Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.ufpe.br/handle/123456789/36042

Comparte esta pagina

Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorVASCONCELOS, Germano Crispim-
dc.contributor.authorMARIÑO, Laura María Palomino-
dc.date.accessioned2020-01-17T12:03:06Z-
dc.date.available2020-01-17T12:03:06Z-
dc.date.issued2019-07-26-
dc.identifier.citationMARIÑO, Laura María Palomino Variants of the Fast Adaptive Stacking of Ensembles algorithm. 2019. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2019.pt_BR
dc.identifier.urihttps://repositorio.ufpe.br/handle/123456789/36042-
dc.description.abstractThe treatment of large data streams in the presence of concept drifts is one of the main challenges in the fields of machine learning and data mining. This dissertation presents two families of ensemble algorithms designed to quickly adapt to concept drifts, both abrupt and gradual. The families Fast Stacking of Ensembles boosting the Old (FASEO) and Fast Stacking of Ensembles boosting the Best (FASEB) are adaptations of the Fast Adaptive Stacking of Ensembles (FASE) algorithm, designed to improve run-time and memory requirements, without presenting a significant decrease in terms of accuracy when compared to the original FASE. In order to achieve a more efficient model, adjustments were made in the update strategy and voting procedure of the ensemble. To evaluate the proposals against state of the art methods, Naïve Bayes (NB) and Hoeffding Tree (HT) are used, as learners, to compare the performance of the algorithms on artificial and realworld data-sets. An extensive experimental investigation with a total of 70 experiments and application of Friedman and Nemenyi statistical tests showed the families FASEO and FASEB are more efficient than FASE with respect to execution time and memory in many scenarios, often also achieving better accuracy results.pt_BR
dc.description.sponsorshipCAPESpt_BR
dc.language.isoporpt_BR
dc.publisherUniversidade Federal de Pernambucopt_BR
dc.rightsopenAccesspt_BR
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectInteligência artificialpt_BR
dc.subjectMudanças de conceitopt_BR
dc.subjectFluxo de dadospt_BR
dc.subjectMétodos de Combinação de Classificadorespt_BR
dc.titleVariants of the Fast Adaptive Stacking of Ensembles algorithmpt_BR
dc.typemasterThesispt_BR
dc.contributor.authorLatteshttp://lattes.cnpq.br/4050952327940886pt_BR
dc.publisher.initialsUFPEpt_BR
dc.publisher.countryBrasilpt_BR
dc.degree.levelmestradopt_BR
dc.contributor.advisorLatteshttp://lattes.cnpq.br/5943634209341438pt_BR
dc.publisher.programPrograma de Pos Graduacao em Ciencia da Computacaopt_BR
dc.description.abstractxO tratamento de grandes fluxos de dados na presença de mudanças de conceito é um dos principais desafios nas áreas de aprendizado de máquina e mineração de dados. Essa dissertação apresenta duas famílias de algoritmos de combinação de classificadores projetados para se adaptar rapidamente a mudanças de conceitos, tanto abruptos quanto graduais. As famílias Fast Stacking of Ensembles boosting the Old (FASEO) e Fast Stacking of Ensembles boosting the Best (FASEB) são adaptações do algoritmo Fast Stacking of Ensembles (FASE), projetadas para melhorar seu tempo de execução e consumo de memória, sem apresentar uma diminuição significativa de desempenho em termos de acurácia em comparação com o algoritmo original. Para obter um modelo mais eficiente, foram feitos ajustes na estratégia de atualização e no processo de votação de FASE. Para avaliar as propostas em relação ao estado da arte, usamos o Naive Bayes (NB) e o Hoeffding Tree (HT) como classificadores base para comparar o desempenho dos algoritmos em conjuntos de dados reais e sintéticos. Um avaliação experimental extensa, com um total 70 experimentos e emprego dos testes estatísticos de Friedman e Nemenyi, mostraram que as famílias FASEO e FASEB são mais eficientes que FASE com respeito a tempo de execução e memória em vários cenários, as vezes alcançando também melhores resultados na acurácia dos algoritmos.pt_BR
Aparece en las colecciones: Dissertações de Mestrado - Ciência da Computação

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
DISSERTAÇÃO Laura María Palomino Mariño.pdf1,77 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está protegido por copyright original



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons