2 |𝑦|.

Then, using the assumptions (5.10) and (5.11), we deduce that

𝐽𝑠,Φ(𝑢) ≥
∫︁
R𝑁 ∖𝐵2(0)

∫︁
𝐵1(0)

|𝑥|−𝑁

(3
2 |𝑦|)𝑁+𝑠𝑝+ 𝑑𝑥𝑑𝑦

=
(︃∫︁

𝐵1(0)

1
|𝑥|𝑁

𝑑𝑥

)︃(︃∫︁
R𝑁 ∖𝐵2(0)

1
(3

2 |𝑦|)𝑁+𝑠𝑝+ 𝑑𝑦

)︃
= ∞.

Therefore, 𝑢 /∈ 𝑊 𝑠,𝑝(·,·)(R𝑁) for all 𝑠 ∈ (0, 1).

Although that space is too large for (5.3) to be true, as a direct consequence of Lemma
4.2.22 and the Theorem 5.1.3 in the usual fractional Sobolev spaces, we obtain the following
result.

Corollary 5.1.5. Assume (𝐻1), (𝐻2) and (𝐻3). Then, (5.3) holds for any 𝑢 ∈ 𝑊 1,ℓ(R𝑁) ∩

𝑊 1,𝑚(R𝑁).

Proof. For any 𝑢 ∈ 𝑊 1,ℓ(R𝑁)∩𝑊 1,𝑚(R𝑁), we take a sequence (𝑢𝑘)𝑘∈N ⊂ 𝐶2
0(R𝑁) such that

𝑢𝑘 → 𝑢 in 𝑊 1,ℓ(R𝑁) and 𝑊 1,𝑚(R𝑁). Without loss of generality, we may assume that 𝑢𝑘 → 𝑢

a.e. in R𝑁 . Observe that

|(1 − 𝑠)𝐽𝑠,Φ(𝑢) − 𝐽1,𝐻(|∇𝑢|)| ≤ (1 − 𝑠)|𝐽𝑠,Φ(𝑢) − 𝐽𝑠,Φ(𝑢𝑘)|

+ |(1 − 𝑠)𝐽𝑠,Φ(𝑢𝑘) − 𝐽1,𝐻(|∇𝑢𝑘|)|

+ |𝐽1,𝐻(|∇𝑢𝑘|) − 𝐽1,𝐻(|∇𝑢|)|

=: 𝐼1 + 𝐼2 + 𝐼3,

where 𝐽1,𝐻(𝑢) :=
∫︀
R𝑁 𝐻(𝑥, |𝑢(𝑥)|) 𝑑𝑥. Using Lemma 4.2.22 (𝑖), we can verify that the

inclusion 𝑊 1,ℓ(R𝑁) ∩ 𝑊 1,𝑚(R𝑁) ⊂ 𝑊 1,̂︀Φ𝑥(R𝑁) is valid and 𝑢𝑘 → 𝑢 in 𝑊 1,̂︀Φ𝑥(R𝑁). This
fact together with the Proposition 5.1.2 imply that 𝐼3 → 0 as 𝑘 → ∞.
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By (𝐻1), Lemma 4.2.22 and Theorem 1 present in Bourgain, Brezis and Mironescu (2001),
we have that

𝐽𝑠,Φ(𝑣) ≤ 𝐶2

∫︁
R𝑁

∫︁
R𝑁

(|𝐷𝑠𝑣(𝑥, 𝑦)|ℓ + |𝐷𝑠𝑣(𝑥, 𝑦)|𝑚) 𝑑𝜇

≤ 𝐶2𝑛𝜔𝑁

ℓ

[︂ 1
1 − 𝑠

(︁
‖∇𝑣‖ℓ

ℓ + ‖∇𝑣‖𝑚
𝑚

)︁
+ 2𝑚

𝑠

(︁
‖𝑣‖ℓ

ℓ + ‖𝑣‖𝑚
𝑚

)︁]︂
,

for any 𝑣 ∈ 𝑊 1,ℓ(R𝑁)∩𝑊 1,𝑚(R𝑁). From where we deduce that 𝐽𝑠,Φ(𝑢𝑘 −𝑢) → 0 as 𝑘 → ∞.
Then, by Proposition 4.5.1, 𝐼1 → 0 as 𝑘 → ∞. Thus, for any 𝜀 > 0, we can take 𝑘 enough
large such that

|(1 − 𝑠)𝐽𝑠,Φ(𝑢) − 𝐽1,𝐻(|∇𝑢|)| ≤ 𝜀 + 𝐼2.

Therefore, taking the limit as 𝑠 ↑ 1 and invoking Theorem 5.1.3, the result follows.

The asymptotic behavior of modulars stated in Theorem 5.1.3 gives indeed a BBM type
inequality formula for norms. For this purpose, instead of the seminorm [·]𝑠,Φ defined in Section
4.3 as

[𝑢]𝑠,Φ := inf
{︂

𝜆 > 0: 𝐽𝑠,Φ

(︂
𝑢

𝜆

)︂
𝑑𝑥 ≤ 1

}︂
,

we consider the equivalent one defined as

[[𝑢]]𝑠,Φ := inf
{︂

𝜆 > 0: (1 − 𝑠)𝐽𝑠,Φ

(︂
𝑢

𝜆

)︂
𝑑𝑥 ≤ 1

}︂
.

In this case, the definition of the seminorm gives that

(1 − 𝑠)𝐽𝑠,Φ

(︃
𝑢

[[𝑢]]𝑠,Φ

)︃
≤ 1. (5.12)

The following result establishes a BBM type inequality formula for norms.

Corollary 5.1.6. Assume that (𝐻1) and (𝐻2) hold. Then, there exists 𝜆0 ≥ 1 such that for

any 𝑢 ∈ 𝐶2
0(R𝑁) and 𝜆 ≥ 𝜆0 it holds that

lim sup
𝑠→1−

[[𝑢]]𝑠,Φ ≤ 𝜆‖∇𝑢‖𝐻 ,

where 𝐻 was defined in (5.1). In particular, if Φ satisfies the Δ2-condition, then the inequality

holds for any 𝜆 ≥ 1.

Proof. Let 𝑢 ∈ 𝐶2
0(R𝑁). We prove first that bounded modular of 𝐻 implies bounded norm.

Indeed, without loss of generality assume that if ∫︀R𝑁 𝐻(𝑥, |∇𝑢|) 𝑑𝑥 ≤ 𝐶 for some 𝐶 ≥ 1,
then using the convexity of 𝐻(𝑥, ·) we get that∫︁

R𝑁
𝐻

(︃
𝑥,

|∇𝑢|
𝐶

)︃
𝑑𝑥 ≤ 1

𝐶

∫︁
R𝑁

𝐻(𝑥, |∇𝑢(𝑥)|) 𝑑𝑥 ≤ 1,
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which, in light of the definition of the Luxemburg norm provides ‖∇𝑢‖𝐻 ≤ 𝐶.
In view of Theorem 5.1.3, the convexity of Φ and the definition of the norm ‖ · ‖𝐻 , there

exists 𝜆0 ≥ 1 such for 𝜆 ≥ 𝜆0 it holds that

lim
𝑠→1−

(1 − 𝑠)𝐽𝑠,Φ

(︃
𝑢

𝜆‖∇𝑢‖𝐻

)︃
=
∫︁
R𝑁

𝐻

(︃
𝑥,

|∇𝑢|
𝜆‖∇𝑢‖𝐻

)︃
𝑑𝑥

≤ 1
𝜆

∫︁
R𝑁

𝐻

(︃
𝑥,

|𝑢|
‖∇𝑢‖𝐻

)︃
𝑑𝑥

=: 𝐿 ≤ 1.

Thus, by definition of limit, there exists 𝜀𝑠 > 0 such that 𝜀𝑠 → 0 as 𝑠 → 1+ and⃒⃒⃒⃒
⃒(1 − 𝑠)𝐽𝑠,Φ

(︃
𝑢

𝜆‖∇𝑢‖𝐻

)︃
− 𝐿

⃒⃒⃒⃒
⃒ ≤ 𝜀𝑠.

In particular, this gives that

(1 − 𝑠)𝐽𝑠,Φ

(︃
𝑢

𝜆‖∇𝑢‖𝐻

)︃
1

1 + 𝜀𝑠

≤ 1.

Observe that 1
1+𝜀𝑠

< 1, so, by the convexity of 𝐺, we have

(1 − 𝑠)𝐽𝑠,Φ

(︃
𝑢

𝜆(1 + 𝜀𝑠)‖∇𝑢‖𝐻

)︃
≤ (1 − 𝑠)𝐽𝑠,Φ

(︃
𝑢

𝜆‖∇𝑢‖𝐻

)︃
1

1 + 𝜀𝑠

≤ 1.

Then, by definition of the norm, we obtain that

[[𝑢]]𝑠,𝐺 ≤ 𝜆(1 + 𝜀𝑠)‖∇𝑢‖𝐻 ,

from where, taking the limit in 𝑠, we conclude that

lim sup
𝑠→1−

[[𝑢]]𝑠,𝐺 ≤ 𝜆‖∇𝑢‖𝐻 .

This concludes the proof.

5.2 SOME SPECIAL CASES

Even though for an arbitrary Musielak function Φ, the Theorem 5.1.3 may not be extended
beyond 𝐶2

0(R𝑁) functions, in this section we illustrate some examples where Theorem 5.1.3
holds in a suitable space.
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5.2.1 Convex functions

The Theorem 5.1.3 holds in particular when the Young function does not depend on the
spatial variables, that is, for any convex function 𝐺 : [0, ∞) → [0, ∞) with 𝐺(0) = 0 by
writing Φ(𝑥, 𝑦, 𝑡) = 𝐺(𝑡). In this case, it is recovered the results from Alberico et al. (2021a)
and Fernández Bonder and Salort (2019). In particular, this includes the case of powers given
in Bourgain, Brezis and Mironescu (2001).

5.2.2 Double phase functions

Let 1 ≤ 𝑝 < 𝑞 < ∞ and consider a function 𝑎 : R𝑁 × R𝑁 → [0, ∞) continuous in the
second variable such that for some constants 𝑎±,

0 < 𝑎− ≤ 𝑎(𝑥, 𝑦) ≤ 𝑎+ < ∞, for any (𝑥, 𝑦) ∈ R𝑁 × R𝑁 .

Under these assumptions, we consider the Musielak function Φ(𝑥, 𝑦, 𝑡) = 𝑡𝑝 +𝑎(𝑥, 𝑦)𝑡𝑞, 𝑡 ≥ 0.

In this case,

𝐽𝑠,Φ(𝑢) : = 𝐽𝑠,𝑝,𝑞(𝑢) =
∫︁
R𝑁

∫︁
R𝑁

(︃
|𝑢(𝑥) − 𝑢(𝑦)|𝑝

|𝑥 − 𝑦|𝑁+𝑠𝑝
+ 𝑎(𝑥, 𝑦) |𝑢(𝑥) − 𝑢(𝑦)|𝑞

|𝑥 − 𝑦|𝑁+𝑠𝑞

)︃
𝑑𝑥𝑑𝑦

and we have the following result.

Proposition 5.2.1. Let 𝑢 ∈ 𝑊 1,𝑝(R𝑁) ∩ 𝑊 1,𝑞(R𝑁). Then,

lim
𝑠→1−

(1 − 𝑠)𝐽𝑠,𝑝,𝑞(𝑢) = 𝒦𝑁,𝑝

∫︁
R𝑁

|∇𝑢(𝑥)|𝑝 𝑑𝑥 + 𝒦𝑁,𝑞

∫︁
R𝑁

𝑎(𝑥, 𝑥)|∇𝑢(𝑥)|𝑞 𝑑𝑥

where

𝒦𝑁,𝜅 := 1
𝜅

∫︁
S𝑁−1

|𝑤𝑁 |𝜅 𝑑𝑆𝑤, 𝜅 ≥ 1.

Conversely, if 𝑝 > 1 and 𝑢 ∈ 𝐿𝑝(R𝑁) ∩ 𝐿𝑞(R𝑁) is such that

lim inf
𝑠→1−

(1 − 𝑠)𝐽𝑠,𝑝,𝑞(𝑢) < ∞,

then 𝑢 ∈ 𝑊 1,𝑝(R𝑁) ∩ 𝑊 1,𝑞(R𝑁).

Proof. From Theorem 5.1.3 the result holds for any 𝑢 ∈ 𝐶2
0(R𝑁). By the boundedness of 𝑎

and Theorem 1 of Bourgain, Brezis and Mironescu (2001),∫︁
R𝑁

∫︁
R𝑁

𝑎(𝑥, 𝑦) |𝑢(𝑥) − 𝑢(𝑦)|𝑞
|𝑥 − 𝑦|𝑁+𝑠𝑞

𝑑𝑦 ≤ 𝑎+

∫︁
R𝑁

∫︁
R𝑁

|𝑢(𝑥) − 𝑢(𝑦)|𝑞
|𝑥 − 𝑦|𝑁+𝑠𝑞

𝑑𝑦

≤ 𝑎+𝑁𝜔𝑁

𝑞

(︂ 1
1 − 𝑠

‖∇𝑢‖𝑞
𝑞 + 2𝑞

𝑠
‖𝑢‖𝑞

𝑞

)︂
.
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and ∫︁
R𝑁

∫︁
R𝑁

|𝑢(𝑥) − 𝑢(𝑦)|𝑝
|𝑥 − 𝑦|𝑁+𝑠𝑞

𝑑𝑦 ≤ 𝑁𝜔𝑁

𝑞

(︂ 1
1 − 𝑠

‖∇𝑢‖𝑝
𝑝 + 2𝑝

𝑠
‖𝑢‖𝑝

𝑝

)︂
.

Therefore, arguing as in Theorem 2 obtained by Bourgain, Brezis and Mironescu (2001), the
result is extended to an arbitrary 𝑢 ∈ 𝑊 1,𝑝(R𝑁)∩𝑊 1,𝑞(R𝑁). Conversely, it holds that if 𝑝 > 1

and
lim inf

𝑠→1−
(1 − 𝑠)𝐽𝑠,𝑝,𝑞(𝑢) < ∞,

then 𝑢 ∈ 𝑊 1,𝑝(R𝑁) ∩ 𝑊 1,𝑞(R𝑁).

5.2.3 Logarithmic perturbations of powers

Let 𝑎(·, ·) be as in the previous subsection. We consider the Musielak function Φ(𝑥, 𝑦, 𝑡) =

𝑎(𝑥, 𝑦)𝑡𝑝(log+(𝑡) + 1), 𝑡 ≥ 0, where 𝑝 ∈ [1, ∞) and log+(𝑡) := max{0, log 𝑡}. In this case,

𝐽𝑠,Φ(𝑢) =
∫︁
R𝑁

∫︁
R𝑁

𝑎(𝑥, 𝑦) |𝑢(𝑥) − 𝑢(𝑦)|𝑝
|𝑥 − 𝑦|𝑛+𝑠𝑝

(︃
log+

(︃
|𝑢(𝑥) − 𝑢(𝑦)|

|𝑥 − 𝑦|𝑠

)︃
+ 1

)︃
𝑑𝑥𝑑𝑦

and we have the following result:

Proposition 5.2.2. Let 𝑢 ∈ 𝑊 1,̂︀Φ𝑥(R𝑁). Then it holds that

lim
𝑠→1−

(1 − 𝑠)𝐽𝑠,Φ(𝑢) =
∫︁
R𝑁

𝐻(𝑥, |∇𝑢(𝑥)|) 𝑑𝑥,

where

𝐻(𝑥, 𝑡) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑎(𝑥, 𝑥)𝑡𝑝𝒦𝑁,𝑝, when 𝑡|𝑤𝑁 | ≤ 1,

𝑎(𝑥, 𝑥)𝑡𝑝

[︃
𝒦𝑁,𝑝

(︃
𝑝 − 1

𝑝
+ log 𝑡

)︃
+ 𝒦log,𝑁,𝑝

]︃
+ 𝑎(𝑥, 𝑥)

𝑝2 , when 𝑡|𝑤𝑁 | > 1,

being 𝑤𝑁 the 𝑁−th coordinate of any point in S𝑁−1,

𝒦𝑁,𝑝 = 1
𝑝

∫︁
S𝑁−1

|𝑤𝑁 |𝑝 𝑑𝑆𝑤 and 𝒦log,𝑁,𝑝 = 1
𝑝

∫︁
S𝑁−1

|𝑤𝑁 |𝑝 log |𝑤𝑁 | 𝑑𝑆𝑤.

Conversely, if 𝑝 > 1 and 𝑢 ∈ 𝐿̂︀Φ(R𝑁) is such that

lim inf
𝑠→1−

(1 − 𝑠)𝐽𝑠,Φ(𝑢) < ∞,

then 𝑢 ∈ 𝑊 1,̂︀Φ𝑥(R𝑁).

Proof. In this case, we can split the following integral as∫︁ 1

0
Φ(𝑥, 𝑥, 𝑡|𝑤𝑁 |𝑟)𝑑𝑟

𝑟
= 𝑎(𝑥, 𝑥)𝑡𝑝|𝑤𝑁 |𝑝

(︂∫︁ 1

0
𝑟𝑝−1 𝑑𝑟 +

∫︁ 1

0
𝑟𝑝−1 log+(𝑡|𝑤𝑁 |𝑟) 𝑑𝑟

)︂
.
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Define 𝑡* := 1
𝑡|𝑤𝑁 | . If 𝑡* ≥ 1, then 𝑟 ≤ 𝑡* for all 𝑟 ∈ (0, 1) and in this case log+(𝑡|𝑤𝑁 |𝑟) = 0,

giving that ∫︁ 1

0
Φ(𝑥, 𝑥, 𝑡|𝑤𝑁 |𝑟)𝑑𝑟

𝑟
= 𝑎(𝑥, 𝑥)𝑡𝑝

𝑝
|𝑤𝑁 |𝑝.

When 𝑡* < 1, we have
∫︁ 1

0
𝑟𝑝−1 log+(𝑡|𝑤𝑁 |𝑟) 𝑑𝑟 =

∫︁ 1

𝑡*
𝑟𝑝−1 log(𝑡|𝑤𝑁 |𝑟) 𝑑𝑟 = 1

𝑝2

(︃
𝑝 log(𝑡|𝑤𝑁 |) + 1

(𝑡|𝑤𝑁 |)𝑝
− 1

)︃
,

which implies
∫︁ 1

0
Φ(𝑥, 𝑥, 𝑡|𝑤𝑁 |𝑟)𝑑𝑟

𝑟
= 𝑎(𝑥, 𝑥)𝑡𝑝

𝑝
|𝑤𝑁 |𝑝

(︃
𝑝 − 1

𝑝
+ 1

𝑝(𝑡|𝑤𝑁 |)𝑝
+ log(𝑡|𝑤𝑁 |)

)︃
,

and the expression of 𝐻(𝑥, 𝑡) follows just by integrating the variable 𝑤 in S𝑁−1.
Now, from Theorem 5.1.3 the result holds for any 𝑢 ∈ 𝐶2

0(R𝑁). On the other hand, by
the boundedness of 𝑎, we have that

𝐽𝑠,Φ(𝑢) ≤ 𝑎+

∫︁
R𝑁

∫︁
R𝑁

𝐺

(︃
|𝑢(𝑥) − 𝑢(𝑦)|

|𝑥 − 𝑦|𝑠

)︃
𝑑𝑥𝑑𝑦

|𝑥 − 𝑦|𝑁
,

where 𝐺 : [0, ∞) → [0, ∞) is the Young function given by 𝐺(𝑡) = 𝑡𝑝(log+(𝑡) + 1) with 𝑝 ≥ 1.
Then, arguing as in the proof of Theorem 4.1 in Fernández Bonder and Salort (2019), the
result holds for any 𝑢 ∈ 𝑊 1,̂︀Φ𝑥(R𝑁) (space which is equal to 𝑊 1,𝐺(R𝑛), since 𝐺 and ̂︀Φ
are equivalent Musielak functions). Conversely, proceeding as in the last part of the proof of
Theorem 4.1 obtained by Fernández Bonder and Salort (2019), it holds that if 𝑝 > 1 and

lim inf
𝑠→1−

(1 − 𝑠)𝐽𝑠,Φ(𝑢) < ∞,

then 𝑢 ∈ 𝑊 1,̂︀Φ𝑥(R𝑁).

5.2.4 Spaces with variable exponent

Given a continuous function in the second variable 𝑝 : R𝑁 × R𝑁 → R such that

1 ≤ 𝑝− ≤ 𝑝(𝑥, 𝑦) ≤ 𝑝+ < ∞ for all 𝑥, 𝑦 ∈ R𝑁 ,

and a function 𝑎(·, ·) as in the previous example, consider the Musielak function Φ(𝑥, 𝑦, 𝑡) =

𝑎(𝑥, 𝑦)𝑡𝑝(𝑥,𝑦). In this case,

𝐽𝑠,Φ(𝑢) := 𝐽𝑠,𝑝(·,·)(𝑢) =
∫︁
R𝑁

∫︁
R𝑁

𝑎(𝑥, 𝑦) |𝑢(𝑥) − 𝑢(𝑦)|𝑝(𝑥,𝑦)

|𝑥 − 𝑦|𝑁+𝑠𝑝(𝑥,𝑦) 𝑑𝑥𝑑𝑦.
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Proposition 5.2.3. Let 𝑢 ∈ 𝑊 1,𝑝+(R𝑁) ∩ 𝑊 1,𝑝−(R𝑁). Then it holds that

lim
𝑠→1−

(1 − 𝑠)𝐽𝑠,𝑝(·,·)(𝑢) =
∫︁
R𝑁

𝐻(𝑥, |∇𝑢(𝑥)|) 𝑑𝑥,

where

𝐻(𝑥, 𝑡) = 𝐾𝑁,𝑝𝑡𝑝(𝑥,𝑥), with 𝐾𝑁,𝑝 = 𝑎(𝑥, 𝑥)
𝑝(𝑥, 𝑥)

∫︁
S𝑁−1

|𝑤𝑁 |𝑝(𝑥,𝑥) 𝑑𝑆𝑤.

Proof. In this case, the expression of 𝐻 is immediate. From Theorem 5.1.3 the limit holds for
any 𝑢 ∈ 𝐶2

0(R𝑁). Due to the assumptions on 𝑝, one has that

𝑎− min{𝑡𝑝+
, 𝑡𝑝−} ≤ Φ(𝑥, 𝑦, 𝑡) ≤ 𝑎+ max{𝑡𝑝+

, 𝑡𝑝−}

for any 𝑡 ≥ 0 and 𝑥, 𝑦 ∈ R𝑁 . Then, proceeding as in the proof of Corollary 5.1.5, the limit
holds for any 𝑢 ∈ 𝑊 1,𝑝+(R𝑁) ∩ 𝑊 1,𝑝−(R𝑁).

5.2.5 Exponential growth

Our result applies to functions with growing faster than powers. Let 𝑎(·, ·) be as in Example
5.2.2. Consider the Young function Φ(𝑥, 𝑦, 𝑡) = 𝑎(𝑥, 𝑦)(𝑒𝑡 − 1). Then, in this case

𝐽𝑠,Φ(𝑢) :=
∫︁
R𝑁

∫︁
R𝑁

𝑎(𝑥, 𝑦)
(︂

𝑒
|𝑢(𝑥)−𝑢(𝑦)|

|𝑥−𝑦|𝑠 − 1
)︂

𝑑𝑥𝑑𝑦

|𝑥 − 𝑦|𝑁
.

Proposition 5.2.4. Let 𝑢 ∈ 𝑊 1,̂︀Φ𝑥(R𝑁). Then, there exists 𝜆0 > 0 such that

lim
𝑠→1−

(1 − 𝑠)𝐽𝑠,Φ

(︂
𝑢

𝜆

)︂
=
∫︁
R𝑁

𝐻

(︃
𝑥,

|∇𝑢(𝑥)|
𝜆

)︃
𝑑𝑥,

for all 𝜆 ≥ 𝜆0, where 𝐻 is defined as

𝐻(𝑥, 𝑡) = 𝑎(𝑥, 𝑥)
∫︁
S𝑁−1

(Chi(𝑡|𝑤𝑁 |) + Shi (𝑡|𝑤𝑁 |) − log(𝑡|𝑤𝑁 |) − 𝛾) 𝑑𝑆𝑤

where Chi(𝑡) denotes the hiperbolic cosine integral function, Shi(𝑡) denotes the hiperbolic sine

integral function and 𝛾 stands for the Euler-Mascheroni constant.

5.3 ANISOTROPIC 𝑠-HÖLDER QUOTIENTS

Fractional anisotropic spaces in which in each coordinate direction the functions have
different fractional regularity and different integrability have been considered recently, see for
example Chaker, Kim and Weidner (2023) and Fernández Bonder and Dussel (2023).
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In this section, we consider a family of functionals in which the 𝑠-Hölder quotients depend
on only one direction. Given a Musielak function Φ: R𝑁 × R𝑁 × [0, ∞) → R, 𝑠 ∈ (0, 1) and
𝑘 ∈ {1, . . . , 𝑛}, we consider the energy functional

𝐽𝑘
𝑠,Φ(𝑢) :=

∫︁
R𝑁

∫︁
R

Φ(𝑥, 𝑥 − ℎ𝑒𝑘, |𝐷𝑘
𝑠 𝑢(𝑥, ℎ)|) 𝑑ℎ𝑑𝑥

|ℎ|
,

where 𝑒𝑘 is the 𝑘-th canonical vector in R𝑁 and the 𝑠-Hölder quotient 𝐷𝑘
𝑠 𝑢 in the direction

𝑒𝑘 is defined as
𝐷𝑘

𝑠 𝑢(𝑥, ℎ) := 𝑢(𝑥 − ℎ𝑒𝑘) − 𝑢(𝑥)
|ℎ|𝑠

.

These functionals naturally define the fractional Musielak-Sobolev-like spaces 𝑊
𝑠,Φ𝑥,𝑦

𝑘 (R𝑁) as

𝑊
𝑠,Φ𝑥,𝑦

𝑘 (R𝑁) =
{︂

𝑢 ∈ 𝐿
̂︀Φ𝑥(R𝑁) : 𝐽𝑘

𝑠,Φ

(︂
𝑢

𝜆

)︂
< ∞ for some 𝜆 > 0

}︂
.

We also consider the local Musielak-Sobolev space

𝑊 1,̂︀Φ𝑥

𝑘 (R𝑁) :=
{︃

𝑢 ∈ 𝐿
̂︀Φ𝑥(R𝑁) : 𝜕𝑢

𝜕𝑥𝑘

∈ 𝐿
̂︀Φ(R𝑁)

}︃
.

With the same technique as in Theorem 5.1.3, we prove a BBM result for smooth functions.

Theorem 5.3.1. Let 𝑢 ∈ 𝐶2
0(R𝑁) and 𝑘 ∈ {1, . . . , 𝑁}. Assume (𝐻1) and (𝐻2). Then, there

exists 𝜆0 > 0 such that

lim
𝑠→1−

(1 − 𝑠)𝐽𝑘
𝑠,Φ

(︂
𝑢

𝜆

)︂
=
∫︁
R𝑁

𝐻

(︃
𝑥,

1
𝜆

⃒⃒⃒⃒
⃒𝜕𝑢(𝑥)

𝜕𝑥𝑘

⃒⃒⃒⃒
⃒
)︃

𝑑𝑥, (5.13)

for all 𝜆 ≥ 𝜆0, where

𝐻(𝑥, 𝑡) = 2
∫︁ 1

0
Φ(𝑥, 𝑥, 𝑡𝑟)𝑑𝑟

𝑟
.

Proof. Let 𝑢 ∈ 𝐶2
0(R𝑁) and let 𝑥 be fixed. Without loss of generality, we can assume 𝑘 = 1.

Proceeding similarly as in the proof of Theorem 5.1.3, we can obtain the following

lim
𝑠→1−

(1 − 𝑠)
∫︁
R
Φ
(︃

𝑥, 𝑥 − ℎ𝑒1,
𝐷1

𝑠𝑢(𝑥, ℎ)|
𝜆

)︃
𝑑ℎ

|ℎ|

= lim
𝑠→1−

(1 − 𝑠)
∫︁

|ℎ|<1
Φ
(︂

𝑥, 𝑥 − ℎ𝑒1,
1
𝜆

⃒⃒⃒
∇𝑢(𝑥) · 𝑒1ℎ|ℎ|−𝑠

⃒⃒⃒)︂ 𝑑ℎ

|ℎ|

= lim
𝑠→1−

(1 − 𝑠)
∫︁

|ℎ|<1
Φ
(︂

𝑥, 𝑥 − ℎ𝑒1,
1
𝜆

|∇𝑢(𝑥) · 𝑒1||ℎ|1−𝑠
)︂

𝑑ℎ

|ℎ|

= lim
𝑠→1−

(1 − 𝑠)
∫︁

|ℎ|<1
Φ
(︃

𝑥, 𝑥 − ℎ𝑒1,
1
𝜆

⃒⃒⃒⃒
⃒𝜕𝑢(𝑥)

𝜕𝑥1

⃒⃒⃒⃒
⃒ |ℎ|1−𝑠

)︃
𝑑ℎ

|ℎ|

=: lim
𝑠→1−

(1 − 𝑠)𝐼𝑠(𝑥).
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Now, observe that, similarly as in the proof of Lemma 5.1.1, performing the change of variables
ℎ1−𝑠 = 𝜌 we get that (1 − 𝑠)𝑑ℎ

ℎ
= 𝑑𝜌

𝜌
which yields

𝐼𝑠(𝑥) =
∫︁ 1

0
Φ
(︃

𝑥, 𝑥 − ℎ𝑒1,
1
𝜆

⃒⃒⃒⃒
⃒𝜕𝑢(𝑥)

𝜕𝑥1

⃒⃒⃒⃒
⃒ℎ1−𝑠

)︃
𝑑ℎ

ℎ
−
∫︁ 0

−1
Φ
(︃

𝑥, 𝑥 − ℎ𝑒1,
1
𝜆

⃒⃒⃒⃒
⃒𝜕𝑢(𝑥)

𝜕𝑥1

⃒⃒⃒⃒
⃒ (−ℎ)1−𝑠

)︃
𝑑ℎ

ℎ

=
∫︁ 1

0

(︃
Φ
(︃

𝑥, 𝑥 − ℎ𝑒1,
1
𝜆

⃒⃒⃒⃒
⃒𝜕𝑢(𝑥)

𝜕𝑥1

⃒⃒⃒⃒
⃒ℎ1−𝑠

)︃
+ Φ

(︃
𝑥, 𝑥 + ℎ𝑒1,

1
𝜆

⃒⃒⃒⃒
⃒𝜕𝑢(𝑥)

𝜕𝑥1

⃒⃒⃒⃒
⃒ℎ1−𝑠

)︃)︃
𝑑ℎ

ℎ

= 1
1 − 𝑠

∫︁ 1

0

(︃
Φ
(︃

𝑥, 𝑥 − 𝜌
1

1−𝑠 𝑒1,
1
𝜆

⃒⃒⃒⃒
⃒𝜕𝑢(𝑥)

𝜕𝑥1

⃒⃒⃒⃒
⃒ 𝜌
)︃

+ Φ
(︃

𝑥, 𝑥 + 𝜌
1

1−𝑠 𝑒1,
1
𝜆

⃒⃒⃒⃒
⃒𝜕𝑢(𝑥)

𝜕𝑥1

⃒⃒⃒⃒
⃒ 𝜌
)︃)︃

𝑑𝜌

𝜌
.

Then, since we assume Φ continuous in the second parameter and 𝜌 ∈ (0, 1),

lim
𝑠→1−

(1 − 𝑠)𝐼𝑠(𝑥) = 2
∫︁ 1

0
Φ
(︃

𝑥, 𝑥,
1
𝜆

⃒⃒⃒⃒
⃒𝜕𝑢(𝑥)

𝜕𝑥1

⃒⃒⃒⃒
⃒ 𝜌
)︃

𝑑𝜌

𝜌
.

Thus, arguing as in the last part of the proof of Theorem 5.1.3, the limit (5.13) holds. Finally, as
in Proposition 5.1.2, the function 𝐻(𝑥, 𝑡) = 2

∫︀ 1
0 Φ(𝑥, 𝑥, 𝑡𝑟)𝑑𝑟

𝑟
, up to constant, is comparable

with Φ(𝑥, 𝑡).

Remark 5.3.2. In the case in which there is no dependence on the spatial variables and the

𝑠-Hölder quotient has a power behavior, i.e.,

Φ(𝑥, 𝑦, 𝑡) = 𝑡𝑝, 𝑝 ≥ 1, 𝑠 ∈ (0, 1),

for each 𝑘 ∈ {1, . . . , 𝑛}, the limit function 𝐻 is easily computed as

𝐻(𝑥, 𝑡) = 2𝑡𝑝
∫︁ 1

0
𝑟𝑝−1 𝑑𝑟 = 2

𝑝
𝑡𝑝,

which implies that

lim
𝑠→1−

(1 − 𝑠)
∫︁
R𝑁

∫︁
R

|𝑢(𝑥 − ℎ𝑒𝑘) − 𝑢(𝑥)|𝑝
|ℎ|1+𝑠𝑝

𝑑ℎ𝑑𝑥 = 2
𝑝

∫︁
R𝑁

⃒⃒⃒⃒
⃒𝜕𝑢(𝑥)

𝜕𝑥𝑘

⃒⃒⃒⃒
⃒
𝑝

𝑑𝑥

holds for any 𝑢 ∈ 𝐶2
0(R𝑁). Thus, arguing as in Proposition 5.2.3, it holds for any 𝑢 ∈

𝑊 𝑠,𝑝
𝑘 (R𝑁). This recovers the limit result of Fernández Bonder and Dussel (2023).

Remark 5.3.3. When the dependence of the variables 𝑥 and 𝑦 is removed in the anisotropic

energy, much more information can be obtained. Indeed, in the case in which

𝐽𝑘
𝑠,Φ(𝑢) =

∫︁
R𝑁

∫︁
R

Φ(|𝐷𝑘
𝑠 𝑢(𝑥, ℎ)|)𝑑ℎ

|ℎ|
𝑑𝑥

following the proof of Theorem 1.1 present in Alberico et al. (2020), it is not too hard to see

that, for any 𝑢 ∈ 𝑊 1,Φ
𝑘 (R𝑁) and 𝑘 ∈ {1, . . . , 𝑁}, there exists 𝜆0 > 0 such that

lim
𝑠→1−

(1 − 𝑠)𝐽𝑘
𝑠,Φ

(︂
𝑢

𝜆

)︂
= 2

∫︁
R𝑁

∫︁ 1

0
Φ
(︃

1
𝜆

⃒⃒⃒⃒
⃒𝜕𝑢(𝑥)

𝜕𝑥𝑘

⃒⃒⃒⃒
⃒ 𝑟
)︃

𝑑𝑟

𝑟
𝑑𝑥, for all 𝜆 ≥ 𝜆0.
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Moreover, when Φ satisfies Δ2-condition, it is possible in this case to go further and prove a

BBM type result for sequences of functions. A close inspection of Theorem 5.2 employed

by Fernández Bonder and Salort (2019) reveals that in this case, if 0 ≤ 𝑠𝑛 → 1− and

(𝑢𝑛)𝑛∈N ⊂ 𝐿Φ(R𝑁) is such that 𝑢𝑛 → 𝑢 in 𝐿Φ
𝑙𝑜𝑐(R𝑁) and

sup
𝑛∈N

(︂
(1 − 𝑠𝑗)𝐽𝑘

𝑠,Φ(𝑢𝑛) +
∫︁
R𝑁

Φ(𝑢𝑛) 𝑑𝑥
)︂

< ∞,

then, 𝑢 ∈ 𝑊 1,Φ
𝑘 (R𝑁) and

2
∫︁
R𝑁

∫︁ 1

0
Φ
(︃⃒⃒⃒⃒
⃒𝜕𝑢(𝑥)

𝜕𝑥𝑘

⃒⃒⃒⃒
⃒ 𝑟
)︃

𝑑𝑟

𝑟
𝑑𝑥 ≤ lim inf

𝑛→∞
(1 − 𝑠𝑛)𝐽𝑘

𝑠,Φ(𝑢𝑛).
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6 EXPLORING FUTURE PATHS: PERSPECTIVES AND CHALLENGES IN THE

FIELD

In this chapter, we will explore various perspectives on fractional Musielak-Sobolev theory,
highlighting the key challenges that need to be addressed and the results we hope to achieve
in the coming years.

In this thesis, we study some generalizations of the fractional order Sobolev spaces and
applications. In the context of fractional Orlicz-Sobolev spaces, we present an overview of the
developments in the theory, such as some qualitative properties and results on embedding.
We then apply these results and the nonlinear Rayleigh quotient method to study conditions
that guarantee the existence of weak solutions for a class of superlinear problems with two
parameters involving the fractional Φ-Laplacian operator. It is important to mention that,
in order to establish a continuous embedding into Orlicz spaces in R𝑁 for functions with
subcritical growth Ψ ≪ Φ*, was required the additional hypothesis:

lim sup
𝑡→0

Ψ(𝑡)
Φ(𝑡) < ∞.

This condition is crucial because it ensures that the growth of Ψ relative to Φ does not lead
to an unbounded behavior near zero, which could otherwise affect the embedding results.

We also explore spaces more general than fractional Sobolev-Orlicz spaces. Specifically, we
establish some abstract results within the framework of fractional Musielak-Sobolev spaces,
such as uniform convexity, the Radon-Riesz property with respect to the modular function, the
(𝑆+)-property, a Brezis-Lieb type lemma for the modular function, and monotonicity results.
Furthermore, we apply the developed theory to investigate the existence of solutions to a class
of problems involving a general nonlocal nonstandard growth operator of the Φ-Laplacian type.

Finally, we obtain a Bourgain-Brezis-Mironescu type result for a very general family
of modular functions, without requiring the Δ2-condition on the Musielak function or its
complementary function. These results increase our understanding of fractional spaces and
provide new perspectives on the analysis of nonlocal problems.

Throughout this work, several research questions have arisen, pointing to promising
directions for future investigations. These questions include exploring additional results on
embeddings and Poincaré type inequalities, as well as gaining a deeper understanding of the
properties of fractional Musielak-Sobolev spaces and their applications.

The main difficulties arise from both the measure 𝜇 and the dependence on the spatial
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variables 𝑥 and 𝑦 in the Musielak space 𝐿Φ𝑥,𝑦(Ω × Ω, 𝑑𝜇). The measure 𝜇 presents additional
challenges in analyzing functional properties and obtaining precise estimates, as it is neither
Borel regular nor do we know if it is 𝜎-finite. This lack of regularity and the possible absence
of the 𝜎-finite property further complicate the analysis. Additionally, the explicit dependence
on spatial variables in the functions Φ𝑥,𝑦 makes the use of classical techniques more difficult,
requiring a more sophisticated approach to handle variations at different points in the domain.
Consequently, the study of results in fractional Musielak-Sobolev spaces becomes more delicate.

In the paper by Azroul et al. (2021), embedding results for fractional Musielak-Sobolev
spaces and the Poincaré inequality are introduced. However, we believe that certain steps in
the proofs lack clarity and require further justification. Specifically, the estimates employed in
the proofs are not evidently uniform due to their dependence on spatial variables. Controlling
these spatial variables represents one of the significant challenges in the study of fractional
Musielak-Sobolev spaces. Unfortunately, we have not yet succeeded in providing a convincing
proof.

At the end of Chapter 3, we outline some perspectives and open questions related to the
study of solutions to the superlinear fractional Φ-Laplacian type problem (𝒫𝜆,𝜈). Due to the
non-homogeneity of the operator, we are unable to establish a nonexistence result for the case
𝜈 = 𝜈𝑛(𝜆) as stated in Theorem 1.4 by Silva et al. (2024a), although we suspect that this
may hold under appropriate conditions on the function Φ. Additionally, it is natural to question
whether the results presented in this work can be extended to a broader class of nonlinearities,
allowing for more general behavior than power-type functions. Another intriguing yet highly
complex question involves understanding the behavior of solutions as the fractional parameter
𝑠 approaches 0, in line with the work by Fernández Bonder and Salort (2019).

In the Chapter 5, we leave some interesting open questions related to the asymptotic
behavior of these energies. Due to the high dependence on spatial coordinates, studying
whether a BBM type formula holds for sequences of functions (depending on 𝑠) is a challenging
task. This question remains unanswered even in the case of the fractional Laplacian with
variable exponent. Due to the lack of this result, we were not able to obtain a BBM type formula
for seminorms (see Corollary 5.1.6), although we suspect this is valid. Another interesting yet
highly nontrivial point is understanding the behavior of the energies as the fractional parameter
𝑠 approaches 0, in the spirit of the seminal work of Maz’ya and Shaposhnikova (2002).
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