Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.ufpe.br/handle/123456789/35362

Comparte esta pagina

Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorGAMA, Kiev Santos da-
dc.contributor.authorLIMA, Carlos Eduardo Zimmerle de-
dc.date.accessioned2019-11-28T22:32:48Z-
dc.date.available2019-11-28T22:32:48Z-
dc.date.issued2019-08-02-
dc.identifier.citationLIMA, Carlos Eduardo Zimmerle de. A Performance Analysis of a Reactive-based Complex Event Processing Library. 2019. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2019.pt_BR
dc.identifier.urihttps://repositorio.ufpe.br/handle/123456789/35362-
dc.description.abstractReactive applications are an important class of software designed to respond to events or changes surrounding an area of interest in a timely manner. Many different approaches have been proposed to project those applications, such as Complex Event Processing (CEP) and Reactive Languages (RLs). Despite being developed by different communities, they offer complementary solutions that could benefit their development. Meanwhile, the Internet of Things (IoT) is among the recent areas where reactive application solutions have been applied. IoT has a tremendous potential of allowing the creation of innovative applications, so the acquisition of IoT devices aligned with a great production of data, often called Big Data, is posing many challenges. As an alternative to deal with challenges faced by IoT stream processing placed on the cloud, Edge Analitycs has been proposed, consisting of placing part of the processing in the edge of the network. Pushing the processing toward the edge may incur in other challenges as well, since the devices are often resource-constrained. Combining the support for stream processing in those constrained devices and the proper adjustment of performance, a constant requirement in reactive applications, will be very important to allow this new trend. Therefore, this study presents CEP.js, a library to code complex event processing reactively that we have been developing, and reports an empirical study where CEP.js’ underlying reactive libraries, Most.js and RxJS, are varied to find out which performance aspects are more affected by those libraries while running in an Edge Analytics scenario. The results have shown that Most.js produced the worst results under different load levels and the differences were statistically significant. Consequently, both considered aspects, memory consumption and CPU usage, are more affected by the reactive library, Most.js.pt_BR
dc.description.sponsorshipFACEPEpt_BR
dc.language.isoengpt_BR
dc.publisherUniversidade Federal de Pernambucopt_BR
dc.rightsopenAccesspt_BR
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectEngenharia de Softwarept_BR
dc.subjectInternet das Coisaspt_BR
dc.subjectAnalytics na Bordapt_BR
dc.subjectAplicações Reativaspt_BR
dc.titleA Performance Analysis of a Reactive-based Complex Event Processing Librarypt_BR
dc.typemasterThesispt_BR
dc.contributor.authorLatteshttp://lattes.cnpq.br/8472465190102818pt_BR
dc.publisher.initialsUFPEpt_BR
dc.publisher.countryBrasilpt_BR
dc.degree.levelmestradopt_BR
dc.contributor.advisorLatteshttp://lattes.cnpq.br/6185519785664724pt_BR
dc.publisher.programPrograma de Pos Graduacao em Ciencia da Computacaopt_BR
dc.description.abstractxAs aplicações reativas são uma classe importante de software projetada para responder a eventos ou mudanças em torno de uma área de interesse de maneira oportuna. Muitas abordagens diferentes foram propostas para projetar essas aplicações, tais como Processamento de Eventos Complexos (CEP) e Linguagens Reativas (RLs). Apesar de terem sido desenvolvidas por diferentes comunidades, elas oferecem soluções complementares que podem beneficiar seus desenvolvimentos. Enquanto isso, a Internet das Coisas (IoT) está entre as áreas recentes nas quais as soluções de aplicações reativas estão sendo aplicadas. IoT tem um tremendo potencial para permitir a criação de aplicações inovadoras, portanto, a aquisição de dispositivos IoT alinhado a uma grande produção de dados, geralmente chamada de Big Data, apresenta muitos desafios. Como uma alternativa para lidar com os desafios enfrentados pelo processamento de fluxo da IoT colocado na nuvem, o Edge Analitycs foi proposto, consistindo em colocar parte do processamento na borda da rede. Empurrar o processamento em direção à borda pode incorrer em outros desafios também, uma vez que os dispositivos possuem comumente recursos limitados. Combinar o suporte para o processamento de streams nesses dispositivos restritos e o ajuste adequado de performance, um requisito constante em aplicações reativas, será muito importante para permitir essa nova tendência. Portanto, este estudo apresenta CEP.js, uma biblioteca para codificar processamento de eventos complexos de forma reativa que nós temos desenvolvido, e relata um estudo empírico onde as bibliotecas reativas subjacentes de CEP.js, Most.js e RxJS, são alternadas para descobrir quais aspectos de desempenho são mais afetados por essas bibliotecas enquanto que executando em um cenário de analytics na borda. Os resultados mostraram que Most.js produziu os piores resultados sob os diferentes níveis de carga e as diferenças mostraram-se estatisticamente significantes. Consequentemente, ambos os aspectos considerados, consumo de memória e uso de CPU, são mais afetados pela biblioteca reativa, Most.js.pt_BR
Aparece en las colecciones: Dissertações de Mestrado - Ciência da Computação

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
DISSERTAÇÃO Carlos Eduardo Zimmerle de Lima.pdf1,62 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está protegido por copyright original



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons