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ABSTRACT

Product price estimation is a relatively new trend in e-commerce that helps customers in their
decision making process of buying or selling a product, giving a starting point of what could
be a fair price. In this work, we are particularly interested in performing price prediction from
online product offers. These offers usually present some text describing the product in natural
language (unstructured data) and the specification of the product composed of its properties
(structured data). In this dissertation, we aim to predict the price of product offers based
on both structured and unstructured information. For that, we propose an attention-based
network that deals with structured data individually, and also the interaction between this
data and unstructured data, combining them to perform the prediction. For the structured
information, we apply a regular fully-connected network; and to model the interaction between
them (product’s properties and its description), we employ a co-attention network. Those
networks are combined and used by a neural network regressor to learn a vector representation
of the product offer. This vector can then be used as a feature set by any regressor to perform
product price prediction. This architecture is designed to operate with general structured and
unstructured types of product offers, and in this particular study, it is evaluated on a car price
prediction task, for which we collected a dataset by scraping 11 sources of car classifieds. Our
experimental evaluation shows that: (1) regressors using the learned embedding obtained the
best results, improving their performance in almost all scenarios in comparison to raw features;
and (2) simple linear regressor models such as Linear Regression using the learned embedding

achieved comparable results to more competitive algorithms such as LightGBM.

Keywords: Structured data. Unstructured data. Attention networks. Price prediction.



RESUMO

Predicao automatica do preco de produtos é uma tendéncia relativamente recente que ajuda
individuos no seu processo de decisao a respeito de realizar uma compra ou uma venda de
um produto, fornecendo um ponto de referéncia de qual seria um preco justo. Neste trabalho,
estamos particularmente interessados em realizar a predicdo a partir de antncios de produtos
disponiveis na web. Esses anlncios frequentemente sdo acompanhados de algum texto de-
screvendo o produto em linguagem natural (dados n3o-estruturados) e de especificacdes do
produto contendo as suas propriedades (dados estruturados). Nesta dissertacdo, visamos predi-
zer o preco de um produto anunciado a partir de ambas modalidades de dados disponiveis. Para
este fim, propomos uma rede baseada em atencdo que lida com dados estruturados e também
a interacao entre esses e dados ndo-estruturados, combinando-os para realizar a predicdo do
preco. Para os dados estruturados, utilizamos uma rede Multilayer Perceptron simples; e para
modelar a interacdo entre ambos (descricdo do produto e suas especificacdes), nds utilizamos
uma rede com um mecanismo de co-attention. Essas redes combinadas sao utilizadas em um
regressor baseado em Redes Neurais para aprender representacdes vetoriais (embeddings) do
produto anunciado. Este embedding pode ser utilizado como conjunto de caracteristicas por
qualquer regressor para realizar a estimacado do preco. Esta arquitetura é projetada para operar
com dados genéricos estruturados e ndo-estruturados de antincios de produtos e, neste estudo
em particular, ela é avaliada na tarefa de predicdo do preco de andincios de automdveis na web,
para a qual realizamos a coleta a partir de 11 sites de antincios classificados. Nossos resul-
tados experimentais mostram que: (1) regressores utilizando os embeddings aprendidos pela
rede proposta obtiveram os melhores resultados, melhorando sua performance em quase todos
os cendrios em compara¢do com o conjunto original de dados; e (2) modelos de regressdo mais
simples como Linear Regression utilizando as caracteristicas aprendidas alcancam resultados

comparaveis a outros algoritmos mais competitivos como LightGBM.

Palavras-chaves: Dados estruturados. Dados ndo estruturados. Attention networks. Predicao

de preco.
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1 INTRODUCTION

1.1 PROBLEM AND MOTIVATION

Exchanging currency for goods has been an integral part of our day to day lives for centuries.
This exchange or trade is a fundamental concept that is required for supplying our most basic
needs, such as food and shelter, up to other demands related to the quality of life or even
luxurious wishes, such as home appliances, electronics, or toys.

Worldwide, e-commerce sales represented 2.98 trillion doIIarf] in 2018, and is expected to
surpass the 5 trillion mark by 2022. When taking total retail sales into account, this figure is
much larger. As with many other things, the popularization of the Internet-enabled users to not
only consume more content but produce it as well. With online stores, the buyer can compare
many more options than it would be feasible to do by visiting multiple locations. When selling,
online marketplaces open up a much wider range of possible buyers to the seller. With a much
larger scale, however, comparing products and determining its price becomes much harder.
The seller does not want to devalue their product to be able to compete with other parties
but also wants to maintain a good margin of profit. The buyer might wish to obtain the best
deal available, but there might be many alternatives to the same type of product. Even for the
same brand and model, it can still be difficult to evaluate whether the difference in features
justifies the difference in prices. Knowing all the intricacies about what defines the price of
even a small subcategory of products requires some amount of expertise.

The characteristics of a product such as its brand, which features it has available, the
product’s condition (new or used, and how much usage it has endured) are important in
determining its price. Additional aspects, such as sentimental value and whether the product
is rare or limited, such as collector’s editions, also play a significant role.

Due to these mentioned factors, correctly pricing products is a hard challenge for humans.
A growing trend is to use models to estimate the price of a product automatically. In this
direction, e-commerce websites have started to offer price prediction tools to their users (buyers
or sellers) to help them in this decision making process. This feature is particularly useful for
sellers to offer price suggestions and for buyers to compare the price of a selling product to

its estimated value. Kelley Blue BookP] website, for instance, provides such a feature with its

https://www.emarketer.com/content/global-ecommerce-2019

2 www.kbb.com
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Price Advisor tool that estimates the market value of cars. The traveling website Kayakﬂ also
offers a kind of price prediction by suggesting to the users to book a flight or wait based on
its forecast price model. Recently, the e-commerce website Mercarﬂ launched a competition
on Kaggld’| aiming to solve the automatic product price estimation problem of its products.

In the context of online listings of products, there are usually some fields which are related
to the product'’s attributes, e.g. model, color, storage capacity, screen resolution, camera
resolution, etc for smartphones, and some fields dedicated to the listing title and its description
in the form of text. Depending on the domain and where the listing is posted, those textual
fields might contain additional information that is relevant to the asked price but is not present
in the attributes which are more easily skimmed through and compared. With a wide range
of available options, manually doing this comparison is arduous and time-consuming. In the
context of used cars, for example, the description might contain details about whether the
engine has been replaced or if any other sort of repair has been performed, which might have
a direct impact on the depreciation of the vehicle. In other cases, in contrast, the description
might be mostly advertisement or other info about the car dealership that posted the listing,
or not contain other additional information that is not present in the structured attributes. As
an example, in Figure [1] we show a listing from one of the car dealer sitd?] The attributes of the
car such as year, manufacturer and US state where it is being sold are shown in Figure a) and
its description in Figure b). Note that there is complementary information in the description
that is not present in a structured form such as information about its breaks (ABS breaks) and
seats (adjustable front bucket seats), and some of the structured information is also present
in the description text, such as the manufacturer, model and year. We observe that while
naively adding textual features might improve the performance of our models, targeting the
information overlap and exploring co-occurrences between the two modalities leads to an even
better improvement.

As previously exemplified, there can be relevant information present in the textual informa-
tion (e.g. title and description) of a product that can be leveraged for product price estimation.
Hand-engineered features or heuristics that indicate the presence or absence of specific char-
acteristics or words might be too time-consuming, and too domain-dependent: features of

smartphones do not apply to cars, for example. A simple approach when dealing with the

www.kayak.com
https://www.mercari.com/
https://www.kaggle.com /c/mercari-price-suggestion-challenge

3
4
5
6 As extracted from the URL archived at <https://archive.is/p4fiQ>
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Figure 1 — Example of a car listing from the TrueCar website. In the left, the type of information
that was extracted from the page during the scraping process was highlighted. In
the right, the entire text in the "Seller Notes" field was extracted.

Source: Authors’ own elaboration.

2018 Nissan Versa
SVCvT

@ VeroBeach,FL 9,974 Miles () Certified Pre-Owned 5 < Seller Notes

Certified. Cayenne Red 2018 Nissan Versa 1.6 SV FWD CVT with Xtronic 1.6L
4-Cylinder DOHC 16V CERTIFIED*7 YEAR/100K WARRANTY*BUY WITH PEACE OF
MIND, ABS brakes. Adjustable Front Bucket Seats. Air Conditioning. AM/FM radio.
T —— Electronic Stability Control. Low tire pressure warning. Panic alarm. Power windows,
personalized offer Remote keyless entry. Speed control, Steering wheel mounted audio controls,
Traction control. Recent Arrivall Odometer is 24225 miles below market average!
31/39 City/Highway MPG Nissan Certified Pre-Owned Details: * Warranty Deductible:

$10,000

&2 Well Below Market

Get Your TruePrice $100 * Roadside Assistance * 167 Point Inspection * Limited Warranty: 84
Month/100,000 Mile (whichever comes first) from original in-service date * Vehicle
;TZ;:;::;;;\;‘;reo oot History * Includes Car Rental and Trip Interruption Reimbursement * Transferable
$1,000 down View & Edit Warranty IF IT DOESNT SAY SUTHERLIN YOU PAID TOO MUCH! Prices DO NOT

include the cost of Certification. Add $999.00 for Certified vehicles.

| (a) Listing attributes. (b) Listing description.

price prediction task would be to only use the structured attributes and classical learning

algorithms such as linear models, penalized linear models (Ridge (HOERL; KENNARD, |1970),

Lasso (TIBSHIRANI, 2016)), ElasticNet (ZOU; HASTIE, 2005)) or ensemble methods (Random

Forests (BREIMAN| [2001), LightGBM (KE et al., 2017))).

In this work, we aim to estimate the asking price of products - vehicles, specifically - based

solely on the information available in the online product listings (structured and unstructured).
It is important to mention that we perform product price prediction for a specific snapshot
of products in time rather than a continuous price estimation task (forecasting). The two
modalities, structured attributes and unstructured text, present in the product listing have
differences. The former is usually cleaner but might miss out on some details that were not
specified as a field in the listing. The latter might contain such details but usually has more
noise. The main challenge is how we leverage the information contained in both structured and
unstructured variables and use one to add additional context to the other, in such a manner
that the overall performance is greater than a traditional combination of both.

To this end, we propose a deep learning network that learns patterns from those two modal-
ities to perform product price prediction. The model is composed of two different branches.
The first branch applies an MLP network to deal with the structured data. The second one uses
a co-attention network to model the complementarity and interaction between the structured
and unstructured information. Essentially, the co-attention network learns how interactions be-
tween the two modalities can be leveraged to improve the predictive power of each by attending

to more relevant parts of the text according to the structured attributes of the products and
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vice-versa, and also learning from the text complementary information for the product price
estimation. That is, instead of extracting those features directly, either manually or through
heuristics, they are learned jointly with the network for the task. The representations generated
by the structured and co-attention branches are then fed into an MLP that applies a regressor
layer to perform product price prediction.

The textual inputs in our network, rather than being treated as histograms of word occur-
rences, such as in the bag-of-words model, is encoded into a denser and order-of-magnitudes
smaller vectorial representation (embeddings). The parameters of these encodings are part of
the network parameters that are updated during the training process. Structured categorical
variables go through the same treatment, and for the numerical structured attributes, they
are normalized according to parameters which are also part of the trainable weights in the
network.

Looking at the complete architecture, it is an end-to-end encoder of structured and un-
structured features that generates a representation of product offers that is mapped to some
output by a task-dependent function. In the context of this work, we output a single real-
valued prediction which is the price of the product according to its features. However, the
price prediction task can be thought of as an auxiliary tool to generate this representation
by the optimization of the network’'s parameters, that is used to define an objective function
for the training process. Other mechanisms could also be used for performing representation
learning: such as reconstructing the original data in an encoder-decoder fashion (CHANDAR
et al}, 2016)) or in a classification task. The purpose of the network is merely defined by the
behavior of the last layer and the loss function that is employed during the training. In our
case, the final (output) layer encodes the outermost feature map into a price prediction. This
representation, therefore, encodes the relevant aspects of all of the intermediate mappings and
non-linearities that were performed in the previous layers of the network. The complete archi-
tecture, short of the last layer, is similar to a feature extractor that applies a transformation
on the original raw data, and this representation can then be used to train other algorithms
on the same regression task or in other related ones.

We carried out experimental evaluations on a real-world dataset that was collected from

multiple sources of car listing websites based in the US. Our results show that:

» The proposed network outperforms competitive models such as Random Forest and

LightGBM using the same features;
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The learned embeddings further improve the performances of the evaluated regressors in
comparison to the same regressors trained using the raw features, meaning the network

is able to encode additional information to facilitate the problem;

The distinct evaluated regressors have comparable performance using the learned em-
beddings generated by the proposed model, meaning there are fewer trade-offs when

choosing one or the other since the features are already of good quality.

1.2 OBJECTIVES

The main objective of this work is to effectively use structured and unstructured information

of product offers such that the model can learn useful representations that perform better in

the price prediction task compared to raw features. We perform an evaluation of these learned

representations in the domain of online vehicle listings.

To attain this goal, the following tasks are required:

Find and scrape car classified sites to extract structured and unstructured attributes that
are common among the sources, and in addition, review, clean and process the data as

to deal with extraction abnormalities, outliers, information leakage, etc;

Build a deep neural network geared with architectural details that enable the model-
ing of interactions between structured and unstructured variables, such that the final

performance is improved in comparison to naively using a combination of both;

Generate from the raw features a dense representation that encodes not only the original

information, but additional enriched interactions into a lower-dimensional space

Compare the performance of traditional regression algorithms with the original feature

space and our learned representation.

1.3 WORK ORGANIZATION

In this section, we outline the organization for the remainder of this work. In Chapter , we

introduce and discuss the concepts and terminology which are the basis for the development

of this work. We overview natural language-specific concepts, such as how to handle non-

numerical data. In the following section, we discuss the relevant topics of artificial neural
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networks with a brief contextualization of the history of attention mechanisms. Lastly, we
cover the details of representation learning and its various forms and applications.

In Chapter [3 we discuss studies that are relevant to the one conducted in this work. more
specifically, we consider three broader groups in which they fall: a) text regression models, b)
representation learning models and c) co-attention-based models.

In Chapter , the product of this research, the attention-based neural network, is introduced
and explained in detail.

In Chapter[5] we discuss the data that was collected and which steps were taken to properly
clean it. We go into feature sets which are considered in our experimental setup, as well as
other baseline classical regressors. Furthermore, we also discuss hyperparameter settings and
technical implementation details, as well as evaluation metrics. Lastly, we present the results
and a discussion of what was observed from the experiments.

In Chapter E] we conclude this work with an overview of its contributions and future

research directions.
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2 CONCEPTS AND TERMINOLOGY

In this section, we introduce the concepts this work builds upon. Since the proposed solution
revolves around an attention mechanism, we focus on the building blocks that are necessary

to grasp how these mechanisms contribute to the overall performance.

2.1 REGRESSION

In |Goodfellow, Bengio and Courville (2015), a machine learning algorithm is defined as
an algorithm that is capable of improving the performance of a computer program at some
specific task through supervised or unsupervised experience. In this study, our focus is on the
supervised learning experience. This computer program constitutes a machine learning model,
and the learning process is what optimizes its performance at the task. The task of product
price prediction is a regression task that can be seen as a function f : R” — R of some
inputs that outputs a real-valued number. Instead of defining the parameters of the function,
we define the function and the optimization algorithm figures out what parameters of this

function minimize the cost function (more on this in Section [2.2.1]).

2.1.1 Linear Regression

The most basic model for the regression task is the Linear Regression model. The linear

model is a function that outputs a linear transformation of its inputs

n
ﬂzzwixz‘, (2-1)

i=1
where w; is the coefficient associated with the input feature x;, and 7 is the output of the
function. These coefficients are the parameters of the model, and they control the importance
of each feature to the final prediction. Positive coefficients mean that a particular feature has
a positive contribution to the output, while negative coefficients mean that a particular feature
is negatively correlated with the output. This computation is often expressed in terms of the

dot product between a vector w of parameters and an input vector x

<>
I
"
—
N
N
N—r



19

To find the best set of parameters, a performance measure is needed. A common way
of measuring the performance of regression models is by computing the mean squared error
between the actual values and the values as predicted by the model. Considering a vector y of
ground truth values, a vector ¢ of predictions and a vector of errors (residuals) e = § — v, all

of size m, the MSE is expressed by

_ s
MSE = - > e (2.3)

This expression is equivalent to the square of the L2-norm of the residual vector, divided

by the number of observations m

1
MSE = —|le]|? 2.4
m||6||2 (2.4)

Naturally, minimizing the L2-norm of the vector of residuals, i.e. the Euclidean distance
between the vector of predictions and the vector of targets, results in a model with lower MSE
error. The set of parameters that minimizes this cost function can be found in closed form by
solving for where its gradient is 0. An extension to this learning algorithm includes an intercept
term that is added to the resulting multiplication of each feature and coefficient pair. This
allows the algorithm to model for each feature x; a line in the form of w;x; + b; such that this
line does not necessarily have to go through the origin. This intercept is known as the bias and
does not need to be fixed. It is learned automatically by adding one extra feature set to the
vector of features x instead of adding a separate parameter. This way, the weight associated

with this extra feature serves the purpose of the bias term.

2.2 ARTIFICIAL NEURAL NETWORKS

Artificial Neural Networks extend Linear Regression models in terms of two characteristics:
non-linearities and chaining of multiple functions, although there are non-linear regression
models that are not neural networks.

The most basic unit of a NN, also known as a Neuron, is a composition of a linear mapping

and a non-linear activation function

f(x)=¢(w-z+0b), (2.5)
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where w and b are the learnable parameters, the weights and the biases, and ¢ is a function
that confers the power of learning non-linear relationships between the neuron’s input features.
Examples of such functions are sigmoid, hyperbolic tangent and rectified linear units (GLOROT;

BORDES; BENGIO), |2011)).

2.2.1 Optimization

With the usage of non-linear activation functions, most loss functions will result in a non-
convex error space (GOODFELLOW; BENGIO; COURVILLE, 2015)). As such, linear equation solvers
are not suitable and gradient-based iterative algorithms are more commonly used. However,
given the number of parameters of most neural networks and the number of training samples
in most Deep Learning applications, the memory requirements for using linear solvers would be
too high. The back-propagation (RUMELHART; HINTON; WILLIAMS, [1986)) is commonly used to
compute the gradient of the cost function w.r.t the network’s parameters. With the computed
gradient, the parameters are updated in the opposite direction, scaled by some learning rate.
Each parameter update is called a step. Instead of simply subtracting the gradient times the
learning rate from the parameters, more sophisticated strategies add a fraction of the previous
step direction, such as momentum (SUTSKEVER et al., [2013)) or by keeping a separate adaptive

momentum and learning rate for each parameter, such as Adam (KINGMA; BA| 2015)).

2.2.2 Multilayer Perceptron

In Multilayer Perceptron (MLP) networks, multiple neurons are stacked in a layer, effectively
producing multiple non-linear mappings of the original input vector. The architecture of MLPs
is composed of multiple layers. The non-linear mapping of the multiple neurons in the first
layer, the input layer, generates an intermediate representation of the original feature space.
The number of neurons in the layer determines the dimensionality of this representation. The
next layers, the hidden layers, work with additional levels of intermediate representations. The
last layer, the output layer, maps the representation into the predicted output. In the case
of regression, the last layer contains a single neuron. In Figure [2| we present a simple MLP
network with two neurons in the input layer, 3 neurons on the hidden layer and the output

layer with a single neuron.
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Figure 2 — Architecture of a Multilayer Perceptron network with two input features, a single
hidden layer with two neurons and an output layer with one neuron.
Source: Authors’ own elaboration.

Input Layer Hidden Layer Output Layer

2.2.3 Recurrent Neural Networks

A regular MLP can be used to model problems involving sequences, such as predicting
the word that succedes a sequence of words (language modeling). However, the problem
formulation is adjusted, for example by limiting the input to a fixed-size window context of the
previous words. Recurrent Networks (RNNs) (RUMELHART; HINTON; WILLIAMS, 1987)) tackle
sequential data without such adjustments. Consider a sequence x = x;,...,x, as a single
sample composed of n elements, where n might be different for different samples. An RNN

computes a state for each element x; in the sequence as a function of the previous state

he = f(hy_1, ) (2.6)

The state for the first element in the sequence might be initialized with zeroes or random
values. Here, f is a function defined by a neural network, such as an MLP. When training,
the state computation is insufficient to generate the output, but combining it with an output
layer that matches the characteristics of the training task allows for the last state h,, to serve
as serve as a representation for the sequence. Since different training samples have different
length, the recurrent part of the whole network is unfolded to match the length of the input.
This dynamically-sized network can be seen as a network where layers have shared parameters.
In practice, computations over large sequences are impractical both from the computational

standpoint as well as the optimization process, because gradients become very small as the
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error is propagated back through the network (vanishing gradient) (HOCHREITER, |1991)). As
an attempt to mitigate these problems, the Long Short-term Memory network (HOCHREITER;
SCHMIDHUBER), [1997)) learns more advanced functions to control its hidden state. The next

state computation is give by

fi=0, Wsx, +Usrhi—1 + by) ,

iv = 0y (Wizy + Uihy—1 + b;)

op =0, (Woxy + Uphy—1 + b,) , (2.7)

¢t = frocig +ipoo. (Weay + Ushy—1 + b) ,

hy = o 0 o, (¢4)
where f, i and o are gating functions that control how much to forget, input into and output
from the hidden state h;_; and current element z; to the internal state ¢; and output state h;.
There are also U and W weight matrices and a bias b associated with the computation of each
gating function. Finally, o,(2) is a sigmoid activation function that scales the activation z to
0,1, 0. and o,,(z) are hyperbolic tangent (tanh) activation functions that scale the activation
zto-1,1, and Ao B is the Hadamart product (element-wise) between A and B.

There are other types of RNNs with similar mechanisms, such as the Gated Recurrent

Unit (CHO et al., 2014)).

2.2.4 Attention Mechanisms

When dealing with variable-length input data, Recurrent Neural Networks (RNN) are a
natural way of modeling sequences. Attention mechanisms were initially designed to alleviate
a limitation of encoding representation in sequence to sequence models (BAHDANAU; CHO;
BENGIO, 2015).

Most of the early neural translation models used the encoder-decoder framework (CHO
et al., 2014} SUTSKEVER; VINYALS; LE, [2014)), where it is first used an RNN to encode the
sequence and generate a representation, and then a decoder RNN to generate the output
sequence in the target language.

Consider the sequence of vectors x = (x;, ..., x,,) where z; corresponds to the i-th word
in a sequence of size m, and the target sequence of words y = (y;, ..., Yn), Where y; is the i-th

word in a sequence of size n. The translation task is defined as a function y = f(x).
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The encoder-decoder framework uses an encoder f that generates the encoding for each
word in the input sequence h; = f(x;, hy_1), then reduces this sequence of states to a context
vector ¢ = q(hq, ..., hy,). Then the decoder g also decodes sequentially, generating the predic-
tions for the works in the target sequence y; = g(vy;_1, S¢, ¢), with current state s;, context ¢
and previous word y;_1.

Instead of using the last hidden state of the encoder network h,, to generate the context
vector ¢ as in |Cho et al| (2014), the hidden states at all steps along the sequence can be
combined, as proposed in |[Bahdanau, Cho and Bengio| (2015). More specifically, at each step,
the decoder network is fed with the previous state and a dynamic context vector ¢; generated
by a feed-forward network on every state generated by the encoder, such that ¢; is different

at each step

t
C;, = Z Softmax(a(si_l, h])) : hj y (28)

j=1
where h; is the concatenation of hidden states of a bidirectional encoder, and a, an MLP,
computes an alignment score between current input j and output ¢, that is normalized to a
probability using the Softmax activation function.

This work spawned a series of generalized attention mechanisms with different methods for
computing attention scores, such as the general attention (LUONG; PHAM; MANNING, 2015)),
where the attention scores are computed as s/ Wh, where s, is the current decoder hidden
state, h is the matrix of hidden states from the encoder and W is a matrix with learnable
parameters. For modeling relationships between different tokens in the same sequence, the
attention scores can be computed by replacing the target sequence with the input sequence.
This is known as self-attention (CHENG; DONG; LAPATA, [2016)).

Further improvements in the sequence to sequnce task were achieved with the Transformer
model (VASWANI et al., | 2017)), which does not rely on recurrent mechanisms, but rather on
pure self-attention. In the Transformer model, the multi-head attention is a general attention
mechanism that computes the attended output based on three input vectors q, k and v
associated with a query, a key and a value. It is computed by calculating the scaled dot product
attention scores between the q and v, normalizing with softmax to generate a probability
distribution and finally multiplying the attention scores with v:

-k
Attention(q, k, v) = softmax (q\/ﬁ) v (2.9)
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Additionally, this computation is done in projections of the original space, computed by
learnable parameter matrices which transform the input into a subspace, allowing the model to
learn more advanced relations. Furthermore, these heads are independent and can be computed

in parallel.

MultiHead(q, k, v) = [heady;...;head | W?, 210
head, = Attention (qVV, KIVIV, vIVy) (210

Where W, Wk and T are the learnable projections specific to the i-th head, and W° a
projection that combines the output from the parallel attention heads. The projection matrices
are defined as to map the original subspace to d/h in a model where the input vectors have d-
sized inputs and a total of h heads. Naturally, using the same input sequence as the query, key
and values constitutes self-attention, although this generalization allows for modeling attention
between different sequences.

In |Lu et al. (2016)) the authors introduce the concept of co-attention. They propose a
mechanism that jointly attends to text and visual modalities for the Visual Question Answer-
ing (VQA) task. While their main contribution is on the hierarchical processing of the question
in three levels (word, phrase and entire question), their results show that the co-attention
allows the proposed network to attend to different regions in the image as well as differ-
ent fragments of the question. This work builds upon Santos et al.| (2016)), extending their
attention mechanism, used for question answering (not visual), which at the time was not
introduced as co-attention, with two types of co-attention calculation parallel (on both image
and question simultaneously) and alternating between generating the attentions for the image
and the question. Another derived work is |Xiong, Zhong and Socher (2019) which employs
the co-attention encoder for the Question Answering task and introduced a dynamic decoder
responsible for estimating the answer span.

Another model which does not introduce itself as a co-attention mechanism, but performs
a similar computation is described in Yin et al. (2016]), where three attention schemes based
on CNN encoders of bigrams (word-pairs) are proposed. A more recent work, Hu et al. (2018,
employs a co-attention mechanism for attending meta-paths in a network (Heterogeneous
Information Network) associating users and movies and for a movie recommendation system.
More specifically, the co-attention mechanism mutually enhances the embeddings for users,
movies, and meta-paths. Some works which also have similar mutual-enhancing mechanisms

for representations are used in Computer Vision for semantic segmentation (LIU; YIN, 2019;
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HUANG et al,, 2018) under the name of cross attention. In general, co-attention is not a
widespread definition in the families of attention mechanisms. Moreover, it has been used
under other names. For the remainder of this work, we consider a co-attention mechanism
to be a type of attention that uses representations (embeddings) from two or more different
modalities, e.g. image and text in VQA, document text and question text for QA, to produce
enriched co-dependent representations for each. In this work, our co-attention module enhances
the representation of structured categorical variables (non-sequential) and unstructured text

(sequential).

2.3 LEARNING REPRESENTATIONS

There are many ways in which Neural Networks can be used to learn representations. The
most prevalent is by applying operations that transform the original data, mapping it into
potentially more abstract features (BENGIO; COURVILLE; VINCENT, 2013) which can be more
easily classified or regressed in the output layer. This mapping is generated by the hidden layers
and is inherent to all Deep Learning models. These representations produced can be used in
another downstream task or domain. This practice is known as Transfer Learning and has
been successfully employed in tasks such as text classification (DEVLIN et al, [2018)), fingerprint
liveness detection (NOGUEIRA; De Alencar Lotufo; Campos MacHado, [2016)), emotion classification
in videos (KNYAZEV et al., [2017)).

Another way in which these representations can be learned is by explicitly training the
model to learn these mappings, rather than learning them as a product of another task such
as classification or regression. Representations also do not need to be learned by gradient
optimization in a Neural Network, although the main focus of this work is on this particular
type of representation. For the remainder of this work, we introduce several representation
techniques and conclude by presenting some frameworks for learning representations that have

been studied in the literature.

2.3.1 Extracting features from text

Machine Learning algorithms operate with numerical data to learn its parameters. To work
with natural language text data, it is needed to transform the text into a representation the

computers can process. One common way of representing words as numerical data is by a
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n-dimensional vector, where n is the cardinality of the vocabulary, and the i-th dimension
corresponding to the i-th word receives the value of 1 and all other dimensions are set to 0.
This representation is known as one-hot encoding. By summing the vector-representation of
each word in a document (e.g. the description of a vehicle listing), a fixed-size representation
is generated. This representation is known as Bag of Words, which, effectively, is a histogram
of word occurrences. In the binary version of the Bag-of-Words representation repeated words
aren't taken into account multiple times, resulting in a vector where all values are either zero
or one. This histogram of words (term frequencies) can also be normalized by a weighting
factor that gives less importance to tokens that appear in a lot of documents and might not
contribute with much information towards, for example, a classification task. One particular
weighting scheme is known as the IDF' (JONES, 1972), that penalizes frequent word and

rewards rare words by a factor log where n is the total number of documents and df ()

_n_
1+df(t)

is the number of documents where the token ¢ occurs.

2.3.2 Sparse and Dense word representations

In Section [2.3.1], one-hot encoded representation of words and Bag of Words representation
of documents were introduced. These are forms of sparse representation, because the encoding
of documents, where only a small fraction of the words in the vocabulary appear, results in
very sparse vectors. This encoding model has some undesired properties. One is the high
dimensionality which can be inefficient or hampering during learning of models’ parameters.
The other undesired property is that words are orthogonal to each other, meaning there is no
special relation or similarity between a pair of words in comparison to any other pair.

A more efficient representation would be a dense representation, where the semantics and
statistics of words are encoded in the vector space (e.g. synonyms being closer than unrelated
words). There are some ways of achieving such representations, such as Latent Dirichlet Allo-
cation (BLEI; NG; JORDAN| [2003)) for topic modeling or factorization of co-occurrence matrices
with Singular Value Decomposition. The skip-gram (MIKOLOV, 2013)) and continuous bag-
of-words (MIKOLOV, 2013)) are two Neural Network-based strategies of learning dense word
representations by predicting a word given the words in a neighboring window or vice-versa.
This effectively encodes the representation of words in an unsupervised manner.

Entity embeddings of categorical variables (GUO; BERKHAHN, 2016) are a generalization of

the neural embedding mechanism. It acts equivalently as a look-up table (embedding matrix)



27

where each entry is the embedding associated with one entity that is retrieved by matrix
multiplication with a one-hot encoded vector. The weights are optimized as usual with the rest
of the network in the same downstream task. This approach, however, does not benefit from the
same pretraining mechanisms that word2vec (MIKOLOV et al., |2013)) or GloVe (PENNINGTON;
SOCHER; MANNING, 2014) do, where you can use the same corpus and syntactic statistics to
learn an initial set of weights that will be further optimized for the task. That is because the
possible categories are not co-occurring for the same variable. Still, using weights learned from
other domains is a possibility.

Other extensions to embeddings add subword representations, such as character n-grams
as done in fastText (JOULIN et al, 2017)) or consider multiple types of entities, e.g. sentences,
documents, users, and for various classification and ranking tasks, as done in StarSpace (WU

et al, 2018).

2.3.3 Frameworks for learning

In this section, we discuss alternative methods for learning representations other than the
learning that is already implicitly done by the hidden layers in DNNs when trained for regular
tasks such as classification and regression. Although in the previous sections we have discussed
not only how to represent but also how to learn the representations, we mostly focused on
Natural Language applications and representing words, sentences or documents. In this section,
the focus is on more general approaches of supervised, unsupervised and self-supervised neural
learning frameworks for representations.

Autoencoders (BALLARD) (1987; RUMELHART; HINTON; WILLIAMS) [1987)) are one of the ear-
liest types of neural networks specifically designed to learn representations. The autoencoder
framework optimizes its parameters trying to reconstruct its inputs. In stacked autoencoders,
multiple layers are trained one at a time; the first layer tries to reconstruct the input features
in the original space, while the subsequent layers are trained to reconstruct the latent repre-
sentations from its preceding layer (FUKUSHIMA, |1980). After training a layer, its weights are
frozen and no longer updated during the training of the subsequent layers. There is no need
for training labels during this stage and as such the model benefits from being able to be
pre-trained on a larger number of samples before being finetuned to another task by adding an
output layer. Denoising autoencoders try to reconstruct the original input from a noisy version

of it (GOODFELLOW; BENGIO; COURVILLE, |2015]). There are other extensions of autoencoders,
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but they are beyond the scope of this work.

Siamese Networks, originally introduced by Bromley et al.|(1993)), are a learning framework
where two identical branches in a network are trained in a supervised manner to learn a
representation of the input. The branches are constrained to have the same initial weight
and are updated simultaneously. Effectively, they are a copy of the same subnetwork. The
representation is commonly used for comparing both inputs and computing a distance measure.
The original work uses it for signature verification. Subsequent works have applied it for facial
verification (CHOPRA; HADSELL; LECUN, [1997). Siamese Networks are a method for metric
learning, because its representations aim to be useful for distance comparisons and are a
product of the learning objective (minimize the distance of similar pairs) rather than a side
effect of it, e.g. minimize the regression error.

Triplet Networks (HOFFER; AILON, [2015)) extends the Siamese Network by training a weight-
tied three-way copy of the branch, where the training samples are not only pairs of similar or
dissimilar instances, but rather a triple containing a similar and a dissimilar item for an anchor
item which is being compared to the two. This framework encodes information about what
is supposed to be similar or dissimilar at the same time. Such distinction is useful because
the model implicitly learns when, for example, two different persons are similar (e.g. in the
context of object detection when they both are of the class "human") and when they are
dissimilar, such as in the context of person identification. This network encodes a pair of
distances between the reference instance and the positive and negative instances.

Following this trend, the Triplet Loss was introduced in |Schroff, Kalenichenko and Philbin
(2015)). Rather than achieving metric learning by relying on architectural design, the authors
propose a loss function that minimizes the distance between the anchor instance and the
similar instance, while maximizing its distance to the dissimilar instance. Their method learns
an embedding in a Euclidean space and is evaluated in the task of face verification. The
embedding of two faces can be directly compared to decide if they are similar because the loss
is relevant to the task. In contrast, transfer learning using the bottleneck features of a CNN
for this task requires fine-tuning.

In a vein similar to autoencoders, Correlational Neural Networks (CHANDAR et al., 2016)
learn to reconstruct one view of the data from another view.

On self-supervised approaches, where the model is trained by exploiting characteristics
of the data to supervise the learning process. One such example, in the task of Language

Modeling, is to predict the next word given a sequence of words. In Radford, Jozefowicz and
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Sutskever| (2016)), by training a character-level recurrent model to predict the next character
in the sequence over a large corpus of user reviews, the learned representations were shown
to be useful for text classification tasks in different domains. More interestingly, they discover
a single neuron that is highly correlated with the polarity of the sentiment associated with a
character sequence and that, by fixing its output in the recurrent network, the sentiment in
the review was also affected.

In Bengio et al. (2003)), a neural language model learns distributed representations for words
that outperformed the previous state-of-the-art n-gram based models. The word2vec (MIKOLOV.
et al}, [2013) model extends this framework with two strategies: (i) continuous bag of words
model (CBOW), which frames the self-supervised problem of learning a word based on a
context (a window of neighboring words around it), (ii) and the continuous skip-gram model
(Skip-gram), where the model learns to predicts the surrounding words given the current word.
It was further improved with negative sampling (MIKOLOV et al} 2013), to sample frequent
words less often.

By training a language model on a corpus and then fine-tuning for classification tasks,
ULMFIiT (HOWARD; RUDER, 2018)) learns representations for documents in a self-supervised
manner. Following, derivative works using bidirectional RNNs for the language model and
extracting a weighted combination of the internal states of every layer of the language model
(PETERS et al., [2018), using Transformer networks (RADFORD; SALIMANS| 2018) and training
for two simultaneous tasks in |Devlin et al.| (2018): 1) masked LM, which allows bidirectional
models to learn to predict the next word without "cheating", as they would otherwise already
have access to the next word, due the the bidirectionality. Since bidirectional LMs already
have access to the next word in a multi-layered context, predicting the next word is simple.
And 2) next sentence prediction, where the model receives sentence pairs and predicts whether
one sentence follows the other. This task improves the embeddings for tasks where a relation

between two sentences is modeled, such as in QA and Natural Language Inference.
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3 RELATED WORK

In this section, we discuss related studies and present a comparison to the proposed solution

in this work. To select relevant works, we used the following criteria:

= The main objective is to predict the price of products or learn representations;
» The solution employs some form of multi-view learning;

= The work publication is within 5 years of the current year.

We further subdivide this section into three major groups of related studies: the ones
where the focus lies on some form of text-based regression, the ones where the focus is on

representation learning and finally the studies which employ some form of co-attention.

3.1 TEXT REGRESSION

In Bitvai and Cohn| (2015b)) the task of loan rate prediction is tackled using Gaussian
process-based models. The method proposed in the study handles both structured and un-
structured data. From the unstructured features, TF-IDF histograms and LDA topics are
extracted.

In Tay et al.|(2018), they study the application of neural networks for the task of automatic
text scoring (ATS), which are tools used for evaluation of tests which contain text-based
answers such as GRE or TOEFL. They augment a recurrent model with neural coherence
features, which are a form of shortcut connections that expose hidden states to deeper layers
further in the network, which they state alleviates the vanishing gradient problem.

In Dereli and Saraclar| (2019), the authors employ the CNN architecture introduced by |Kim
(2014)) in the context of predicting stock return volatility, a measure on the spread of daily
closing prices of a stock that quantifies financial risk. They use the text present in reports to
predict the associated volatility value 12 months after the report was published.

In Xiong, Zhong and Socher| (2019)), the authors propose a co-attention encoder-decoder
network for the task of question answering. The network predicts a span where the answer
is contained. While this model is not specifically a text-regression model, their co-attention

model was the basis for one of the network architectures proposed in this study.
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In a vein similar to this study, the authors in Subramanian, Baldwin and Cohn| (2018)
use the CNN model for text regression, instead of the originally proposed text classification.
They employ it in the context of predicting the popularity of online petitions based on its
textual content. Alongside the feature map generated by the CNN model, the authors also
include custom hand-engineered features such as the ratio of indefinite and definite articles,
the ratio of subjective words, and other syntactic features such as count of nouns, adjectives,
and adverbs.

In the work proposed by Paetzold and Specia (2018), a CNN model is also enriched with
hand-engineered features. Additionally, they perform the training with a multi-task objective
function. Their reported results show that although the overall solution did achieve state-of-
the-arts results, it is less computationally heavy and that the multi-task learning needs to be
carefully designed, otherwise it might compromise the model performance.

Another work where text regression is performed is in Bitvai and Cohn|(2015a). The authors
take the problem of predicting the box office revenue of movies based on reviews by movie critics
and structured attributes about the movie. The architecture is based on CNNs for text, only
with a real-valued output for the task of regression. Metadata about the movie is concatenated
with feature maps after the pooling operation, and domain information is integrated as a one-
hot encoded vector appended to each n-gram feature, signaling the source site for the review.
According to the reported results, one of the main sources of improvements comes from adding
non-linear activation functions, which significantly increases the performance when compared
to the simple linear regression baseline models. Introducing meta-information about the movie
(the structured attributes) and domain information (source site) at the same time shows no
significant improvement, possibly due to its complementary nature. Furthermore, the authors
introduce a model interpretation strategy that helps to find the highest-impact n-gram features

for the final predictions.

3.2 REPRESENTATION LEARNING

In[Pham, Kruszewski and Boleda| (2016)), CNNs - more commonly used in Computer Vision
related tasks - are explored in the task of Language Modeling. Although CNNs have been
previously used in other NLP tasks, such as Text Classification, its use for sequential prediction
tasks were largely unexplored. The authors introduce two CNN-based architectures, one being

comprised of concatenated feature maps of different kernel sizes, achieving higher granularity
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of context (3-gram and 5-gram), and show comparable results to similar-sized state-of-the-art
recurrent models.

In |Hoffer and Ailon| (2015)), authors introduce an architecture which explicitly learns a
similarity measure between examples, by maximizing the distance measure between examples
of the same class and minimizing the distance to an anchor example of a different class. Despite
its advantages compared to Siamese Networks, such as not requiring a precise calibration for
the context of similarity (e.g., person vs other objects or person vs other individuals), more
recent techniques on metric learning rely more on loss functions, rather than architectural
characteristics.

In the context of Common Representation Learning, |Chandar et al.| (2016) introduces an
AE-based approach to learn a joint representation of different views of the same data. The
proposed method (CorrNet) learns a joint representation by learning to reconstruct each view
of the data independently, and to reconstruct one view from the other, explicitly maximizing
the correlation between the representations.

Zhouhan Lin, Minwei Feng, Cicero Nogueira dos Santos (2017)) propose a model to generate
sentence embeddings with a bidirectional LSTM. They encode the word embeddings with the
recurrent network and reduce the hidden state matrix (which has the same size as the input
sequence) to a fixed-length matrix by computing self-attention weights with a two-layer Multi-
layer Perceptron. Each row of the final attention matrix corresponds to a set of weights that
highlight some interaction between the representations across each hidden state. They enforce
diversity in those weights by introducing a regularization term that is added to the loss and
minimized together with the original loss. They evaluate their method on three tasks: author
profiling (age classification from tweets), sentiment analysis and textual entailment.

For learning representations of sentences, the authors in Subramanian et al [ (2018) explore
a single recurrent encoder without attention mechanisms in a multi-objective training setting.
Five out of the six tasks are formulated as sequence-to-sequence problems such as machine
translation, where the output is the same sequence but in another language. The other task is
text classification. As for the multi-task setup, they employ a simple approach of performing a
parameter update then uniformly sampling another mini-batch from other tasks. The reported
results show that the model learns representations that are as good or superior to other
general-purpose sentence representation methods.

The authors of [Meng and Li| (2016]) propose a multi-modal similarity metric that matches

tokens in two input sequences that are different but have a similar meaning in the task of an-
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swer selection. The remainder of the architecture is a combination of convolutions and pooling
layers over the intermediate mapping generated by the similarity metric, before concatenating
with features that measure word overlap count between the two input sequences. The network
is optimized with pointwise ranking loss, which only looks at one answer at a time and predicts
the relevance of the candidate answer as the actual answer for the question, essentially a clas-
sification task. Additionally, they use the Frobenius norm as regularization for the parameters
that compute the similarity matrix. The reported results show improvements over previous

state-of-the-art approaches.

3.3 CO-ATTENTION

Xiong, Zhong and Socher| (2019) use a co-attention mechanism for the task of Question
Answering by predicting the answer span. Because the predicted spans are numerical out-
puts, this model can be considered a special type of regression. The proposed network uses
co-attention for learning a co-dependent representation of the question and the document.
Additionally, they also introduce a dynamic pointing decoder that is based on an LSTM. One
interesting aspect of their co-attention encoding is that, based on |Cui et al.| (2017), after
computing the attention scores for the summaries, instead of computing them separately, the
document summary also includes an attended version of the summary of the question (that
was already attended).

In Rao et al.| (2019), the authors propose a model to tackle a series of tasks relating to
similarity modeling between two short text snippets (context and query). Their model uses
co-attention to model semantic matching between the sequences, learning a query-aware rep-
resentation for the context as well as a weighted average of the most important words in the
context in light of the query (summarized context). They generate a final enhanced represen-
tation by concatenating raw representations of the document, the attended (contextualized)
document, and tensor-products between raw context and attended context, and between sum-
marized context and attended context. They use an LSTM to encode this enhanced represen-
tation and the last hidden state is used as the output for the semantic matching branch in

their proposed model.
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3.4 SUMMARY

Overall, most solutions that use structured features, only do so with a simple concatena-
tion of the structured and unstructured features. In our proposed solution, the interactions
between both are also modeled, so it is a more general framework. From the perspective of Rep-
resentation Learning, there are many relevant approaches: generative models, self-supervised
alternatives, multi-task objectives. In this particular study, we focused on the learning of rep-
resentation by specifically targeting one downstream task (price prediction). Following is pre-
sented a summary of related text regression and co-attention works and key aspects in which
they differ from the proposed method.

Bitvai and Cohn|(2015b)): Scope: Regression, loan rate prediction with Gaussian process-
based models. Uses structured and unstructured data. Key differences: Does not encode
relations between modalities. Uses only count-based features such as TF-IDF and LDA.

Tay et al.| (2018): Scope: Automatic text scoring (grading text-based answers) using
Neural Networks. Includes a form of relation features computed from tokens in the text. Key
differences: Does not consider structured data. Utilizes recurrent models which are more
computationally expensive than our feedforward architecture that only relies on embeddings
to perform similarity computations.

Dereli and Saraclar| (2019): Scope: Predicting a measure of stock volatility that quan-
tifies financial risk from stock reports (text). Key differences: Does not encode any form of
relations between modalities to enrich representations and only uses unstructured data.

Xiong, Zhong and Socher| (2019): Scope: Question answering with a co-attention
encoder-decoder network. Encodes relations between two textual inputs (question and doc-
ument) to provide the span of the answer. Key differences: Although it is not particularly
applicable for the task addressed in the study, they do not utilize structured data. Additionally,
our approach encodes relations between slightly different textual modalities as well, categorical
variables and unstructured text, rather than both being unstructured text.

Subramanian, Baldwin and Cohn|(2018): Scope: Online petition popularity prediction
based on its textual content. Uses hand-engineered features to enrich the feature space for
the task. Key differences: Their approach does not take advantage of relations between
modalities present in the data (such as title and description or keywords and description).
Moreover, they make use of hand-engineered features that require more work and domain

knowledge to successfully employ.
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Paetzold and Special (2018): Scope: Exploits character-level information and hand-
engineered features to perform text regression in two tasks: quality estimation of machine-
translated text and emotion intensity analysis (quantifying a certain emotion in a text), using
deep CNNs and in a multi-task setting. Key differences: Although the hand-engineered
features are positivity scores extracted from a treebank of annotated sequences, i.e they do
not require additional manual labeling, those features do not encode very complex relations
between the modalities.

Bitvai and Cohn| (2015a): Scope: Box-office revenue prediction from reviews (text) by
movie critics and structured attributes of the movie (genre, director, actors). Key differences:
Their model is trained with structured and unstructured input. However, complementary in-
formation is not explicitly learned by the model.

Rao et al.| (2019): Scope: Similarity between short text snippets (classification). A
co-attention network models a semantic matching between the sequences, as well as a co-
dependent representation of each snippet in the pair. Key differences: Regarding the co-
attention component of the network, after computing co-dependent representations, their
model uses a recurrent network to produce final contextual embeddings. Our proposed method

uses a simple feedforward network.
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4 PROPOSED NETWORK

In this chapter, we present our proposed attention-based network that generates product
representation from structured and unstructured information to perform product price predic-
tion.

As aforementioned, we consider in this work two different views commonly present in
product offers: specification (structure information), which describes the main attributes of
the product, and text (unstructured information) about the product present in the title and
the description of the offer. To jointly learn patterns on those different views to perform price
prediction, we propose a three-branch neural network that deals with the structured view
(structured branch) and two co-attention branches for the product's title and description that
simultaneously learns patterns on the text and structured view. More specifically, we apply a
Multi-layer Perceptron Network (MLP) on the structured view, and a co-attention network to
attend more relevant parts of the text regarding the structural attributes and vice-versa, and
capture information in the text complementary to the structured attributes. Each one of those
branches produces a distinct representation of the product in form of a vector. These vector
representations are then concatenated and fed into a fully-connected neural network, which
provides the input to the regression layer (a single neuron with a RELU activation function).
The output of the hidden layer embeds the learned patterns of the different views for the
price prediction task: the product embedding. Figure (3| presents an overview of our proposed
network. In the remaining of this section, we give further details about the branches that

compose the network.
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Figure 3 — Proposed solution.
Source: Authors’ own elaboration.

( N N
Numerical —»
Product
Structured —> Embedding OutPutLayer
Categorical — )
( N
Categorical —»
3 i 3 FC FC
Co-attention <
Title —»
- W,
( N
Categorical —|
Co-attention > ~—
Description ——»
\ _/ \ )

4.1 STRUCTURED BRANCH

Structured tabular information is one of the most common types of data used in Machine
Learning systems. While Deep Learning usually employs the raw data itself for learning the
models' parameters (e.g. an image of an object instead of its measurements), the data available
in structured form might contain useful information which can be used directly as input for the
model or used to leverage information in other modalities. In this work we apply a standard
MLP network to model the structured data as we further detail its implementation in this
section. Our experiments showed that a simple feedforward network for this modality was
sufficient, and that larger architectures were less stable to train, possibly due to the lower
dimensionality of data (2 numerical variables and 3 categorical variables with a rather small
vocabulary of words in comparison to the description of a listing, for example).

In our context, the structured information are the attributes of a product. We consider
them for the price prediction task since they usually have some influence in the product price.
For instance, the size of a TV screen or the brand of a cellphone has some effect on the price
of those products. Product's attributes are usually composed of numerical and categorical
variables.

A common strategy for normalization of numerical attributes is to use min-max or z-score
on the the input data. In this work, we opted to use Batch Normalization (IOFFE; SZEGEDY,

2015) since, in our preliminary experiments, it presented better results than the traditional
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normalization techniques. With Batch Normalization (BN), inputs are normalized to achieve
zero mean and unit variance in each batch. The BN layer also has two learnable parameters (~y
and (3) that allow the training to counteract the normalization by changing only these weights,
avoiding the network to lose stability by changing all the weights. In Equation we show
the main equations that compose BN. The first equation is the transformation applied to the
inputs of the BN layer (zg), scaling it according the mini-batch mean (up) and standard
deviation (op) statistics. The second one is the result of the final transformation with the

learnable parameters v and f.

~ B — UB
rp = b

9B (4.1)
BN(z) =~v2p +

As for categorical variables, each of their values need to be associated to a number in order
to be processed by the MLP model. A common approach to deal with categorical types in
predictive models is using one-hot encoding (GENTZKOW; KELLY; TADDY, 2019). This strategy,
however, can produce a high number of features in the case a category with high cardinality
(large number of values), and it treats the category's values completely independent, ignor-
ing possible relations between them. To deal with that, we use Entity embeddings (GUO;
BERKHAHN, 2016). Entity embeddings map sparse the one-hot encoded inputs to a dense,
lower dimensionality. Effectively, this is equivalent to a linear mapping layer for each categor-
ical variable, before feeding into the subsequent layers of the model. The layers’ weights, i.e.
embeddings, are randomly initialized and are optimized for the same task along with the rest
of the network. We also use Dropout (SRIVASTAVA et al., 2014 with a small probability (0.04,
which showed good results on our preliminary experiments) after the embedding look-up, be-
cause the embeddings are also optimized and can overfit, therefore some form of regularization
is desired (GAL; GHAHRAMANI, [2016).

Finally, the two intermediate representations from the numerical and categorical attributes
of the product are concatenated and successively passed through a series of fully-connected
linear layers (FC) with ReLU activation (GLOROT; BORDES; BENGIO, 2011) and batch normal-
ization (BN) with dropout regularization layers (Drop). Figure [4] presents the components of

the structured model.
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Figure 4 — Structured model.
Source: Authors’ own elaboration.
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4.2 CO-ATTENTION BRANCH

additional information not present in the structured part that can improve the quality of the
price prediction. At the same time, much of the text present might not be relevant to the price
estimation at all. A reasonably safe assumption is that some sentences are more important than
others and that in general, they appear in the vicinity of other relevant sentences, i.e. some
paragraphs are reserved for further detailing the product while others might focus on other
aspects which do not affect the price as much, such as information about the car dealership.

Previously, co-attention networks have been used primarily for matching problems such as
question answering (XIONG; ZHONG; SOCHER, 2019) and text similarity (RAO et al., 2019). In
this work, we use co-attention in a different way: we aim to combine structured attributes and
textual information by jointly handling these modalities and their interactions. The reasoning
behind this is that the co-attention network can lean how to leverage interactions between the
structured and text modalities to improve the overall quality of the model by attending more
relevant parts of the text according to the structured attributes of the products and vice-versa,
and also learning complementary patterns in the text useful for our task.

Since we try to leverage text in the product offer in two different fields: title and description,
the co-attention branch is composed of two sub-branches: one to model the interaction between
the title and the categorical attributes, and another one for description and the categorical
attributes.

While numerical attributes are also likely to appear in the description body or in the title,
they are harder to embed because a simple tokenization of the text leads to many unique

values, for which the co-occurrence statistics with other words are very low. This leads to their
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embeddings being optimized very few times and result in poor representation. If quantized,
e.g. by rounding to the nearest thousand, their representations might see some improvement
because the tokens will become more frequent. For example, there might be only one car
listing with mileage equal to 52146, but many cars with about 50K miles registered in the
odometer. Another problem is accidental matching. Numerical attributes might be similar and,
when quantized, assume the same value. This will signal an unintended strong relationship
between the tokens. Additionally, some listings have information such as "this car is 22000
miles below the market average", without specifying the actual odometer reading. This adds
more accidental matching possibilities when considering the numerical attributes. Lastly, we
preprocess the text as to not leak the target variable, the price, in the listing description. In
some cases, it might also accidentally remove one of the other numerical attributes although we
specifically look for patterns including the dollar sign. As such, there are many problems when
considering numerical attributes and they need to be tackled carefully before being considered
in the co-attention.

The inputs of each sub-branch are the categorical attributes of the products and the
text (title or description), which are passed to an embedding layer. This layer has a shared
vocabulary between all the inputs. The textual representation is mapped to an embedding
space, transforming each sequence of words or characters into a sequence of vectors in that
space. Similarly to the structured branch described in Section [4.1] categorical variables are
treated as single-token, even though sometimes they are made of multiple words (e.g. Alfa
Romeo and Rolls Royce). The inputs are numericalized as usual, via tokenization and one-hot
encoding, and then embedded into the same space.

The embedding representation of each categorical variable is concatenated into a single
matrix C', similar to the sequence of words in the text into a matrix 7. An important difference,
however, is that the categorical matrix is not a real sequence. An affinity matrix L = CT'"
computes the similarity of each token pair between the categorical variables and the sequence
of words in the text. Since the tokens from each modality are embedded in the same space,
similar vectors will result in a high similarity coefficient. To compute the attention scores, the

affinity matrix L is normalized row-wise for text weights:

AT = Softmax(L) (4.2)
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And column-wise for categorical weights:

AY = Softmax(L") (4.3)

These weights are used to generate the context of categorical variables taking into account
the text words C7 = C'A®, and the context of text words taking the categorical variables into
account C¢ = TAT. These generate the enhanced contextualized representations. These
representations are still of variable length. In order to reduce this to a fixed size vector, we
use a pooling operation. We use mean-pooling since in our preliminary experiments it showed
the best performance. Finally, from the concatenation of the two resulting representations,
which now have a fixed size, the model generates the predictions by using an MLP. We use
a two-layer feed-forward network with RelLU activation functions, and apply dropout on its
inputs (the concatenated representation) as a means of regularization.

Since the attention mechanism has no learnable parameters, all the predictive power resides
in how much information the word embeddings (co-attention’s input) and the MLP (co-

attention’s output) can learn.

Figure 5 — Co-Attention model. There are two instances of this model in the final architecture,
one using the title and another using the description for the text sequence input.
Source: Authors’ own elaboration.
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4.3 MODEL TRAINING

To train the network, we use the price prediction task (regression) to compute the Mean
Squared Error loss and update the model's parameters. Other loss functions are also suited for
the regression task, such as the Huber loss (HUBER, 1964). However, our experiments have
shown no significant difference between the two. The price variable, however, does not behave
normally-distributed. For that, we use the natural logarithm of the actual price as the target,

which rescales the distribution, improving the training performance. The loss is minimized by
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stochastic gradient descent, with backpropagation for gradient computation and Adam weight-
update scheme (KINGMA; BA, [2015)). In our experiments, using an adaptive algorithm was
better suited in this particular domain. We have also experimented with a regularized variant
of the Adam algorithm that employs weight-decay, the AdamW (LOSHCHILOV; HUTTER, 2019)

optimizer, but there was no significant difference in observed performance.
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In this chapter, we describe the experiments conducted to validate the proposed solution.

We include comparisons with baseline classical learning algorithms. Furthermore, we include

ablation studies to provide further insights into the importance of each branch in the complete

attention-based architecture. Later, we present and discuss the results and their implications.

5.1 EXPERIMENTAL SETUP

5.1.1 Data

The dataset used in the experiment consists of 57285 records that were scraped from

11 car listings USA websites. Table [1| presents the websistes and how many car offers, we

collected from each one of them. The following fields are common among all sources: year,

mileage, price, manufacturer, model, title, location and description. In Figure [6] we show the

distribution of the year of the cars in our dataset. As one can see, there is a great variability

in distribution: most of the cars are from recent years although there are also old cars, for

instance, from 1950’s, 1960's and 1970's.

Regarding mileage, there is a reasonable proportion of new cars (mileage equals to 0) and

used cars as shown in Figure[7]

Table 1 — Number of collected listings from each source website. In total, there are 11 sources

and 57285 records.

Source Count
sellmycar 23556
usaa 9983
truecar 9579
classiccars 5035
autolocator 3662
hemmings 1596
bestcarfinder 1580
kbb 1209
ksl 446
omaha 387
oodle 252
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Figure 6 — Year distribution.
Source: Authors’ own elaboration.
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Figure 7 — Mileage distribution.
Source: Authors’ own elaboration.
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From the location field, which usually contains complete addresses and sometimes phone
numbers, the corresponding US state was extracted. Of those variables, title and description
are considered to be unstructured. For the scraping process, the text field containing sellers’
comments and further details on the listing were considered as the description body. Table [2]

provides a sample of 3 entries in our dataset with their respective values.
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Table 2 — Three samples from the data. Title and descriptions were trimmed. The last column,
price, is the target attribute.

Year Mileage Manufacturer Model State Description Title Price
2016 28385 mercedes-benz a OH Included Fea- 2016 31363
tures Control Mercedes-
Code, KEY- Benz E-
LESS GO C(Class E 350
Pac... 4AMATIC
Luxury...
2011 88763 hyundai genesis  CA Just bought 2011 Hyundai 9800
a Prius and Genesis
don't have
room for th...
2008 45080 mazda miata  CA Our 2008 Used 2008 10398
Mazda MX- MAZDA
5 Miata MX-5 Mi-
Convertible ata SV 2dr
presente... Convertible

The price (the target variable) was converted to float and thousands separators and dollar
signs were removed. As mentioned in Section 4.3, we apply a log transformation on the price

to turn its distribution close to a normally-distributed one as the histograms in Figure [§] depict.

Figure 8 — Histograms of price distribution in (left) normal USD scale and (right) log-scale.
Source: Authors’ own elaboration.
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The data was cleaned to remove: (1) the top and bottom 0.5% outliers according to
price and mileage; (2) samples with missing values that could not be imputed (missing title,
description, location, mileage or price); and target leakage in other variables, such as product
description containing the price in its body. We perform a stratified split into 70% training

and 30% test sets, maintaining the proportions of samples per source across the splits. For
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the Neural Network models, the training set is further subdivided into 30% validation which is
used to perform model selection: (1) to determine the best snapshot (epoch) of the model's
parameters after the training procedure is finished; and (2) also for hyperparameter tuning.

Since this a real-world dataset, it presents many challenges: there are multiple sources of
listings, where entries might be posted freely or need reviewing before being listed; the title of
the entry might follow different conventions in different sources; there might be considerably
different writing styles or type of information included in the comments; and the source site
might have listings with prices that are consistently higher or lower than the price in other
sources.

A final observation about the dataset is that one of the sources is specialized in classic
automobiles (Classic Cars). This breaks the pattern that older cars are usually cheaper, which
adds further complexity to the data. In Figure [Jit is possible to observe that prices decrease
with age, up to a point (around 2000s) where it starts going back up again. Therefore, some
old cars might be of very limited availability, which increases its value, but it can also be
an age-worn car with lower price. Adding the source site as a feature would likely increase
the model performance, but we want a more general, source-agnostic representation. For this

reason, we did not include this feature.

Figure 9 — Per-year average price of listings (line) and 95% confidence intervals (shade). No
confidence interval is present when there is only a single listing for a specific year.
Source: Authors’ own elaboration.
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5.1.2 Regressors

We assess the performance of the following algorithms for comparison with the proposed

solution.

= Linear Regression: Linear Regression (LR) models are the simplest baseline in regres-
sion tasks. For this algorithm we utilize its R implementation (R Core Team, [2020) with

its default parameters;

= Random Forest (BREIMAN, [2001): Random Forests are ensembles of tree-based models
trained on subsets of the dataset's features and samples that can be used for classification
or regression. We utilize the scikit-learn’s implementation with varying number of models

in the ensemble: [50, 100, 200, 700, 1000].

= Lightgbm (KE et al, [2017): is a Gradient Boosting decision tree-based algorithm where
models learn and adjust the errors of other models in the ensemble. For the search
parameters, we use number of trees: [50, 100, 200]; number of leaves: [3, 5, 4, 100, 300]
and learning rate: [0.03, 0.05, 0.07, 0.1].

= Support Vector Regression (CHANG; LIN, [2011): We use the maximum-margin SVM
regressor wrapper for libsvm available in the scikit-learn package with a linear kernel and

varying regularization coefficients: [1, 5, 10, 100, 1000].

= H20 AutoML (AIELLO et al, [2015): is an automated machine learning toolkit that per-
forms algorithm selection and hyperparameter tuning and builds ensemble of predictors.
Those ensembles are composed of individual regression models with a weight associated

to each one of them.

5.1.3 Feature sets

We evaluate the models in this section using the following feature sets:

= Structured (STR): the structured features of the car listings are divided into two sets:
categorical: manufacturer, model and US state; and numeric: year and mileage. We

represent the categorical features using one hot encoding;
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Table 3 — Model hyperparameter settings used in the gridsearch. Best configuration in bold.

Branch Hyperparameter Values

All Branch output size 64, 128
Embedding 64, glovel00

Co-attention Dropout 0.5, 0.1

= Unstructured (TXT): the unstructured features of the car listings: title, extracted
from the title HTML tag, and description. Since the training time of some regressors
are influenced by the number of features, we removed stopwords and selected the 4,500

most frequent words to compose this feature set.

= Combined (STR+TXT): the combination of both structured and unstructured feature

sets;

= Car embedding (CE): the intermediate features generated by the proposed neural
network architecture, immediately before being passed to the output layer that generates

the price predictions.

5.1.4 Model settings

The proposed architecture was implemented using the PyTorch framework (STEINER et
al., [2019)). For model tuning, we adopted the grid search strategy with the hyperparameter
settings outlined in Table [3] The number of values for each hyperparameter was limited due
to the long training time of each configuration. For each configuration of hyperparameters,
we trained the model for 100 epochs with no early-stopping mechanisms, and selected the
one that displayed the lowest validation error. The embeddings are randomly initialized when
not using a pre-trained embedding. When using pre-trained embeddings, the representation of
tokens in the embedding layer is initialized when applicable, i.e. when performing word-level
tokenization and words are known. After being initialized, the weights are optimized as usual,
instead of being frozen. We create mini-batches by batching together sequences of similar

sizes, using the Bucketlterator available in the torchtextl] library.

1 https://torchtext.readthedocs.io/
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5.1.5 Evaluation metrics

We evaluate the models by computing the mean squared error (MSE) and mean absolute

log error (MALE):

1 Y .
=1
1 N
MALE = N Z |log(y:) — log(¥i)] (5.2)
i=1

where y; is the target price of product i, ; is the price as predicted by the model, and N the
number of products in the evaluation set.

Note that MSE (Equation ((5.1])) is the cost function that is minimized during the training
process. The model is trained to predict prices in log-scale, but all metrics with the exception
of MALE are shown in the original scale. We also show the square-root of the MSE, i.e RMSE,

which is more interpretable.

5.2 EVALUATION AND RESULTS

In Table [4}, we report the performance of the baseline models, trained with different combi-
nations of raw features, and their performance using only the features generated by our model,
the car embedding. Each model had their relevant hyperparameters tuned (e.g. C for SVR,
Number of trees and Max depth for Random Forest, etc) with grid search and the best setting
was used to report the test set metrics.

For all regressors, the models trained using the CE feature set outperformed the same
regressors with raw features (STR, TXT and STR+TXT). In fact, Random Forest using CE
obtained the best overall result: MALE=0.117 and RMSE = 12302. Although the resulting
regressor (output layer of the NN) of the proposed method does not achieve the best overall
result, it is clear that the CE is the best feature set across all models, and that it is the most
relevant part of the model.

Moreover, in almost all cases, LightGBM being the only exception, the car embedding is
the best contender by a large margin. These results confirm that the learned car embedding
encapsulates additional information that is not present when naively combining structured and

unstructured features. This is evident, for instance, for SVR, which MALE was 0.185 on the
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Table 4 — Regressors evaluated on the feature sets.

Model Features RMSE MALE
STR 15288 0.231
. . TXT 39801 0.217
Linear Regression
STR+TXT 18555 0.171
CE 12926  0.125
STR 15410 0.228
SVR TXT 31140 0.249
STR+TXT 17672 0.185
CE 13076  0.127
STR 13940 0.179
TXT 16909 0.193
Random Forest
STR+TXT 15440 0.168
CE 12302 0.117
STR 14929 0.185
LightGBM TXT 14601 0.177
STR+TXT 13560 0.130
CE 12305 0.120
STR 15351 0.258
H20 AutoML TXT 18644 0.283
STR+TXT 20341 0.299
CE 12439 0.118
Proposed CE 13071 0.126

STR+TXT feature set and 0.127 using CE. For individual models, without considering our
generated features, the best overall result score was LightGBM using both structured and
unstructured data: MALE=0.13 and RMSE=13560. Those results were also close to the final
result of the same algorithm when using the car embedding: MALE=0.12 and RMSE=12305.
This can indicate that although this model is the best performer on the original feature space,
our embedding enables other much simpler and faster-to-train models to achieve comparable
or better results. A concrete example of that is when we look at the results of Linear Regression
using CE. the MALE score, for instance, of this configuration is better than all regressors using
raw features.

Impact of Branches. Concerning our proposed model, to validate the contribution of each

branch we selectively remove branches from the complete architecture before training to com-
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pare the final performance against the complete model. For comparison purposes, we also
include combinations with a textual branch that does not model interactions between text and
other modalities. The textual branch is based on the CNN model described in |Kim| (2014), with
four parallel one-dimensional convolutions across the time-channel (sequence length), with ker-
nels of size 2, 3, 4 and 5. It was originally purposed for text classification. Here, however, we
use it for a regression task. The four generated feature maps are max-pooled into 4 vectors of
equal dimension. In our preliminary experiments, adding a multi-head attention layer at this
stage showed improvements. After computing the attended vectors (self-attention), they are
concatenated and fed to a two-layer feed-forward network with RelLU activations.

The results of the ablation experiments are shown in Table [5] Considering individual per-
formances, the co-attention branch has the lowest MALE error (0.151). The textual has a
comparable although slightly worse error with 0.163, and the structured branch achieves 0.197.
In contrast to the results with our baseline regressors, the performances using only structured
features are comparable, but our network-based models have a much better performance when
dealing with textual data. The individual performances when using only textual information, or
textual and categorical information, are better than their structured counterparts. This leads
to an interesting observation that although the more discriminant features are present in the
structured data for classical learning algorithms, deep neural networks are better at extracting
information from the textual data. Furthermore, DNNs do not fall short as an alternative when
dealing only with structured features, it is only surpassed by tree ensemble models.

When inspecting the performance for pairs of branches, we can observe that all pairs
outperform the single-branch alternatives. The pair with textual and co-attention branches,
however, do not show significant improvement. We believe that this is because the textual
branch does not add much information other than what the co-attention branch is already able
to capture. In our proposed method, however, the combination of the structured information
with the co-attention branch achieves a considerable improvement in performance, with 0.126
MALE. This combination achieves a better error than the pair of structured and textual
branches. This corroborates with the surmise that our co-attentional model can enrich the
representation of both modalities and produce a more relevant representation. The combination
of the three branches, however, performs only slightly better than both of the pairs and
performs worse than our proposed model. The redundancy between the branches and the
added number of parameters of the textual branch may make the network harder to train and

regularize effectively, which consequently hinders the performance of the system.
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Table 5 — Results for the ablation experiments.

Branch combination RMSE MALE
structured 15892 0.197
Singles textual 13616  0.163
co-attention 13446 0.151
structured, textual 12955 0.132
Pairs  structured, co-attention (proposed) 13071 0.126
textual, co-attention 13159 0.148
Triples structured, textual, coattention 13434 0.131

Representation Analysis. We discuss in this section how we assess the quality of the em-
beddings that were learned by the network while being trained to solve the price prediction
task. In Figure [10] we display a two-dimensional projection of the records from the test set
in original embedding space generated by using the t-SNE algorithm (NL; HINTON, [2008)),
color-coded by price. On the top and right-most part of the plot, we can see that there is
a concentration of higher-price samples. In the opposite quadrant, the least expensive vehi-
cles are more dominant. It is also possible to observe a gradient effect that, although with
the presence of some outliers and a higher concentration around the mean values, indicates
this unsupervised projection manages to extract the implicitly-encoded price information, and
that similarly-priced samples are closer in this latent representation. This illustrates desirable
properties of good representations according to Bengio et al. (BENGIO; COURVILLE; VINCENT,
2013) meaning that our embedding is able to form clusters (natural clustering property); and
prices do not change drastically in the space of the embedding (smoothness property).

In the structured branch, there are also embeddings learned specifically for the categorical
variables (the entity embeddings). We probed embeddings of car manufacturers to find the top
5 most similar to some query according to the Euclidean distance between their representations,
and display the results in Table [6] For this analysis, we exclude manufacturers that have
occurrence count lower than five, as they do not have the same representation quality of
other manufacturers due to their associated parameters being updated much less frequently.
Our results show that this embedding, situated very early in the network inside the structured
branch, also encodes information about the task and can consistently map similar items close
together. For instance, when queried for "Lamborghini", the manufacturer with the highest

price average in our dataset, the closest points in the embedding space are manufacturers that
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Figure 10 — Two-dimensional t-SNE projection of the learned embeddings for the samples in
the test set. Better viewed in color.
Source: Authors’ own elaboration.
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also have a high-average price in the listings we collected, such as "Ferrari" and "Aston Martin".
We expect that by using another objective function, or by employing multiple objectives, the
embedding can capture other relationships between manufacturers other than having similar

price ranges.
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Table 6 — Querying the learned embeddings for car manufacturers for similar points in the
embedded space.

Query Top 5 Average Price (USD)
Lamborghini - 271591
Ferrari 137567
Aston 119979
Aston Martin 124978
Hummer 17253
Audi 23796
Rolls-royce - 116298
Ferrari 137567
Bentley 87142
Aston 119979
Jaguar 23795
Studebaker 30290
Volkswagen - 12429
Ford 19112
Volvo 20431
Porsche 51561
Cadillac 20480
Saturn 4536
Saturn - 4536
Saab 5484
Studebaker 30290
Honda 14979
Land 30755
Nissan 14379

5.3 SUMMARY OF CONTRIBUTIONS

Given the results that were presented in the previous section, it is possible to conclude
that our proposed attention networks are not only good price predictors on their own, but
also that its representation captures additional information that is not present when using
the original feature space. These facts are corroborated by some key observations from the
experiments: (i) Every learning algorithm showed better performance using the car embedding

than any combination of feature (structured, unstructured or both) in the original space; (ii)
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The embedding CE performs better than STR-+TXT, despite being learned with no additional
feature. This suggests that the co-attention mechanism is indeed able to capture additional
information from the interaction of both modalities and enrich their representation. (iii) A
two-dimensional projection of the CE displays desirable properties of embeddings. Specifically,
similarly-priced vehicles are close to each other in the space, and the projection shows a
gradual change in price from one end of the spectrum to the other; (iv) The embeddings which
encode categorical values also learn useful representations. The car manufacturer embedding,
for instance, is able to retrieve similarly-priced manufacturers in terms of price when queried

for the closest points to some manufacturer.
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6 CONCLUSIONS AND FUTURE WORK

In this chapter, we present a brief overview of this study, highlighting its contributions,

limitations and future research directions.

6.1 CONCLUSION

In this work, we propose a neural network that handles structured and unstructured data
to perform a regression task: product price prediction. To handle the structured information,
it uses a regular MLP network and for the unstructured data, it applies a co-attention mecha-
nism for enhancing the embeddings of categorical variables and unstructured data. These two
networks are combined to perform the regression and, as a side outcome, it produces a vector
representation of product offer passed as input. One can assume, therefore, that our network
is a feature generator mapping the raw features of a product offer to a reduced space.

We evaluate the architecture in a dataset that was collected from car classifieds websites,
predicting the listing price from its attributes, description and title. We show that our model
outperforms traditional regressors using raw features, providing further evidence that Deep
Learning is suitable for learning on structured data. Furthermore, our learned embedding boosts
the performance of all evaluated regressors by a sizable margin in comparison to using the
original feature space. Lastly, we show that one of the intermediate embeddings associated
with the car manufacturer categorical variable and the final representation learned by our

model display interesting properties regarding the way they embed similarly-priced entries.

6.2 CONTRIBUTIONS AND LIMITATIONS

The main contributions presented in this work are:

1. An architecture for modeling problems that involve unstructured and structured data for

predicting tasks;

2. A co-attention mechanisms for learning a co-dependent representation based on cate-
gorical variables and text, capable of enriching the representations in each modality by

exploring interactions between them;
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3. An experimental evaluation that reinforces the use of Deep Learning models to simplify

the task for classical learning algorithms, while achieving an increased performance.

4. A new dataset based on real-world data containing structured and unstructured about

car classifieds from multiple sources with different characteristics;

The main limitation of our approach is that it is hard to model the interactions between
numerical variables and the text in the co-attention calculation. Some numerical variables,
such as the mileage of a vehicle, can assume a large number of values and only rarely have
repeated values. For this reason, most approaches remove or replace numerical tokens in the
preprocessing step, so there are no embeddings associated with those numbers. Besides, even
if those tokens are kept, it is unlikely that their representations exhibit the numerical properties
that we expect. For example, the embedding of the token "10" added with the embedding of
the token "20" might not be even remotely in the vicinity of the embedding of the token "30".
This is because the syntactical statistics modeled by word embedding models do not capture

mathematical notions, e.g. operations, order, etc.

6.3 FUTURE WORK

There area many clear paths to extend this work:

» Using numerical attributes in the co-attention computation. This might be done by

quantizing the numerical tokens in the text;

» Evaluating the learned representations (CE) in other tasks other than price prediction,

with and without domain adaptation;

» Employing subword and multi-word level features for representing tokens. This way, out-
of-vocabulary tokens can still be represented by combining the representations of its
character-level n-grams, and multi-word categories can be correctly matched in text,

rather than being broken down into multiple tokens;
» Including other modalities, such as images;

= Expand the problem to other domains (houses, electronics, etc), more general domains

(products) or multiple domains simultaneously;
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Explore the proposed architecture for solving other tasks, such as classification, retrieval,

generating one modality from the other, or evaluating in a multi-task training setting;

Visual analysis of the effect of the mutual contextualization of the co-attention mecha-

nisms on the representations of categorical attributes and the text;
More analysis on what makes similar products have significantly different prices;

Leverage the abundance of unlabeled data which might contain structured and unstruc-
tured information in an unsupervised setting, such as generative pre-training, enhanced

with co-attention.
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