Skip navigation
Use este identificador para citar ou linkar para este item: https://repositorio.ufpe.br/handle/123456789/39491

Compartilhe esta página

Título: A comprehensive exploration of depthwise separable convolutions for real time 3D hand pose estimation through RGB images
Autor(es): COSTA, Willams de Lima
Palavras-chave: Mídia e interação; Redes neurais
Data do documento: 28-Fev-2020
Editor: Universidade Federal de Pernambuco
Citação: ALVES, Thayonara de Pontes. A comprehensive exploration of depthwise separable convolutions for realtime 3D hand pose estimation through RGB images. 2020. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Pernambuco, Recife, 2020.
Abstract: Hand pose estimation is an important task in computer vision due to its various fields of application, but mainly for providing a natural interaction between humans and machines. There are significant challenges for solving this task, primarily due to the high degree of freedom that is present in the human hand, and the possibility of self-occlusion. We investigate the usage of depthwise separable convolutions, an optimized convolution operation, to speed-up the inference time for convolutional models trained for 3D hand pose estimation. We show that the execution time for this approach can be improved to be up to 34.28% faster, while maintaining the accuracy scores on the metrics proposed by the literature. Additionally, we performed an extensive exploration and analysis of the use of depthwise separable convolutions regarding common challenges in tracking such as blur and noise, aiming to understand better in which scenarios this type of convolution impacts on the tracker precision.
URI: https://repositorio.ufpe.br/handle/123456789/39491
Aparece nas coleções:Dissertações de Mestrado - Ciência da Computação

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
DISSERTAÇÃO Willams de Lima Costa.pdf1,79 MBAdobe PDFThumbnail
Visualizar/Abrir


Este arquivo é protegido por direitos autorais



Este item está licenciada sob uma Licença Creative Commons Creative Commons