Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.ufpe.br/handle/123456789/45862

Comparte esta pagina

Título : Unbounded Hamilton-Jacobi-Bellman equations with one co-dimensional discontinuities
Autor : REIS, Robson Carlos da Silva
Palabras clave : Análise; Dinâmica descontínua; Equação de Hamilton-Jacobi- Bellma; Soluções viscosas; Problema de Ishii
Fecha de publicación : 29-abr-2022
Editorial : Universidade Federal de Pernambuco
Citación : REIS, Robson Carlos da Silva. Unbounded Hamilton-Jacobi-Bellman equations with one co-dimensional discontinuities. 2022. Tese (Doutorado em Matemática) - Universidade Federal de Pernambuco, Recife, 2022.
Resumen : The aim of this thesis is to deal, of the point of view of viscosity solutions, with a discontinuous Hamilton-Jacobi equation in the whole euclidian N-dimensional space where the discontinuity is located on an hyperplane. The typical questions that arise this directions are concern the existence and uniqueness of solutions, and of course the definition itself of solution. Here we consider viscosity solutions in the sense of Ishii. Since we consider convex Hamiltonians, we can also associate the problem to a control problem with specific cost and dynamics given on each side of the hyperplane. We assume that those are Lipshichitz continuous but potentially unbounded, as well as the control spaces. Using Bellman’s approach we construct two value functions which turn out to be the minimal and maximal solutions in the sense of Ishii. Moreover, we also build a whole family of value functions, which are still solutions in the sense of Ishii and connect continuously the minimal solution to the maximal one.
URI : https://repositorio.ufpe.br/handle/123456789/45862
Aparece en las colecciones: Teses de Doutorado - Matemática

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
TESE Robson Carlos da Silva Reis.pdf1,43 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está protegido por copyright original



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons