Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.ufpe.br/handle/123456789/51592

Comparte esta pagina

Título : Exploring reinforcement learning in path planning for omnidirectional robot soccer
Autor : Cruz, José Victor Silva
Palabras clave : Path planning; Omnidirectional robot; Reinforcement learning
Fecha de publicación : 17-abr-2023
Citación : CRUZ, José Victor Silva. Exploring reinforcement learning in path planning for omnidirectional robot soccer. Trabalho de Conclusão de Curso (Engenharia da Computação) - Universidade Federal de Pernambuco, Recife, 2023.
Resumen : Path Planning consists of a widely studied computational problem of great applicability in autonomous robotics and virtual reality environments that aims to solve the following problem: given the origin of an entity in space, obtain a feasible collision-free route to the destination. From the characteristics of a given environment, in this case, a soccer field in conventional game conditions that imply a greater complexity given the dynamics of the obstacles, it is intended to use Reinforcement Learning – technique that has gained expression over time due to the ability of its applications to perform better than humans in different scenarios –, to optimize the trajectories performed by an agent as it maximizes the reward accumulated within the executed iterations.
URI : https://repositorio.ufpe.br/handle/123456789/51592
Aparece en las colecciones: (TCC) - Engenharia da Computação

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Exploring_Reinforcement_Learning_in_Path_Planning_for_Omnidirectional_Robot_Soccer.pdf10,67 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está protegido por copyright original



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons