Skip navigation
Use este identificador para citar ou linkar para este item: https://repositorio.ufpe.br/handle/123456789/53504

Compartilhe esta página

Título: Variable weighted fuzzy clustering algorithm for qualitative data
Autor(es): TEOTONIO, Gabriel Harrison Fidelis
Palavras-chave: Inteligência computacional; Agrupamento
Data do documento: 25-Mai-2023
Editor: Universidade Federal de Pernambuco
Citação: TEOTONIO, Gabriel Harrison Fidelis. Variable weighted fuzzy clustering algorithm for qualitative data. 2023. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2023.
Abstract: This work focuses on the clustering methods within unsupervised learning, a challenging sub-division of Machine Learning where there is no response variable available. Clustering is a technique for finding groups in a dataset, where the observations in each group are similar to each other and different from those in other groups. The K-Means method, recognized as the most well-known and widely used clustering technique, efficiently handles quantitative variables, like many other existing clustering methods. However, the K-Means algorithm cannot be used with qualitative variables, such as gender or education level. To overcome this limitation, the K-Modes method was proposed, which uses modes instead of means to represent the clusters. The existing partitional clustering algorithms without variable weighting have a limitation in that they assign equal importance to all variables. It can be problematic when clustering high-dimensional, sparse data where the characterization of cluster partitions can be explained by a particular subset of variables. To address this issue, subspace clustering techniques and adaptive distances have been proposed, with the latter being derived from constraints based on the sum and product of the weights relative to the importance of the variables. This work proposes a new fuzzy clustering algorithm for qualitative data based on adaptive distances, which demonstrates improved performance compared to conventional methods. The local adaptive distances, which assign different weights to each variable across the clusters, perform better for datasets with high levels of dispersion and overlap of classes. The results extend the capabilities of existing clustering algorithms based on adaptive distances.
URI: https://repositorio.ufpe.br/handle/123456789/53504
Aparece nas coleções:Dissertações de Mestrado - Ciência da Computação

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
DISSERTAÇAO Gabriel Harrison Fidelis Teotonio.pdf
  Item embargado até 2025-10-26
830,66 kBAdobe PDFVisualizar/Abrir    Item embargado


Este arquivo é protegido por direitos autorais



Este item está licenciada sob uma Licença Creative Commons Creative Commons