Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.ufpe.br/handle/123456789/44275

Comparte esta pagina

Título : Variabilidade e aderência em modelos de aprendizado de máquina com distribuição beta
Autor : CAVALCANTE, Jaime Phasquinel Lopes
Palabras clave : Probabilidade; Regressão beta
Fecha de publicación : 7-feb-2022
Editorial : Universidade Federal de Pernambuco
Citación : CAVALCANTE, Jaime Phasquinel Lopes. Variabilidade e aderência em modelos de aprendizado de máquina com distribuição beta. 2022. Dissertação (Mestrado em Estatística) - Universidade Federal de Pernambuco, Recife, 2022.
Resumen : Proposto por Ferrari e Cribari-Neto (2004), o modelo de regressão beta tem sido objeto de estudo de diversos autores devido a sua relevância para a modelagem de fenômenos cuja variável resposta esteja definida no intervalo unitário (0,1). No tocante ao diagnóstico dos modelos de regressão beta, Espinheira et al. (2008) apresentaram a definição de resíduos baseados no processo iterativo Scoring de Fisher, sendo esta amplamente utilizada para a generalização e proposição de novos resíduos para as extensões dos modelos de regressão beta. Com o foco na distribuição de probabilidade e observando que a mesma forma uma família exponencial bidimensional, utilizamos o Teorema da Função Integrável - demonstrado por Barndorff-Nielsen (1978) e Lehmann (1986) - para propor uma nova classe de resíduos e critérios do tipo pseudo-R2 baseados nas estatísticas suficientes e completas com a finalidade de avaliar a variabilidade e aderência, além de realizar diagnósticos em modelos de aprendizado de máquina (machine learning) com distribuição beta. Além disso, para o modelo de regressão beta, propomos um novo resíduo baseado no processo iterativo Scoring de Fisher. Quanto à qualidade preditiva, utilizamos a estatística PRESS e o coeficiente de predição P2, introduzido por Espinheira et al. (2019) para a classe de modelos de regressão beta lineares e não-lineares. O desempenho das propostas é avaliado por meio de três aplicações, associadas a um conjunto de dados reais, relativas ao estudo do risco à doenças cardíacas.
URI : https://repositorio.ufpe.br/handle/123456789/44275
Aparece en las colecciones: Dissertações de Mestrado - Estatística

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
DISSERTAÇÃO Jaime Phasquinel Lopes Cavalcante.pdf2,36 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está protegido por copyright original



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons