Skip navigation
Use este identificador para citar ou linkar para este item: https://repositorio.ufpe.br/handle/123456789/39488

Compartilhe esta página

Registro completo de metadados
Campo DCValorIdioma
dc.contributor.advisorBARBOSA, Luciano de Andrade-
dc.contributor.authorCARVALHO, Giovanni Paolo Santos de-
dc.date.accessioned2021-03-26T15:39:52Z-
dc.date.available2021-03-26T15:39:52Z-
dc.date.issued2020-01-17-
dc.identifier.citationCARVALHO, Giovanni Paolo Santos de. Using structured and unstructured data for product price prediction. 2020. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Pernambuco, Recife, 2020.pt_BR
dc.identifier.urihttps://repositorio.ufpe.br/handle/123456789/39488-
dc.description.abstractProduct price estimation is a relatively new trend in e-commerce that helps customers in their decision making process of buying or selling a product, giving a starting point of what could be a fair price. In this work, we are particularly interested in performing price prediction from online product offers. These offers usually present some text describing the product in natural language (unstructured data) and the specification of the product composed of its properties (structured data). In this dissertation, we aim to predict the price of product offers based on both structured and unstructured information. For that, we propose an attention-based network that deals with structured data individually, and also the interaction between this data and unstructured data, combining them to perform the prediction. For the structured information, we apply a regular fully-connected network; and to model the interaction between them (product’s properties and its description), we employ a co-attention network. Those networks are combined and used by a neural network regressor to learn a vector representation of the product offer. This vector can then be used as a feature set by any regressor to perform product price prediction. This architecture is designed to operate with general structured and unstructured types of product offers, and in this particular study, it is evaluated on a car price prediction task, for which we collected a dataset by scraping 11 sources of car classifieds. Our experimental evaluation shows that: (1) regressors using the learned embedding obtained the best results, improving their performance in almost all scenarios in comparison to raw features; and (2) simple linear regressor models such as Linear Regression using the learned embedding achieved comparable results to more competitive algorithms such as LightGBM.pt_BR
dc.language.isoengpt_BR
dc.publisherUniversidade Federal de Pernambucopt_BR
dc.rightsopenAccesspt_BR
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectInteligência computacionalpt_BR
dc.subjectOtimizaçãopt_BR
dc.titleUsing structured and unstructured data for product price predictionpt_BR
dc.typemasterThesispt_BR
dc.contributor.advisor-coREN, Tsang Ing-
dc.contributor.authorLatteshttp://lattes.cnpq.br/0657811885828755pt_BR
dc.publisher.initialsUFPEpt_BR
dc.publisher.countryBrasilpt_BR
dc.degree.levelmestradopt_BR
dc.contributor.advisorLatteshttp://lattes.cnpq.br/7113249247656195pt_BR
dc.publisher.programPrograma de Pos Graduacao em Ciencia da Computacaopt_BR
dc.description.abstractxPredição automática do preço de produtos é uma tendência relativamente recente que ajuda indivíduos no seu processo de decisão a respeito de realizar uma compra ou uma venda de um produto, fornecendo um ponto de referência de qual seria um preço justo. Neste trabalho, estamos particularmente interessados em realizar a predição a partir de anúncios de produtos disponíveis na web. Esses anúncios frequentemente são acompanhados de algum texto de screvendo o produto em linguagem natural (dados não-estruturados) e de especificações do produto contendo as suas propriedades (dados estruturados). Nesta dissertação, visamos predi zer o preço de um produto anunciado a partir de ambas modalidades de dados disponíveis. Para este fim, propomos uma rede baseada em atenção que lida com dados estruturados e também a interação entre esses e dados não-estruturados, combinando-os para realizar a predição do preço. Para os dados estruturados, utilizamos uma rede Multilayer Perceptron simples; e para modelar a interação entre ambos (descrição do produto e suas especificações), nós utilizamos uma rede com um mecanismo de co-attention. Essas redes combinadas são utilizadas em um regressor baseado em Redes Neurais para aprender representações vetoriais (embeddings) do produto anunciado. Este embedding pode ser utilizado como conjunto de características por qualquer regressor para realizar a estimação do preço. Esta arquitetura é projetada para operar com dados genéricos estruturados e não-estruturados de anúncios de produtos e, neste estudo em particular, ela é avaliada na tarefa de predição do preço de anúncios de automóveis na web, para a qual realizamos a coleta a partir de 11 sites de anúncios classificados. Nossos resul tados experimentais mostram que: (1) regressores utilizando os embeddings aprendidos pela rede proposta obtiveram os melhores resultados, melhorando sua performance em quase todos os cenários em comparação com o conjunto original de dados; e (2) modelos de regressão mais simples como Linear Regression utilizando as características aprendidas alcançam resultados comparáveis a outros algoritmos mais competitivos como LightGBM.pt_BR
dc.contributor.advisor-coLatteshttp://lattes.cnpq.br/3084134533707587pt_BR
Aparece nas coleções:Dissertações de Mestrado - Ciência da Computação

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
DISSERTAÇÃO Giovanni Paolo Santos de Carvalho.pdf5,42 MBAdobe PDFThumbnail
Visualizar/Abrir


Este arquivo é protegido por direitos autorais



Este item está licenciada sob uma Licença Creative Commons Creative Commons