Skip navigation
Use este identificador para citar ou linkar para este item: https://repositorio.ufpe.br/handle/123456789/58273

Compartilhe esta página

Título: Data ingestion and storage strategies for data warehouses in the context of data streaming: an overview of recent advances
Autor(es): Burle, Alexandre de Queiroz
Palavras-chave: Data Warehouse; ETL; Data Streaming; Data Ingestion; Data Storage
Data do documento: 17-Out-2024
Citação: BURLE, Alexandre de Queiroz. Data Ingestion and Storage Strategies for Data Warehouses in the Context of Data Streaming: an overview of recent advances. 2024. 53 f. TCC (Graduação) - Curso de Engenharia da Computação, Universidade Federal de Pernambuco, Recife, 2024.
Abstract: In the current landscape of data-driven decision-making, data warehouses have proven to be highly valuable tools, especially with the emergence of big data characterized by its volume, velocity, and variety. This study provides a systematic review of data ingestion and storage strategies for data warehouses in the context of data streaming, focusing on the latest advancements and methodologies to address the challenges posed by continuous data streams. Modeling schemas of data warehouses are not the focus of recent studies, as existing schemas seem to satisfy current needs. Instead, the focus has shifted towards optimizing operational processes like ETL (Extract, Transform, Load) and join operations. The review highlights techniques such as parallel processing, in-memory computing, and distributed computing as critical to enhancing data ingestion and storage capabilities. This work synthesizes recent research, providing insights into how modern data warehouses can efficiently process and store streaming data to support real-time analytics and decision-making. The findings offer valuable guidance for developing scalable and efficient data warehousing solutions.
URI: https://repositorio.ufpe.br/handle/123456789/58273
Aparece nas coleções:(TCC) - Engenharia da Computação

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
TCC Alexandre de Queiroz Burle.pdf1,7 MBAdobe PDFThumbnail
Visualizar/Abrir


Este arquivo é protegido por direitos autorais



Este item está licenciada sob uma Licença Creative Commons Creative Commons