Por favor, use este identificador para citar o enlazar este ítem:
https://repositorio.ufpe.br/handle/123456789/45862
Comparte esta pagina
Título : | Unbounded Hamilton-Jacobi-Bellman equations with one co-dimensional discontinuities |
Autor : | REIS, Robson Carlos da Silva |
Palabras clave : | Análise; Dinâmica descontínua; Equação de Hamilton-Jacobi- Bellma; Soluções viscosas; Problema de Ishii |
Fecha de publicación : | 29-abr-2022 |
Editorial : | Universidade Federal de Pernambuco |
Citación : | REIS, Robson Carlos da Silva. Unbounded Hamilton-Jacobi-Bellman equations with one co-dimensional discontinuities. 2022. Tese (Doutorado em Matemática) - Universidade Federal de Pernambuco, Recife, 2022. |
Resumen : | The aim of this thesis is to deal, of the point of view of viscosity solutions, with a discontinuous Hamilton-Jacobi equation in the whole euclidian N-dimensional space where the discontinuity is located on an hyperplane. The typical questions that arise this directions are concern the existence and uniqueness of solutions, and of course the definition itself of solution. Here we consider viscosity solutions in the sense of Ishii. Since we consider convex Hamiltonians, we can also associate the problem to a control problem with specific cost and dynamics given on each side of the hyperplane. We assume that those are Lipshichitz continuous but potentially unbounded, as well as the control spaces. Using Bellman’s approach we construct two value functions which turn out to be the minimal and maximal solutions in the sense of Ishii. Moreover, we also build a whole family of value functions, which are still solutions in the sense of Ishii and connect continuously the minimal solution to the maximal one. |
URI : | https://repositorio.ufpe.br/handle/123456789/45862 |
Aparece en las colecciones: | Teses de Doutorado - Matemática |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
TESE Robson Carlos da Silva Reis.pdf | 1,43 MB | Adobe PDF | ![]() Visualizar/Abrir |
Este ítem está protegido por copyright original |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons