Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.ufpe.br/handle/123456789/36042

Comparte esta pagina

Título : Variants of the Fast Adaptive Stacking of Ensembles algorithm
Autor : MARIÑO, Laura María Palomino
Palabras clave : Inteligência artificial; Mudanças de conceito; Fluxo de dados; Métodos de Combinação de Classificadores
Fecha de publicación : 26-jul-2019
Editorial : Universidade Federal de Pernambuco
Citación : MARIÑO, Laura María Palomino Variants of the Fast Adaptive Stacking of Ensembles algorithm. 2019. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2019.
Resumen : The treatment of large data streams in the presence of concept drifts is one of the main challenges in the fields of machine learning and data mining. This dissertation presents two families of ensemble algorithms designed to quickly adapt to concept drifts, both abrupt and gradual. The families Fast Stacking of Ensembles boosting the Old (FASEO) and Fast Stacking of Ensembles boosting the Best (FASEB) are adaptations of the Fast Adaptive Stacking of Ensembles (FASE) algorithm, designed to improve run-time and memory requirements, without presenting a significant decrease in terms of accuracy when compared to the original FASE. In order to achieve a more efficient model, adjustments were made in the update strategy and voting procedure of the ensemble. To evaluate the proposals against state of the art methods, Naïve Bayes (NB) and Hoeffding Tree (HT) are used, as learners, to compare the performance of the algorithms on artificial and realworld data-sets. An extensive experimental investigation with a total of 70 experiments and application of Friedman and Nemenyi statistical tests showed the families FASEO and FASEB are more efficient than FASE with respect to execution time and memory in many scenarios, often also achieving better accuracy results.
URI : https://repositorio.ufpe.br/handle/123456789/36042
Aparece en las colecciones: Dissertações de Mestrado - Ciência da Computação

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
DISSERTAÇÃO Laura María Palomino Mariño.pdf1,77 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está protegido por copyright original



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons