
Carlos Eduardo Zimmerle de Lima

A Performance Analysis of a Reactive-based Complex Event Processing Library

Federal University of Pernambuco
posgraduacao@cin.ufpe.br

http://cin.ufpe.br/~posgraduacao

Recife
2019

mailto:posgraduacao@cin.ufpe.br
http://cin.ufpe.br/~posgraduacao

Carlos Eduardo Zimmerle de Lima

A Performance Analysis of a Reactive-based Complex Event Processing Library

M.Sc. Dissertation presented to the Center for In-
formatics of Federal University of Pernambuco in
partial fulfillment of the requirements for the de-
gree of Master of Science in Computer Science.

Concentration Area: Software Engineering
Advisor: Kiev Santos da Gama

Recife
2019

Catalogação na fonte
Bibliotecária Mariana de Souza Alves CRB4-2106

L732p Lima, Carlos Eduardo Zimmerle de
A Performance Analysis of a Reactive-based Complex Event

Processing Library – 2019.
74 f.: il., fig., tab.

Orientador: Kiev Santos da Gama
Dissertação (Mestrado) – Universidade Federal de

Pernambuco. CIN, Ciência da Computação. Recife, 2019.
Inclui referências e apêndices.

1. Engenharia de Software. 2. Internet das Coisas. 3. Analytics
na Borda. 4. Aplicações Reativas. I. Gama, Kiev Santos da
(orientador). II. Título.

 005.1 CDD (22. ed.) UFPE-MEI 2019-138

Carlos Eduardo Zimmerle de Lima

“A Performance Analysis of a Reactive-based Complex
Event Processing Library”

Dissertação de Mestrado apresentada ao
Programa de Pós-graduação em Ciência da
Computação da Universidade Federal de
Pernambuco, como requisito parcial para a
obtenção do título de Mestre em Ciência da
Computação.

Aprovado em: 02 de agosto de 2019.

BANCA EXAMINADORA

Prof. Dr. Nelson Souto Rosa
Centro de Informática / UFPE

Profa. Dra. Thais Vasconcelos Batista
Departamento de Informática e Matemática Aplicada/UFRN

Prof. Dr. Kiev Santos da Gama
Centro de Informática / UFPE

(Orientador)

To my parents.

ACKNOWLEDGEMENTS

I would first like to thank God for giving strength and wisdom in my life.
In addition, I would like to offer my special thanks to all the professors that I had

the pleasure to have attended their courses and acquired a lot of new knowledge. I am
particularly grateful for the assistance given by my advisor, professor Kiev Santos da
Gama, who has patiently guided me throughout this research and stage of my life.

Furthermore, I would also like to extend my thanks to my friends who have always
cared about me. My grateful thanks are specially extended to my long-term friends and
former Information Systems classmates, Angelina Maria da Silva and José Hugo Figuei-
redo Gomes.

Finally, I wish to thank my parents, Katia Cristina Tenório de Siqueira Zimmerle and
José Carlos de Lima, not to mention my sister, Anna Karenyna Zimmerle de Lima, for
offering all the necessary support and motivation that I needed.

“Our greatest glory is not in never falling, but in rising every time we fall.”
(GOLDSMITH, 1794, p.26)

ABSTRACT

Reactive applications are an important class of software designed to respond to events
or changes surrounding an area of interest in a timely manner. Many different approaches
have been proposed to project those applications, such as Complex Event Processing
(CEP) and Reactive Languages (RLs). Despite being developed by different communities,
they offer complementary solutions that could benefit their development. Meanwhile, the
Internet of Things (IoT) is among the recent areas where reactive application solutions
have been applied. IoT has a tremendous potential of allowing the creation of innovative
applications, so the acquisition of IoT devices aligned with a great production of data,
often called Big Data, is posing many challenges. As an alternative to deal with challenges
faced by IoT stream processing placed on the cloud, Edge Analitycs has been proposed,
consisting of placing part of the processing in the edge of the network. Pushing the pro-
cessing toward the edge may incur in other challenges as well, since the devices are often
resource-constrained. Combining the support for stream processing in those constrained
devices and the proper adjustment of performance, a constant requirement in reactive ap-
plications, will be very important to allow this new trend. Therefore, this study presents
CEP.js, a library to code complex event processing reactively that we have been develop-
ing, and reports an empirical study where CEP.js’ underlying reactive libraries, Most.js
and RxJS, are varied to find out which performance aspects are more affected by those
libraries while running in an Edge Analytics scenario. The results have shown that Most.js
produced the worst results under different load levels and the differences were statistically
significant. Consequently, both considered aspects, memory consumption and CPU usage,
are more affected by the reactive library, Most.js.

Keywords: Internet of Things. Edge Analytics. Reactive Applications. Performance Anal-
ysis.

RESUMO

As aplicações reativas são uma classe importante de software projetada para res-
ponder a eventos ou mudanças em torno de uma área de interesse de maneira oportuna.
Muitas abordagens diferentes foram propostas para projetar essas aplicações, tais como
Processamento de Eventos Complexos (CEP) e Linguagens Reativas (RLs). Apesar de
terem sido desenvolvidas por diferentes comunidades, elas oferecem soluções complemen-
tares que podem beneficiar seus desenvolvimentos. Enquanto isso, a Internet das Coisas
(IoT) está entre as áreas recentes nas quais as soluções de aplicações reativas estão sendo
aplicadas. IoT tem um tremendo potencial para permitir a criação de aplicações inovado-
ras, portanto, a aquisição de dispositivos IoT alinhado a uma grande produção de dados,
geralmente chamada de Big Data, apresenta muitos desafios. Como uma alternativa para
lidar com os desafios enfrentados pelo processamento de fluxo da IoT colocado na nuvem,
o Edge Analitycs foi proposto, consistindo em colocar parte do processamento na borda
da rede. Empurrar o processamento em direção à borda pode incorrer em outros desafios
também, uma vez que os dispositivos possuem comumente recursos limitados. Combinar o
suporte para o processamento de streams nesses dispositivos restritos e o ajuste adequado
de performance, um requisito constante em aplicações reativas, será muito importante
para permitir essa nova tendência. Portanto, este estudo apresenta CEP.js, uma biblio-
teca para codificar processamento de eventos complexos de forma reativa que nós temos
desenvolvido, e relata um estudo empírico onde as bibliotecas reativas subjacentes de
CEP.js, Most.js e RxJS, são alternadas para descobrir quais aspectos de desempenho são
mais afetados por essas bibliotecas enquanto que executando em um cenário de analy-
tics na borda. Os resultados mostraram que Most.js produziu os piores resultados sob
os diferentes níveis de carga e as diferenças mostraram-se estatisticamente significantes.
Consequentemente, ambos os aspectos considerados, consumo de memória e uso de CPU,
são mais afetados pela biblioteca reativa, Most.js.

Palavras-chaves: Internet das Coisas. Analytics na Borda. Aplicações Reativas. Avalia-
ção de Desempenho.

LIST OF FIGURES

Figure 1 – Macro View of a Reactive Application 17
Figure 2 – An Event-driven Architecture . 19
Figure 3 – Example of a CEP Rule . 20
Figure 4 – Reactive Programming through Pseudo-code 21

Figure 5 – Overview of RxJS Programming Model 29
Figure 6 – CEP.js Current Components . 32
Figure 7 – EventType Class . 33

Figure 8 – The Activities Performed in the Streams 40
Figure 9 – Excerpt from Bus Line 55 Travel . 43
Figure 10 – Excerpt from Bus Line 68 Travel . 43
Figure 11 – Excerpt from Bus Line 287 Travel . 44
Figure 12 – Event Producer(Driver) after Being Loaded 46
Figure 13 – Percentage Differences along the Load Levels 54

Figure 14 – FINCoS Overview . 64
Figure 15 – General Stream Logic . 66

LIST OF TABLES

Table 1 – Steps Defined by Jain (1990) and the Sections of Chapter 4 37
Table 2 – The Operating Systems Installed on the Single-Board Computers 41
Table 3 – The Loads Applied to the System Under Test 42
Table 4 – Block Design . 44
Table 5 – Variable’s Association . 45
Table 6 – Descriptive Statistics for Memory Consumption under Low Load 48
Table 7 – Descriptive Statistics for CPU Usage under Low Load 49
Table 8 – Descriptive Statistics for Memory Consumption and CPU Usage under

Low Load Grouped by Treatments . 49
Table 9 – Descriptive Statistics for Memory Consumption under Medium Load . . 50
Table 10 – Descriptive Statistics for CPU Usage under Medium Load 50
Table 11 – Descriptive Statistics for Memory Consumption and CPU Usage under

Medium Load Grouped by Treatments 50
Table 12 – Descriptive Statistics for Memory Consumption under High Load 51
Table 13 – Descriptive Statistics for CPU Usage under High Load 52
Table 14 – Descriptive Statistics for Memory Consumption and CPU Usage under

High Load Grouped by Treatments . 52
Table 15 – Shapiro-Wilk Test Results . 53
Table 16 – Mann-Whitney U -test Results . 53

Table 17 – Implemented CEP patterns . 61

Table 18 – The Single-Board Computers Used in the Experiment along with their
Features . 63

Table 19 – Year of Manufacture of The Single-Board Computers 63

LIST OF ABBREVIATIONS AND ACRONYMS

CEP Complex Event Processing

IoT Internet of Things

RLs Reactive Languages

RSS Resident Set Size

SBCs Single-board Computers

CONTENTS

1 INTRODUCTION . 14
1.1 MOTIVATION . 15
1.2 OBJECTIVE . 15
1.3 CONTRIBUTIONS . 16
1.4 OUTLINE . 16

2 BACKGROUND . 17
2.1 REACTIVE APPLICATIONS . 17
2.1.1 Complex Event Processing . 18
2.1.2 Reactive Languages . 20
2.1.3 Integration of CEP and RLs . 22
2.1.4 Performance in CEP and RLs . 23
2.2 EDGE ANALYTICS AND EVENT PROCESSING 26

3 CEP.JS . 28
3.1 RXJS AND MOST.JS PROGRAMMING MODEL 28
3.2 DESIGN . 30
3.2.1 Loosely Coupled Characteristic . 30
3.2.2 Components Overview . 31
3.2.2.1 Event Type and Operations . 33
3.2.2.2 Example . 34
3.3 CONCLUDING REMARKS . 36

4 EXPERIMENT . 37
4.1 EXPERIMENT PLANNING . 37
4.1.1 Goal Definition . 37
4.1.2 Performance Evaluation Technique 38
4.1.3 The Context of the Experiment . 38
4.1.4 Hypotheses . 38
4.1.5 Variables . 39
4.1.5.1 Response Variables or Dependent Variables 39
4.1.5.2 Factor levels or Treatments . 40
4.1.5.3 Experimental Unit . 40
4.1.5.4 Blocking Variables . 40
4.1.6 Workload Characterization . 41
4.1.7 Experimental Design . 44

4.1.8 Experiment Instrumentation . 45
4.1.9 Data Analysis . 45
4.2 EXPERIMENT EXECUTION . 46
4.3 THREATS TO VALIDITY . 47
4.4 ANALYSIS . 47
4.4.1 Descriptive Statistics . 47
4.4.1.1 Low Load . 48
4.4.1.2 Medium Load . 49
4.4.1.3 High Load . 51
4.4.2 Hypothesis Testing . 52
4.4.3 Discussion . 53

5 CONCLUSIONS AND FUTURE WORK 55
5.1 FUTURE WORK . 56
5.1.1 CEP.js Development . 56
5.1.2 Usability Test . 56
5.1.3 Performance Analysis . 56

REFERENCES . 57

APPENDIX A – IMPLEMENTED PATTERN OPERATIONS . . . 61

APPENDIX B – SINGLE-BOARD COMPUTERS 63

APPENDIX C – EXPERIMENT INSTRUMENTATION 64

APPENDIX D – FINCOS ADAPTER 68

APPENDIX E – EXPERIMENT APPLICATION 73

14

1 INTRODUCTION

Reactive applications are an important class of software designed to respond to events or
changes surrounding an area of interest in a timely manner (MARGARA; SALVANESCHI,
2013; SALVANESCHI; HINTZ; MEZINI, 2014). Among the approaches adopted to deal with
such applications, two approaches have stood out: Complex Event Processing (CEP)
and Reactive Languages (RLs). CEP focus on deriving high-level knowledge, also called
complex event, from simple events, while RLs target time-varying values and propagation
of changes (MARGARA; SALVANESCHI, 2013). Both of them have been applied through
different areas, such as graphical animation, RFID-based inventory management, and,
more recently, Internet of Things.

The Internet of Things (IoT) has the potential of allowing the creation of innovate
applications, so it has gained traction at an extraordinary pace. In this way, the acquisi-
tion of devices like sensors and smart phones has incredibly increased following the recent
predictions in which this number of devices would reach around 50 billion by 2020 (GO-

VINDARAJAN et al., 2014; CHOOCHOTKAEW et al., 2017). As a result, this enormous prolife-
ration of devices has contributed to a huge and rapid generation of data, often called Big
Data, which poses many challenging factors like infrastructure and processing (ASSUN-

CAO; VEITH; BUYYA, 2018). Data, in IoT applications, comes in the form of streams from
distributed sources where a substantial part of valuable information is produced when
analyzed as quick as possible, i.e., near real-time (ASSUNCAO; VEITH; BUYYA, 2018). The-
refore, how to design those applications that quickly react to IoT events has become an
important issue. Furthermore, a recent trend involving the IoT environment has emerged
where part of the data processing is pushed toward the edge of the network as a mean of
addressing IoT latency requirements, bandwidth problems, and privacy concerns, among
other aspects (CHOOCHOTKAEW et al., 2017). In Dayarathna and Perera (2018), it is re-
ported that, only in 2018, 40% of IoT data would be managed near or at the edge. This
direction, also known as Edge Analytics, is driving an even more need for performance in
reactive applications.

Performance plays an important non-functional requirement in reactive applications,
as they have to detect and react to event occurrences in a timely fashion (MARGARA; SAL-

VANESCHI, 2013). In addition, metrics like response time, throughput, or even memory
consumption present themselves as an important characteristic for those systems (MAR-

GARA; SALVANESCHI, 2013; GRADVOHL, 2016). Consequently, different optimizations, spe-
cially targeting scalability issues, have been addressed in the reactive approaches (MAR-

GARA; SALVANESCHI, 2013; ETZION; NIBLETT, 2011).

15

1.1 MOTIVATION

Despite being developed by different communities, a recent study reported by Margara
and Salvaneschi (2013) has called attention to the complementary nature of complex event
processing and reactive languages, including future directions toward a possible integra-
tion. They believe that the exchange of techniques successfully applied by one another
could be beneficial in the development of reactive applications. In this sense, we recently
developed a JavaScript library, called CEP.js, that implements CEP operations on top
of reactive libraries. It has been designed in a loosely coupled way regarding the reactive
library, and, thus, the support for an additional underlying library was recently incorpo-
rated. Given the relation between reactive applications and performance, the adoption of
this additional library raised questions about which performance aspects would be more
impacted by the subjacent reactive libraries.

In this regard, we conducted a recent study (ZIMMERLE et al., 2019) within the smartphone
environment in order to investigate whether the variation of the underlying library would
affect energy consumption when expressing CEP reactively. Mobile devices integrate those
devices found in the edge, and recent studies are not only targeting CEP at mobile phones,
but also considering its impacts in energy consumption as well (GRAUBNER et al., 2018).
The results of this recent study have shown that there was a significant statistical diffe-
rence in energy measurements. Notwithstanding, the study did not account for analyzing
possible reasons that could explain such differences. Therefore, conducting new experi-
ments including common performance metrics like CPU usage or memory consumption
may collaborate in better comprehending the results and add additional insights concer-
ning the performance influence of the reactive libraries.

1.2 OBJECTIVE

The object of the present work is twofold. First, the library that we have been developing,
called CEP.js, is presented, showing its implementation decisions regarding the loosely
coupled characteristic, its main components and how they are organized, and the usage
of the library itself. Secondly, an empirical study is conducted in which performance
aspects such as memory and CPU usage are analyzed to find out which aspects are more
affected by the CEP.js’ underlying reactive libraries while running in an edge analytics
scenario. Memory is an important metric in complex event processing given its constant
usage in CEP scenarios. Conversely, the experiments are run in a more resource constraint
environment, specifically in edge devices, so it is important to keep track on the usage of
CPU. Through the results of the experiment, we hope to answer the following research
question:

• RQ. When expressing CEP reactively in a Edge Analytics context, which perfor-

16

mance aspects are more affected by the reactive libraries?

1.3 CONTRIBUTIONS

The study makes the following contributions:

• A library for expressing CEP in a reactive way.

• A report of an empirical study involving performance in reactive programming and
edge analytics.

1.4 OUTLINE

The remainder of this work is organized as follows:

• Chapter 2 presents an overview of main topics explored in this study.

• Chapter 3 introduces CEP.js.

• Chapter 4 reports the experiment planning, execution, and analysis of the collected
data.

• Chapter 5 concludes the dissertation and details future works.

17

2 BACKGROUND

In this chapter, the main concepts used in the current study are presented. Initially,
concepts involving reactive applications are discussed (Section 2.1), which includes the
reactive approaches considered in the study (Sections 2.1.1 and 2.1.2), integration direc-
tions (Section 2.1.3), and performance requirements regarding the reactive approaches
(Section 2.1.4). Finally, edge analytics is examined in Section 2.2.

2.1 REACTIVE APPLICATIONS

Reactive applications are those designed to detect and (timely) react to events of interest
or state changes by carrying out computation that might eventually spark new events
and/or computations (MARGARA; SALVANESCHI, 2014; MARGARA; SALVANESCHI, 2013;
SALVANESCHI; HINTZ; MEZINI, 2014). Applications under this category react to user inte-
ractions, data modifications in a Model-View-Controller design, and new readings from
sensors, among others (SALVANESCHI; DRECHSLER; MEZINI, 2013; SALVANESCHI; HINTZ;

MEZINI, 2014). Generically, a reactive application incorporates five phases (MARGARA;

SALVANESCHI, 2013) as identified in Figure 1. An event of interest is first observed at
some place. Its occurrence is then notified in order to some processing takes place. In the
following phase, the result are transmitted to interested elements that may react to them.

Figure 1 – Macro View of a Reactive Application

Source: Margara and Salvaneschi (2013)

Despite being studied for a long period, their design, implementation, and maintenance
remain difficult (MARGARA; SALVANESCHI, 2013; SALVANESCHI; HINTZ; MEZINI, 2014).
According to Margara and Salvaneschi (2013), Salvaneschi, Hintz and Mezini (2014),
some reasons for such difficulty comprise:

• Applications may involve situations that are hard to recognize, requiring observa-
tion, collection, and reasoning across numerous events;

• Event occurrences asynchronously trigger the code which complicates the unders-
tanding of the control flow;

18

• Reactions include cross-module units as well as triggering in multiple locations in
code, what makes appropriate modularization challenging;

• Reactions are mixed with normal control flow, resulting in interactions that are
complex to predict;

• Requirements like low response time are frequently demanded, culminating in pro-
curement for effective algorithms and development approaches for event detection
and response.

2.1.1 Complex Event Processing

Complex Event Processing (CEP) is a technology that arose from the incapacity of the
batch paradigm in processing continuous flows of information in a timely fashion (CU-

GOLA; MARGARA, 2012; BUYYA; DASTJERDI, 2016). Systems within this category focus
on the production of situations of interest, or high-level events, from simple or low-level
events (CUGOLA; MARGARA, 2012; MARGARA; SALVANESCHI, 2013). As a result, pat-
tern detection involving composition of events and content and temporal constraints is a
very crucial part of CEP (CUGOLA; MARGARA, 2012; MARGARA; SALVANESCHI, 2013). A
good definition for a complex event is given by the Event Processing Technical Society
in which it is defined as “an event that summarizes, represents, or denotes a set of other
events.” (LUCKHAM, 2011). Thus, such event can be as simple as the 1929 stock market
crash (LUCKHAM, 2011), representing an abstraction for a set of events like transaction
negotiations, or as complex as the detection of a fire subject to a group of rules such as
considering the occurrence only when tree sensors, placed in an area smaller than 100m2,
detect a temperature greater than 60ºC in a short time like 10 seconds for instance (CU-

GOLA; MARGARA, 2012). An important fact to bear in mind is that a complex event works
like a view given to an event; it can be regarded as complex in one system whereas it can
be treated like a simple event in another one (LUCKHAM, 2011).

CEP systems are often seen as extensions to the publish-subscribe middleware systems,
whereby not only events can be propagated according to their type and content, but
also they can be composed with other events via operations (CUGOLA; MARGARA, 2012;
MARGARA; SALVANESCHI, 2013). Such systems are elaborated on top of the event-driven
architecture (SHARON; ETZION, 2008). Figure 2 presents the architecture as seen in most
applications (ETZION; NIBLETT, 2011). As shown in the figure, it consists of a distributed
architecture, and it is composed by three distinct main parts: producers, consumers, and
an intermediary processing. Producers are elements, located at the system’s edge, that
produce events (ETZION; NIBLETT, 2011). They vary in size and types such as a simple
sensor or another application that could in turn be also event-driven (ETZION; NIBLETT,
2011). Consumers, the opposite of the producers, receive events and possibly react to
them (ETZION; NIBLETT, 2011). At the center, in turn, the real processing takes place

19

Figure 2 – An Event-driven Architecture

(a) A macro view (b) CEP as an event processing network

Source: Cugola and Margara (2012)

in the intermediary processing element. Additionally, an event distribution mechanism,
named event channel, is used among the elements to distribute streams of events (SHARON;

ETZION, 2008). Etzion and Niblett (2011) note that the central processing is often not
monolithic and introduce the notion of an Event Processing Network (EPN) to represent
the architecture, where the central element is further distributed in the form of event
processing agents that are mapped to different functionalities and runtime artifacts. That
representation could thus culminate in benefits, such as explicit view on the flow, and
possibility of performing an enhanced validation and performance optimization (ETZION;

NIBLETT, 2011). The adoption of an event-driven architecture emphasize the event as a
the central actor, allow a level of decoupling between producers and consumers, commonly
known as the decoupling principle (ETZION; NIBLETT, 2011). Specifically, producers and
consumers only care about producing and consuming, not on further actions or existence
of one another (ETZION; NIBLETT, 2011). Other advantages of the architecture include:
processing of huge volume of data in a timely manner, separation of the processing from
the rest of application, and asynchronous event processing (ETZION; NIBLETT, 2011).

Event processing presents no specific standard toward programming languages, so
different programming styles and approaches are exploited (ETZION; NIBLETT, 2011). No-
netheless, languages targeting declarative features, like queries, are frequently taken into
consideration as common techniques. According to Eckert et al. (2011), queries allow, for
example, to express complex events in a convenient, succinct, and maintainable way. Et-
zion and Niblett (2011) classifies common event processing language approaches into three
categories, namely stream-oriented programming style, rule-oriented style, and impera-
tive style. Eckert et al. (2011), on the other hand, survey languages that are specifically
employed in the CEP context. They refer to those languages as Event Query Languages
(EQLs) and categorize them in five classes: composition operators, data stream query lan-
guages, production rules, timed state machines, and logic languages. The rule in Figure 3
exemplifies a typical CEP query. It defines a new stream of events (Fire) as the presence
of Smoke, average temperature greater than 45, and the absence of raining (Rain). Also,
it adds some constraints such as forcing Smoke and Temp to be in the same area, the ave-

20

rage temperature readings accumulate in a time window (5 min), and the absence of rain
not happening in a interval of 10 minutes from Smoke occurrences. More recently, howe-
ver, a trend among event processing systems toward not offering declarative interfaces,
like SQL-based query languages, has emerged (DAYARATHNA; PERERA, 2018; ASSUNCAO;

VEITH; BUYYA, 2018). This fact may in turn corroborate to raise usability issues among
newcomers (DAYARATHNA; PERERA, 2018), forcing them to program applications instead
of writing queries (ASSUNCAO; VEITH; BUYYA, 2018).

Figure 3 – Example of a CEP Rule

Source: Margara and Salvaneschi (2013)

CEP has been employed through many different areas including, but not limited to,
financial services, fraud detection, healthcare, RFID-based inventory control, surveillance,
and supply chain management (CUGOLA; MARGARA, 2012; WU; DIAO; RIZVI, 2006; ZHANG;

DIAO; IMMERMAN, 2014). Nowadays, Internet of Things, road traffic control, smart cities,
and text and video data streams are examples of recent domains in which CEP presents
itself as an important tool in terms of applicability and research direction (DAYARATHNA;

PERERA, 2018; FARDBASTANI; SHARIFI, 2019). In the same way, predictions have pointed
out a considerable increase in the market size perspective on CEP applications,. Daya-
rathna and Perera (2018) cites that, by 2019, CEP market will grow from $1.01 billion in
2014 to $4.76 million by 2019. Fardbastani and Sharifi (2019), on the other hand, indicate
a increase from $1.28 billion in 2015 to $4.95 billion in 2020. Both forecasts present a com-
pound annual growth rate of 31.3% and 31.1%, respectively. Therefore, CEP is an ongoing
field with a vast range of applicabilities and possibilities, and an expanding market.

2.1.2 Reactive Languages

Programming interactive event-driven applications in which a great part of today’s ap-
plications fits is a difficult job when using traditional sequential programming approa-
ches (BAINOMUGISHA et al., 2013). First of all, the arrival order of external events is un-
predictable and impossible to control which causes the control flow to constantly jumps
to event handlers as the external environment suddenly changes (BAINOMUGISHA et al.,
2013). Secondly, dependencies on state changes must be manually managed which is com-
plicated and susceptible to errors (BAINOMUGISHA et al., 2013). Aiming to address those
problems, the Reactive Programming (RP) paradigm was recently introduced (BAINO-

21

MUGISHA et al., 2013; SALVANESCHI; MARGARA; TAMBURRELLI, 2015). It is a paradigm
that facilitates the development of event-driven/reactive applications through abstractions
that represent the program as reactions to outside events while the language automatically
handle dependencies on data and computations (BAINOMUGISHA et al., 2013; MARGARA;

SALVANESCHI, 2014). Generically, three key aspects can be used to define such paradigm:
automatic propagation of changes, time-changing values (also called time-varying or re-
active values), and tracking of dependencies (MARGARA; SALVANESCHI, 2014; MARGARA;

SALVANESCHI, 2013). Languages under this class are based on the synchronous dataflow
programming and were first introduced in the functional domain, where the majority of re-
search on reactive programming originates from (BAINOMUGISHA et al., 2013; MARGARA;

SALVANESCHI, 2013). Currently, many libraries and extensions in various programming
languages have been developed to support the paradigm (BAINOMUGISHA et al., 2013;
MARGARA; SALVANESCHI, 2013).

Figure 4 – Reactive Programming through Pseudo-code

Source: Margara and Salvaneschi (2018)

The easiest way to grasp the ideas behind the paradigm is to consider the model im-
plemented in spreadsheets (BAINOMUGISHA et al., 2013). Once a data in a cell changes,
formulas depending on this cell value are automatically recomputed. The pseudo-code in
Figure 4 demonstrate this idea compared against the usual imperative programming (code
on the left). In the left-side code, any modification to variable “a”, after “b” initialization,
is not reflected on variable “b” as shown in the last line. In the right-side code on the other
hand, since b is initialized through a constraint (:= in this case), modifications on variable
a are automatically propagated to b. Thus, to support those ideas, reactive languages ge-
nerally introduces two abstractions: Behaviors and Events (BAINOMUGISHA et al., 2013).
Behaviors, also named Signals, are first-class composable abstractions specifically designed
to represent time-varying values, i.e., values that continually change over time (BAINO-

MUGISHA et al., 2013; MARGARA; SALVANESCHI, 2013). Time is a common example of
a behavior that the majority of the reactive languages provides (BAINOMUGISHA et al.,
2013). Events, on the other hand, represents a (possible infinite) stream of value changes
that happens at discrete points in time (BAINOMUGISHA et al., 2013). Examples of events
include: key presses on a keyboard, mouse clicks, and location changes (BAINOMUGISHA et

22

al., 2013). Similar to behaviors, events consist of first-class composable entities (BAINOMU-

GISHA et al., 2013). Combinators, like filter and merge, are often offered by the languages,
so events can be combined or filtered, for instance.

Bainomugisha et al. (2013) classifies reactive languages under three groups: The Func-
tional Reactive Programming (FRP) siblings, the cousins of reactive programming, and
synchronous, dataflow, synchronous dataflow languages. Languages like Fran or Scala.React
are classified under the FRP siblings as they incorporate characteristics like offer full sup-
port to the abstractions and primitive combinators (BAINOMUGISHA et al., 2013). Langua-
ges like .Net Rx1, on the other hand, are categorized under the cousins of reactive program-
ming since they do not provide, for instance, abstraction to represent time-changing values,
but they include propagation of change support and other features (BAINOMUGISHA et

al., 2013). The last class, i.e., synchronous, dataflow, and synchronous dataflow languages
involve languages devoted to model reactive systems with real-time constraints (BAINO-

MUGISHA et al., 2013).
RP has been used through distinct domains, like graphical animation, web applica-

tions, and sensor networks (MARGARA; SALVANESCHI, 2013; SALVANESCHI et al., 2017),
and it has inspired a number of popular libraries such as React.js and Meteor, among
others (SALVANESCHI; MARGARA; TAMBURRELLI, 2015). Besides, it is often considered
a superior approach to express reactive applications when compared to the Observer
pattern (MARGARA; SALVANESCHI, 2013; SALVANESCHI; HINTZ; MEZINI, 2014; SALVANES-

CHI et al., 2014; SALVANESCHI et al., 2017). Nevertheless, it has received more attention
from the programming language community and, recently, practitioners than from the
software engineering community itself (SALVANESCHI; MARGARA; TAMBURRELLI, 2015).
Therefore, that factor aligned with the aspect that RP is a recent field may corroborate
to an environment with probably many opportunities of enhancements and directions.

2.1.3 Integration of CEP and RLs

Margara and Salvaneschi (2013) conduced a pioneering work in order to investigate the
synergies and differences of two different approaches to support reactive systems, CEP
and RLs. They argue that a comparison study could favor knowledge exchange, new
ideas to arise, and discussion among the supporting communities. In this way, they come
to conclusion, although CEP and RLs have been developed by different communities
(database and distributed system field and the programming language area, respectively),
they share the same execution stages depicted in Figure 1 and are greatly complementary.

In addition to sharing key aspects, Margara and Salvaneschi (2013) were also driven
by the fact that signals and events are similar concepts, having events being used to disse-
minate changes by some RLs. Besides, RLs currently do not present the CEP expressivity
to manage time sequences, and temporal patterns and constraints. Thus, adding support
1 It has spanned across many languages nowadays.

23

for time in RLs would represent a possible line of research (MARGARA; SALVANESCHI,
2013).

As part of future research directions, Margara and Salvaneschi (2013) suggest the
possibility of integration between CEP and RLs and also identifies two lines of integra-
tion. The first line of integration consists of developing operators to extract signals from
events and the other way around. A motivation for this approach relates to the fact that
the majority of object-oriented software employs reactive signals through event-based
abstractions (MARGARA; SALVANESCHI, 2013). REScala2 is a an example of a language
representative of this direction. However, this approach toward integration regards event-
based languages, not necessarily CEP. Those languages introduce support to events as a
dedicated language abstraction in which can be, among other features, composed, quan-
tified, and declared and used as implicit events in an aspect-oriented programming style.
Ptolemy, EScala, and EventJava are instances of such languages (MARGARA; SALVANES-

CHI, 2013).
A second approach of integration would actually involve adding the time factor to

RLs. In this way, behaviors would be able to interact with past values, thereby allowing
the incorporation of usual CEP operators (MARGARA; SALVANESCHI, 2013). This would
then add the level of expressivity and the declarative design found in CEP rules to RLs,
including computations that involve ordering and temporal constraints (MARGARA; SAL-

VANESCHI, 2013). Apache Flink3 is probably the closest example of the use of this ap-
proach. It is a stream processor (AFFETTI; MARGARA; CUGOLA, 2017) or a distributed
stream computing platform (DAYARATHNA; PERERA, 2018) that incorporates a dataflow
programming model, a related style to reactive programming. The computation in a da-
taflow program is organized as a directed graph of operators with the arcs describing data
dependencies among computations (AFFETTI; MARGARA; CUGOLA, 2017; DAYARATHNA;

PERERA, 2018). Besides its dataflow model (SQL facilities as well), it offers a library,
called Flink CEP 4, that is implemented on top of Flink to express CEP.

2.1.4 Performance in CEP and RLs

Performance is a significant non-functional requirement to any system (SOMMERVILLE,
2011). Reactive applications requires timely detection and reaction to event occurren-
ces, so performance metrics like low response time present themselves as an essential
requirement (MARGARA; SALVANESCHI, 2013). Therefore, distinct strategies and effective
algorithms are addressed, most of the time targeting scalability issues, by the different
reactive apps’ approaches (MARGARA; SALVANESCHI, 2013; ETZION; NIBLETT, 2011).
2 <https://www.rescala-lang.com/>
3 <https://flink.apache.org/>
4 <https://ci.apache.org/projects/flink/flink-docs-stable/dev/libs/cep.html>

https://www.rescala-lang.com/
https://flink.apache.org/
https://ci.apache.org/projects/flink/flink-docs-stable/dev/libs/cep.html

24

Requirements involving performance have been a constant concern in CEP, so rese-
arches and practitioners have spent many efforts to devise efficient solutions (MARGARA;

SALVANESCHI, 2013). Dayarathna and Perera (2018) argues that performance is a cru-
cial quality of service feature in event processing systems. Reasons like timely proces-
sing of high volume of events, deployment in various domains, and employment of CEP
in mission-critical scenarios are some of the main drivers that have conduced the CEP
community toward performance (FARDBASTANI; SHARIFI, 2019; DAYARATHNA; PERERA,
2018; MENDES; BIZARRO; MARQUES, 2009; MENDES; BIZARRO; MARQUES, 2013b). In fact,
event processing applications may demand different operational requirements including
high number of sources or consumers, complex computations, among others, which may
or may not apply equally to all applications (ETZION; NIBLETT, 2011; MENDES; BIZARRO;

MARQUES, 2009). Those requirements, in turn, are translated into performance metrics
like throughput and latency (response time), often cited in researches (GRADVOHL, 2016;
MENDES; BIZARRO; MARQUES, 2009; AFFETTI; MARGARA; CUGOLA, 2017). In reality,
however, given the broad applicability of event processing, some application may demand
more from one metric than others (MENDES; BIZARRO; MARQUES, 2013b). Another me-
tric often contemplated in researches is memory consumption, since CEP makes constant
use of main memory (GRADVOHL, 2016). Fonseca, Ferraz and Gama (2018) additionally
included CPU usage to their study as they were conducing evaluations on more constraint
environments. Examples of other metrics less frequently used and not necessarily in the
context of performance include: correctness of results, adaptability to load variations, and
ability to deal with uncertainty or fuzzy patterns (GRADVOHL, 2016).

Benchmarking in event processing is a broad area investigated by the research com-
munity (DAYARATHNA; PERERA, 2018). Nevertheless, given the extensive application do-
main, it becomes difficult to devise a representative benchmark with a specific metric, so
there are only a few established benchmarks (MENDES; BIZARRO; MARQUES, 2013b; DAYA-

RATHNA; PERERA, 2018; GRADVOHL, 2016). Linear Road, for example, is one of earliest
benchmarks that have been used in many CEP systems (DAYARATHNA; PERERA, 2018). In
general, it emulates a highway toll systems where the application receives vehicle position
reports as input stream while it is evaluated according to the quantity of expressways
the systems can effectively manage (DAYARATHNA; PERERA, 2018; HANIF; YOON; LEE,
2019). Other benchmarks include NEXMark, BiCEP, SPECjms2007, Email Processor,
and CityBench (WAHL; HOLLUNDER, 2012; DAYARATHNA; PERERA, 2018); BiCEP, actu-
ally, corresponds to a project, or benchmark suite, with the goal of identifying key CEP
requirements and creating a set of domain-specific benchmarks together with workload,
dataset, and metrics (MENDES; BIZARRO; MARQUES, 2013b; GRADVOHL, 2016). Among
the tools designed, BiCEP managed to developed the FINCoS benchmarking framework
that aims to provide a neutral approach for load generation and measurement of CEP sys-
tems (MENDES; BIZARRO; MARQUES, 2008; MENDES; BIZARRO; MARQUES, 2013a). FIN-

25

CoS offers features that allow one to express workload characteristics as well as synthetic
workloads (GRADVOHL, 2016). Dayarathna and Perera (2018) points out, though, that
the tool presents limited scalability. Other mechanisms include CEPBench, StreamBench,
and Chronos (LI; BERRY, 2013; GRADVOHL, 2016).

To cope with the performance requirements, many CEP optimizations have been al-
ready developed. Those optimizations in general can be categorized into two groups:
black-box and white-box optimizations (ETZION; NIBLETT, 2011; DAYARATHNA; PERERA,
2018). This classification is closely related to the concept of black and white-box testing.
While black-box optimization considers the internal implementation fixed and deals with
factors outside the processing like location and scheduling, white-box optimization works
on the internal portions of the engine. Black-box optimizations, for instance, include
approaches like distribution, parallelism, and load balancing. (ETZION; NIBLETT, 2011;
DAYARATHNA; PERERA, 2018). White-box optimization, conversely, is a less developed
area and involves approaches like implementation selection and optimization, and pattern
rewriting. (ETZION; NIBLETT, 2011; DAYARATHNA; PERERA, 2018). Examples of CEP op-
timizations in general encompasses pattern rewriting, operator reordering, operation/rule
distribution, deployment in a cloud infrastructure, and clustering of CEP engines, among
others (DAYARATHNA; PERERA, 2018; FARDBASTANI; SHARIFI, 2019).

Reactive languages, unlike CEP or even synchronous dataflow programming, have re-
ceived less attention towards performance, as the community has put more efforts at de-
signing appropriate abstractions and improving language integration (MARGARA; SALVA-

NESCHI, 2013). According to Margara and Salvaneschi (2013), most of the enhancements
have been produced by the functional reactive programming. Nonetheless, there have
been some attempts. Lowering is an example of an approach that shortens the size of the
dependence graph generated by the reactive language (BURCHETT; COOPER; KRISHNA-

MURTHI, 2007). Another example regard the concept of incrementalization. Time-varying
values, in accordance with the functional principal of immutability, are re-evaluated from
scratch as soon as there is a change on behaviors they depend on (MARGARA; SALVA-

NESCHI, 2013). Depending on the context, this can suggest resource waste (MARGARA;

SALVANESCHI, 2013). In this manner, incrementalization of some data structures into re-
active programming has been targeted in a research, but its applicability remains an open
research matter (MARGARA; SALVANESCHI, 2013).

More recently, some researches have been conduced trying to apply the concepts of
reactive programming in the distributed context, such as Salvaneschi, Drechsler and Me-
zini (2013), Margara and Salvaneschi (2014), Margara and Salvaneschi (2018). According
to Bainomugisha et al. (2013), it is hard to ensure guarantee consistency, i.e., glitch avoi-
dance, in a distributed dependency graph, besides the fact that the graph tightly couples
application constituents (BAINOMUGISHA et al., 2013). This coupling leads to less resi-
lience to network troubles as well as reduced scalability (BAINOMUGISHA et al., 2013).

26

Nevertheless, the main motivation for distribution has not been to cope with performance
or scalability issues, but it has been to deal with the aspect that several reactive applica-
tions are distributed (MARGARA; SALVANESCHI, 2014).

2.2 EDGE ANALYTICS AND EVENT PROCESSING

The promise of allowing the creation of innovative applications where the physical world
would interact with the virtual one has led to an extraordinary investment in the so-
called Internet of Things (IoT). In this way, the proliferation of IoT devices like sensors
and smartphones has also increased in a spectacular pace, following the recent predictions
at which this amount of devices would reach about 50 billion by 2020 (GOVINDARAJAN et

al., 2014; CHOOCHOTKAEW et al., 2017). As a result of this rapid expansion, IoT has con-
tributed to the enormous and rapid generation of data, generally called Big Data, which
presents many challenging factors like infrastructure and processing (BUYYA; DASTJERDI,
2016). Data, in IoT applications, are arranged in the form of streams coming from dis-
tributed sources where a major part of valuable information is produced when analyzed
as quickly as possible, i.e., near real-time (BUYYA; DASTJERDI, 2016; AKBAR et al., 2015;
DAYARATHNA; PERERA, 2018). To cope with those requirements, stream engines are ack-
nowledged as crucial elements to enhance IoT usage (CHOOCHOTKAEW et al., 2017). In
fact, Buyya and Dastjerdi (2016) states that IoT applications are the motivators that
inspire the development of the stream-processing area. Among the stream processors,
CEP is often seen as a key tool given its capabilities of managing time relationships and
extracting high-level knowledge from continuous massive volume of events in a timely
manner (CHEN et al., 2014; AKBAR et al., 2015). Like many nowadays services, the stream
processors are also being pushed toward the cloud as a mean of taking advantage of the
cloud elasticity architecture. However, this tendency is facing several problems which has
encouraged researches to find an intermediate solution.

Scenarios like health care, smart cities, and other ones involving IoT generally produce
uninterrupted streams that demand rapid processing under very short time (GOVINDA-

RAJAN et al., 2014; ASSUNCAO; VEITH; BUYYA, 2018). Those requirements run into several
problems considering the trend of hosting the processing in centralized cloud solutions.
First of all, the aforementioned latency requirement expects a fast network bandwidth
as the size of IoT data increases by day, ranging from gigabytes to terabytes (AI; PENG;

ZHANG, 2018; DAYARATHNA; PERERA, 2018). High bandwidth is not always available in
those scenarios (DAYARATHNA; PERERA, 2018), and IoT applications normally rely on
some wireless connections, an area at which developments have been slower in compari-
son to the IoT proliferation (CHOOCHOTKAEW et al., 2017). Moreover, there may be some
privacy concerns involving the data analyzed (CHOOCHOTKAEW et al., 2017). Hence, a
new generation of stream processing, termed Edge Analytics, is arising in which part of
the processing is transferred to the edge of the network (ASSUNCAO; VEITH; BUYYA, 2018),

27

that is, the place where frequently IoT event sources are located (GOVINDARAJAN et al.,
2014). In Dayarathna and Perera (2018), it is reported that, only in 2018, 40% of IoT data
would be managed near or at the edge. In this way, many researches have been conducted
trying to devise the best way to bring CEP to the edge (GOVINDARAJAN et al., 2014; CHEN

et al., 2014; AKBAR et al., 2015) as they have to account for the fact that IoT devices are
often resource-constrained. 𝜇CEP is an example of a lightweight CEP engine designed to
run on embedded devices (DAYARATHNA; PERERA, 2018). Nevertheless, Govindarajan et
al. (2014) points out that edge devices are starting to include more powerful processing
capabilities. The Raspberry Foundation, for example, recently produced a new Raspberry
Pi, a single-board computer often used as sensor gateways, capable to replace a desktop
for a low cost value 5. Thus, this fact may collaborate for even further exploration of the
edge for analytics.

5 Available at:<http://www.gizmodo.pw/2019/06/the-raspberry-pi-4-can-replace-your-desktop-pc-for-just-50>.
Accessed on: 2019-06-26.

http://www.gizmodo.pw/2019/06/the-raspberry-pi-4-can-replace-your-desktop-pc-for-just-50

28

3 CEP.JS

CEP.js1 is an open-source JavaScript library that we have been developing to allow coding
complex event processing (CEP) in a reactive way. The second line of integration between
CEP and reactive languages pointed out by Margara and Salvaneschi (2013) served as the
inspiration for its conception, in which way reactive languages are extended with CEP
operations. As a result, those languages might incorporate the following common CEP
characteristics: expressiviness, declarativity, and the expression of sequential and temporal
relationships (MARGARA; SALVANESCHI, 2013). CEP.js is built on top of reactive libraries,
so it works as a wrapper that allows the manipulation of the stream abstraction provided
by the reactive library. Currently, it offers support for two libraries: RxJS2, the JavaScript
port for one of the most widely-used reactive libraries known as ReactiveX3, and Most.js4,
a library with a more succinct API and a focus on performance. The implementation of
CEP.js as a library itself rather than an extension was to establish a more loosely coupled
relationship to the reactive libraries utilized. Nevertheless, CEP.js’ syntax is based on
RxJS given its broader usage among the reactive options.

This chapter focus on presenting CEP.js. Initially, Section 3.1 succinctly presents the
programming model employed in RxJS and Most.js. Then, it expands into CEP.js design in
Section 3.2, with a dedicated sections to explain how the loosely coupled characteristic has
been targeted (Section 3.2.1), how the main components are structured (Section 3.2.2),
and the data model utilized as well as the operations implemented (Section 3.2.2.1).
Moreover, by the end of Section 3.2, more specifically in Section 3.2.2.2, a simple example
is presented that summarizes many of the concepts covered throughout this chapter.
Finally, Section 3.3 exposes some concluding remarks.

3.1 RXJS AND MOST.JS PROGRAMMING MODEL

A great majority of the reactive libraries in JavaScript focus on the support for the
abstraction to represent a stream of events, presented as Events in Section 2.1.2. The
introduction of such an abstraction in the JavaScript realm brings many benefits as it
abstracts the time factor, allowing to express asynchronous programs in a closer way to a
synchronous program and in a linear way (DANIELS; ATENCIO, 2017). RxJS, or ReactiveX
for JavaScript, implements its programming model through the Observable type, which
represents a stream that can encapsulate nearly every data source in JavaScript. Besides
this abstraction for streams, it offers a huge set of operations to manipulate the elements
1 <https://github.com/RxCEP/cepjs>
2 <https://github.com/ReactiveX/rxjs>
3 <http://reactivex.io/>
4 <https://github.com/mostjs/core>

https://github.com/RxCEP/cepjs
https://github.com/ReactiveX/rxjs
http://reactivex.io/
https://github.com/mostjs/core

29

in the stream. Mogk, Salvaneschi and Mezini (2018) report that currently ReactiveX
includes 450 operators in its arsenal, with at least 80 considered as core operations. Those
operators can be applied to the stream through the Observable’s pipe method, which forms
a pipeline of operations that are composed to express the business logic. This pipeline is
formed by pure functions in which side effects are encouraged to be pushed toward the
consumer part. RxJS also incorporates the concept of lazy evaluation from the functional
paradigm, so the actual appliance of operators only takes effect when a consumer, called
subscriber in RxJS, is attached. This programming model can be graphically summarized
in Figure 5.

Most.js also features a programming model very close to RxJS. It has a data type to
represent a stream, simply called Stream, and introduces ways to compose operations to
transform the stream elements. In contrast to RxJS, functions are composed by directly
passing function calls as arguments to other functions. Yet, all operations are curried,
which allows the partial evaluation of function calls. The operations that forms the pipeline
are also lazy evaluated; in other words, the streams remains dormant until a consumer
is attached. Moreover, Most.js has a more succinct API, offering only the essential set of
operators and stimulating the community to produce other specific operations from the
basic ones.

Basically, the model employed by both RxJS and Most.js brings the event-driven ar-
chitecture to the language level, specially when one compares it with the Event Processing
Network proposed by Etzion and Niblett (2011). Hence, streams can be expressed by ha-
ving producers and consumers, and some in-between logic, composed by a set of operators
that transforms the elements passing through.

Figure 5 – Overview of RxJS Programming Model

Source: Adapted from Daniels and Atencio (2017)

30

3.2 DESIGN

3.2.1 Loosely Coupled Characteristic

CEP.js wraps and manipulates the stream abstraction provided by the supported reactive
libraries. It implements a closer syntax found in RxJS, but considering the idea of being
loosely coupled. To target the quality of being loosely coupled, two measures have been
taken into consideration: the creation of library itself instead of being an extension of the
reactive library, and the exploration of well-known design patterns, such as factory and
adapter patterns.

The implementation of a distinct library allows CEP.js to offer a common syntax and
semantics, regardless of the reactive library. As an example, many different reactive li-
braries are currently available in JavaScript, each one with specific characteristics. RxJS
and Most.js are instances of libraries that, although they share common semantical qua-
lities, RxJS allows the expression the business logic by offering the pipe operation while
Most.js incorporates the idea of composition directly through the use of functions. When
adopting Most.js’ approach, as the number of functions to be composed grows at a cer-
tain degree, it may be cumbersome to write or even track the business logic applied to a
stream. Furthermore, some reactive libraries differ in semantical terms. Bacon.js5, another
well-known reactive library in JavaScript, for instance, manages errors differently when
comparing to both RxJS or Most.js. Any error in an RxJS stream, without the use of
proper operations to handle it, is propagated to the event consumers, also known as ob-
servers, and the stream is terminated. In Bacon.js, on the other hand, such a termination
does not happen. The notification is propagated to the consumer part, and the stream
continues processing further elements. In this way, CEP.js can abstract the differences in
both syntax and semantics regarding the reactive libraries.

In addition to being a distinct library, the factory and adapter pattern were incorpora-
ted into CEP.js. The factory design allows a better control and flexibility over the process
of instantiation of new objects, and it has been a common pattern among JavaScript libra-
ries. The adapter pattern, on the other hand, reshapes the interface of a class or an object
into an expected one (GAMMA, 1995). By incorporating the factory and the adapter de-
sign to CEP.js, earlier decisions can be made before the actual instantiation of the library
as well as the possibility of the injection of the underlying reactive library at runtime
by supplying it to the exported factory function. Under the adapter pattern perspective,
the reactive library works as an adaptee that, once provided to the factory function, it
is reshaped; this reshaped interface thus contains operations that are either reused from
the reactive library or new ones. Both RxJS and Most.js are not used directly. Instead,
they are wrapped in custom packages, cepjs-rx6 and cepjs-most7, in order to group any
5 <https://baconjs.github.io/api3/index.html>
6 <https://github.com/RxCEP/cepjs/tree/master/packages/cepjs-rx>
7 <https://github.com/RxCEP/cepjs/tree/master/packages/cepjs-most>

https://baconjs.github.io/api3/index.html
https://github.com/RxCEP/cepjs/tree/master/packages/cepjs-rx
https://github.com/RxCEP/cepjs/tree/master/packages/cepjs-most

31

related dependencies. In turn, the core functionalities of CEP.js are made available in the
cepjs-core8 package. This package returns the factory function that expects one of the
reactive packages; once they are provided, an object is instantiated and returned that
contains the set of operations, including the operations built in the adapter, and classes
that allows, for instance, the creation, and manipulation of event streams. Information
about all those components can be found online9.

Despite all the efforts, the support for a new reactive library brings many challenges.
Given the cleaner API of Most.js for example, an additional package10 had to be created
that implements some essential operations required in CEP.js like buffers. Besides, some
reactive libraries do not work with the concept of both cold and hot streams. Cold streams
only start their respective emissions after a consumer is attached, also called subscription,
and their emissions are not shared (DANIELS; ATENCIO, 2017); in other words, it means
that new subscriptions get their own version of the stream with the first emission starting
from the first element on that stream. Hot streams, conversely, begin emitting events even
if there are no subscribers (DANIELS; ATENCIO, 2017). The choice of whether a stream
should be cold or hot mainly depends on the bounded or unpredictable aspect of the
data wrapped or created by the stream (DANIELS; ATENCIO, 2017). In RxJS, a stream
wrapping an array, for example, would represent a cold stream, whereas one that wraps a
DOM event source would produce a hot stream. Most.js, like RxJS, supports this concept,
and this was one of the facts that corroborates to its incorporation in CEP.js. However,
other interesting libraries like Kefir.js11 have been disregarded as CEP.js’ candidates for
the time being since they only work with hot streams. Finally, the diversity of reactive
libraries with their own set of stream-manipulation operators makes it hard to clearly
decide which one of those operators should or not be included in CEP.js, and whether
all the already supported reactive libraries provide either those operators themselves or,
otherwise, the necessary API to implement them.

3.2.2 Components Overview

The components in CEP.js are organized essentially in two layers: a base layer, containing
the base components, and a reactive layer, including either specializations of the base
components or components directly related to the reactive library. Figure 6 shows the
current design overview of CEP.js. The white box in this figure shows the base components
and the gray box represents the reactive layer. The duplicity of some components is meant
to imply reusability and more specific behavior according to the reactive library provided.
Finally, the big blue box represent auxiliary libraries that cuts across all project.

8 <https://github.com/RxCEP/cepjs/tree/master/packages/cepjs-core>
9 <https://carloszimm.github.io/dissertation/>
10 <https://github.com/mostjs-community/most-rx-utils>
11 <https://kefirjs.github.io/kefir/>

https://github.com/RxCEP/cepjs/tree/master/packages/cepjs-core
https://carloszimm.github.io/dissertation/
https://github.com/mostjs-community/most-rx-utils
https://kefirjs.github.io/kefir/

32

Figure 6 – CEP.js Current Components

Source: Author

Among the base components of Figure 6, EventStream is a class that represents the
main abstraction in charge of wrapping the underlying stream provided by the reactive li-
brary. Analogous to RxJS, both creation and stream-manipulation operators are exported
as function themselves through the object returned when supplying the reactive library to
the factory function. The creation operators, operations that are responsible for creating
EventStream instances, are all named after RxJS’s creation operators, but, rather than
only receiving the standard parameters to lift values into the stream, they all contain an
extra optional parameter called adaptor. Adaptation is a common characteristic in CEP
systems that corresponds to a preprocessing stage where data is converted into the event
format requested by the CEP system (LUCKHAM, 2011), the EventType class in CEP.js.
This class gathers the necessary attributes to represent an event in the library; thus, the
adaptor parameter expects a function that maps the value produced by the operator to
an instance of the EventType. Moreover, every EventStream instance has a pipe and a
compose method, so operators can be applied through composition, either from left to
right (pipe) or right to left (compose). The majority of the stream-handling operations
have also been named based on RxJS’ counterparts, with exception of a few like windows
operators. These operations, in turn, have received a nomenclature based on the standard
window names frequently found in event processing engines like tumbling and sliding
windows. Those terms basically serve to discern how the bounds of a window moves.

The subscription mechanism follows the observer interface specified in the Observable
proposal12 like in RxJS. Particularly, this interface defines three methods: one for accessing
stream’s events, one for error handling, and one for completion signal. A StreamSubcription
instance is returned after subscription that allows not only to unsubscribe to the stream
12 <https://github.com/tc39/proposal-observable>

https://github.com/tc39/proposal-observable

33

but also to the verify whether that stream is already closed through the closed attribute.
Finally, the Location component groups a set of utilities to be used in some operations

involving spatial location. For example, one of the parameters expected by some pattern
operation is an instance of the Point class that can be found in Location. Basically, a
Point object can be used to represent a GPS coordinate. In addition, policies mechanisms
have been slowly included that, according to Etzion and Niblett (2011), allow to define the
correct semantics of the operation in face of different interpretations or options. Currently,
only the order policy that defines whether a time attribute of the EventType class or the
actual placement of the events in the stream should be used in the processing of a few
event patterns like increasing or movingToward. Moreover, other patterns like all can
benefit by the inclusion of policies. The all operation considers the combination of every
participant event without discarding any event occurrence that has already been matched
with another one; by using policies, an user can specify the correct semantic of this pattern,
i.e., whether or not an event should be rematched.

3.2.2.1 Event Type and Operations

Figure 7 – EventType Class

Source: Author

Behind all the logic on CEP operators is the data model that it is based upon. In
this way, event types are perhaps one of the most important factors in CEP systems as
they carry the necessary information to carry out CEP patterns. The Event Processing
Technical Society defines an event type simply as “a class of event objects” (LUCKHAM,
2011). In CEP.js, we consider the work of Etzion and Niblett (2011) to implement the
EventType class given its thoroughly coverage. Etzion and Niblett (2011) presents nine
event attributes that are classified as header attributes. Those header properties work as
meta-information regarding the events, describing common details about a given occur-
rence (ETZION; NIBLETT, 2011). All other attributes are called payload attributes, and, in
CEP.js, those attributes can be included into the EventType class via inheritance. Cur-
rently, four attributes are supported as shown in Figure 7. The _eventTypeId, or event

34

type identifier, can be used to identify a set of the event occurrences. The _eventSource,
in turn, represents the source that originated an event, be it an external source to the
system or an internal operation. The event time can be represented by two attributes: the
_occurrenceTime which denotes the time the event was generated in its source, and the
_detectionTime which either corresponds to the time the event entered the system or af-
ter it was processed by any operation; in other words, the library is responsible for setting
_detectionTime, and Figure 7 shows that there is no set method for that attribute.

In general, the operations dealing with stream manipulation are direct calls to the
underlying reactive counterparts. They have been all carefully selected, specially taking
into consideration the operations found in Cugola and Margara (2012). The implemented
event-based operations, on the other hand, besides regarding the ones described by Cugola
and Margara (2012), specifically follows the model presented in Etzion and Niblett (2011).
The main focus has been on pattern operations given their valuable characteristic in
event processing (ETZION; NIBLETT, 2011), and a list of the implemented ones is placed
on Appendix A. A relevant fact concerning those operators is that they are all stateful;
this means that their processing depends on more than one event (ETZION; NIBLETT,
2011), and they operate over portions of a stream. Therefore, pattern operators have to
be preceded by window operators; otherwise, an error is propagated through the stream.

3.2.2.2 Example

This section presents a simple example, shown in Listing 3.1, to demonstrate the use of
CEP.js. This example represents a pseudo scenario where an user is interested in monito-
ring the average temperature of a room in some location like its home, for instance. The
first lines of Listing 3.1 exemplifies the concepts exposed in Section 3.2.1 in which one
of the custom packages containing a supported reactive library is passed to the CEP.js
factory function. Line 9 uses the JavaScript destructuring mechanism to obtain only the
operations out of the CEP.js instance. Line 11 defines an EventType subclass called Tem-
peratureReading that is used to store the temperature information as well as the room
from where the temperature was generated. Line 19 creates an event stream from an array
of objects representing a set of pseudo temperatures along with ids, source rooms, and
timestamps. The stream is generated by the creation operator, from; the last parameter of
this operator corresponds to the adaptor function discussed in Section 3.2.2 where emis-
sions from the stream are mapped to instances of the EventType class or subclasses. The
user of this scenario is interested only in the temperatures from room number 3, so the
filter function is utilized for this purpose in line 29. Since the example makes use of the
valueAvg pattern to check the average temperature, it must be preceeded by a window
operator as explained in Section 3.2.2.1. The tumblingTimeWindow, in this case, emits
events every 30 seconds. The first parameter of the valueAvg pattern is a list of event
type ids that the pattern deals with, and there is only one event type travelling through

35

the stream whose event type id is “temperature reading” as defined in the last parameter
of the from operator. The second parameter of this pattern is the name of the attribute
that will be used to calculate the average value. The third parameter is a lambda ex-
pression that receives the average temperature and test it against a threshold value, 35
degrees Celsius in the example. The last parameter of this pattern operation only defines
the event type id for the new events that are produced. Finally, the subscribe method
attaches a consumer, that, once a complex event is generated, defined as complexEvent
in the consumer’s next method, it calls a sendAlert function that could forward a custom
alert to the user.

Listing 3.1 – CEP.js Example
1 // returns the factory function

const factory = require('cepjs -core');

3
// returns a cepjs -rx instance

5 const cepjsRx = require('cepjs -rx');

7 // calls the factory function by passing the reactive library instance

// using the destructuring syntax to get the specific operators from the CEP.js

instance

9 const { from , filter , tumblingTimeWindow , valueAvg , EventType } = factory(cepjsRx);

11 class TemperatureReading extends EventType{

constructor(eventTypeId , eventSource , occurrenceTime , room , temperature){

13 super(eventTypeId , eventSource , occurrenceTime);

this.room = room;

15 this.temperature = temperature;

}

17 }

19 const subscription =

from([

21 {id: 100, temperature: 30, timestamp: 1567028818018 , room: 2},

{id: 62, temperature: 31, timestamp: 1567028818060 , room: 3},

23 {id: 63, temperature: 31, timestamp: 1567028818073 , room: 3},

{id: 77, temperature: 31, timestamp: 1567028818021 , room: 1},

25 {id: 101, temperature: 28, timestamp: 1567028818118 , room: 2},

{id: 64, temperature: 30, timestamp: 1567028818201 , room: 3}

27], evt =>

new TemperatureReading('temperature reading ', 'home sensor ', evt.timestamp ,

evt.room , evt.temperature))

29 .pipe(

filter(tempEvt => tempEvt.room == 3),

31 tumblingTimeWindow (30000) , //30 seconds

valueAvg (['temperature reading '], 'temperature ', avgTemp => avgTemp > 35, '

high temperature ')

33).subscribe ({

next: complexEvent => {

35 // sends a custom alert to inform the user that the average temperature

of room 3 is higher than 35 degrees

sendAlert(complexEvent);

36

37 },

error: err => console.error(err),

39 complete: () => console.log('end of emissions!')

});

3.3 CONCLUDING REMARKS

This chapter focused on presenting CEP.js, a JavaScript library that we have been develo-
ping to support complex event processing operations through reactive libraries. Although
CEP.js has taken a leap toward the integration of the worlds of CEP and reactive pro-
gramming, there are still many directions not fully explored, such as policies and, even,
other operations. In fact, according to Etzion and Niblett (2011), many more patterns can
be derived from the supplied material. Moreover, given the active community surrounding
JavaScript, there are still many reactive libraries available that may be incorporated or
bring new ideas into CEP.js in the future.

37

4 EXPERIMENT

This chapter elaborates the experiment on the context of the study. Section 4.1 describes
the experiment planning, while Section 4.2 explains the execution of the experiment.
Section 4.3, in turn, discusses some threats to validity and actions taken to mitigate
those threats. Finally, Section 4.4 presents and evaluates the data collected during the
experiment.

The experiment has been designed following the model for controlled experiments and
the guidelines and procedures for conducting performance analysis reported by Juristo and
Moreno (2013) and Jain (1990), respectively. Jain (1990) defines eight steps to conduct
a performance evaluation. Table 1 presents a mapping between those steps (procedures)
and the structure of this chapter.

Table 1 – Steps Defined by Jain (1990) and the Sections of Chapter 4

Procedure Sections

Goal definition and system boundaries 4.1.1 and 4.1.3
System services and outcomes 4.1.5.3
Performance metrics 4.1.5.1
System and workload parameters 4.1.5
Factors 4.1.5.2
Evaluation technique 4.1.2
Experiment design 4.1.7
Data analysis and interpretation 4.4
Presentation of results 4.4

Source: Author

All the scripts and codes utilized are publicly available1 to allow the conduction of
external replications. Additionally, some of those have been included in the appendices.

4.1 EXPERIMENT PLANNING

4.1.1 Goal Definition

The goal of the experiment is to analyze which performance aspect is more affect by the
underlying reactive libraries supported by CEP.js, Most.js and RxJS, while running an
application in an Edge Analytics scenario. More specifically, two aspects will be used to
assess performance: memory consumption and CPU usage. Memory consumption is an
1 <https://github.com/carloszimm/dissertation>

https://github.com/carloszimm/dissertation

38

important factor in CEP platform as the majority of work and storage is done in me-
mory (GRADVOHL, 2016). CPU usage, on the other hand, is another important factor
since this experiment is conducted in a more resource-constrained environment. Further-
more, those are also metrics used in a recent study (FONSECA; FERRAZ; GAMA, 2018) that
runs an experiment in a similar context.

4.1.2 Performance Evaluation Technique

According to Jain (1990), there are three performance evaluation techniques that are
most commonly employed in performance studies: Analytical modeling, simulation, and
measurement. Given that CEP.js, the factor in the present study, has already a version
that can be used, the measurement technique is utilized for evaluation.

4.1.3 The Context of the Experiment

The experiment is run on the context of a hypothetical scenario based on public transpor-
tation. Nowadays, the Bus Rapid Transit (BRT) system has been implemented in many
countries worldwide, including Brazil. It consists of a bus systems aiming to offer a com-
fortable and rapid solution similar to a subway but above the ground (GOODMAN; LAUBE;

SCHWENK, 2005). In the metropolitan area of Recife, capital of Pernambuco, the BRT
system is operating since 2014, and it currently has two bus corridors, 40 stations, and 14
operating bus lines in total2. Those numbers tend to increase as there are new stations
on the way.

In this perspective, the hypothetical scenario consists of transferring the processing of
buses’ arrival forecast to the stations, where they are already displayed on screens, as a
mean of alleviating the processing at a central location. The processing at the stations
would then be performed by edge devices. To accurately simulate bus travel movement
events, the workload will be derived from a dataset obtained through a cooperation agre-
ement with Grande Recife Transports Consortium3. This dataset contains logs of distinct
buses operating on different routes. The dataset includes, among other things, the mo-
ment of time the log entry was record, bus line, rote, latitude, longitude, and speed. A
sample of the complete dataset is available online4. For the purpose of the study, only the
latitude and longitude will be used.

4.1.4 Hypotheses

Before describing the hypotheses, it is important to consider:

• MEM𝑟𝑥: memory consumption by using RxJS.
2 Available at:<http://www.granderecife.pe.gov.br/sitegrctm/transporte/brt-via-livre/>. Accessed on:

2019-06-08.
3 <http://www.granderecife.pe.gov.br/sitegrctm/>
4 <https://github.com/carloszimm/dissertation/blob/master/dataset/sample_dataset.csv>

http://www.granderecife.pe.gov.br/sitegrctm/transporte/brt-via-livre/
http://www.granderecife.pe.gov.br/sitegrctm/
https://github.com/carloszimm/dissertation/blob/master/dataset/sample_dataset.csv

39

• MEM𝑚𝑜𝑠𝑡: memory consumption by using Most.js.

• CPU𝑟𝑥: CPU usage by using RxJS.

• CPU𝑚𝑜𝑠𝑡: CPU usage by using Most.js.

Definition for null hypotheses:

𝐻0 : 𝑀𝐸𝑀𝑟𝑥 = 𝑀𝐸𝑀𝑚𝑜𝑠𝑡

𝐻0 : 𝐶𝑃𝑈𝑟𝑥 = 𝐶𝑃𝑈𝑚𝑜𝑠𝑡

Definition for alternative hypotheses:

𝐻1 : 𝑀𝐸𝑀𝑟𝑥 ̸= 𝑀𝐸𝑀𝑚𝑜𝑠𝑡

𝐻1 : 𝐶𝑃𝑈𝑟𝑥 ̸= 𝐶𝑃𝑈𝑚𝑜𝑠𝑡

The first null hypothesis states that there is no statistically significant difference re-
lated to memory consumption by using either RxJS or Most.js. The second one, in turn,
states that there is no statistically significant difference related to CPU usage by using
either RxJS or Most.js.

The first alternative hypothesis states that there is a statistically significant difference
related to memory consumption by using RxJS or Most.js. The second one, on the other
hand, states that there is a statistically significant difference related to CPU usage by
using RxJS or Most.js.

Either hypothesis will be tested by considering the average memory consumption and
CPU usage. Also, each experiment observation collected will consider the mean of each
metric as well.

4.1.5 Variables

The following sections elaborate on the variables identified in the study. Since CEP.js has
been introduced in Chapter 3, the factor, also known as independent variable, section is
omitted.

4.1.5.1 Response Variables or Dependent Variables

Performance is the response variable looked at the experiment. Two metrics are then used
to assess performance: memory consumption and CPU usage.

Memory consumption is retrieved in terms of Resident Set Size (RSS), i.e., the portion
of memory used by a process, and analyzed based on megabytes. CPU usage, on the other
hand, is expressed as the percentage of processor utilized by the given process.

40

4.1.5.2 Factor levels or Treatments

The study is interested in the variation of the underlying reactive libraries used in CEP.js.
Therefore, the levels of the factor are RxJS and Most.js.

4.1.5.3 Experimental Unit

The experimental units consist of an application running in edge devices, more specifi-
cally, single-board computers that have frequently been employed as sensor gateways. The
application analyzes buses’ movement occurrences in the form of streams of events and in-
forms about buses that are arriving at an specific station (complex event). To accomplish
that, streams are structured in the application according to the activity diagram shown in
Figure 8. As shown in the figure, the stream logic makes uses of three pattern operations:
one to check if the bus is within a close area (the minDistance operator), another one to
verify whether the bus is, in fact, closing in a given point location (the movingToward
operator), and, the last one to check the presence of events generated by the two previous
patterns (the all operator). Besides, time-based windows are placed among the pattern
operators since they are all stateful. A point to note in the diagram is that the fork and
join nodes are used to indicate that streams at some point run their jobs in parallel, and
their results are merged afterwards. The activities runs continuously according to the the
events injected for processing.

Figure 8 – The Activities Performed in the Streams

Source: Author

4.1.5.4 Blocking Variables

At the present moment, there are different types of boards with different features in the
market, so they are regarded as blocking variables in the study. Thus, distinct single-board
computers are employed in the experiment. Appendix B includes a complete list of the
boards utilized along with their characteristics. Moreover, taking into account that each
one of the boards, considered on the experiment, support more than one operating system,
distinct operating systems are also used. The relation between board and operating system
can be found in Table 2. A point to observe is that all selected systems are versions that do

41

not have graphical interfaces. This choice was made based on the fact that the majority
of IoT applications may prioritize performance and remote access rather than desktop
usage. Also, all boards utilized in the experiment are powered by power supplies.

Table 2 – The Operating Systems Installed on the Single-Board Computers

Board Operating System

Orange Pi PC Plus Armbian Debian Buster
Raspberry Pi 3B Raspbian Buster Lite
Raspberry Pi 3B+ Ubuntu Server

Source: Author

4.1.6 Workload Characterization

Since the experiment deals with a hypothetical scenario, it is difficult to estimate a real-
world workload characterization or even the load that should be applied to the system
under test, i.e. the application described in Section 4.1.5.3. Additionally, each BRT station
might attend a different quantity of bus lines. In this way, the workload parameters have
been set arbitrarily, but not too distant of a possible real usage.

The load level is controlled by the event rate injected into the system. To cover distinct
conditions that may arise in a real-world scenario or different results produced by the
reactive libraries under specific loads, three load levels, a low, a medium, and a high one,
are applied to the system under test. Table 3 correlates those levels and the respective
event rates measured in events per second. To determine the event rate for each level,
preliminary executions of the experiment were run. The low level rate was determined,
for instance, taking into consideration any perceptible changes in terms of the metrics
considered in the study, i.e., CPU usage and memory consumption. The selection criterion
for the high load, on the other hand, had to take into account the stability of the single-
board computers while receiving the load. The CPU usage of the application running into
the Orange Pi PC Plus, for example, showed an intense and rapid increase by applying
an event rate greater than 1,300 events/second; sometimes, this processing usage reached
100% followed by many network disconnections. Finally, the medium level corresponds to
the average between the event rates of the low and high loads.

Each load level identified in Table 3 is actually subdivided in two phases: an initial
phase in order to warm up the system, and a steady state at which point the measure-
ment takes place. A warm-up phase is a common procedure in performance or loading
testing (MENDES; BIZARRO; MARQUES, 2009; AFFETTI; MARGARA; CUGOLA, 2017). It gi-
ves the opportunity for the system to reach a more stabilized state before starting the
actual measurement (JAIN, 1990; JIANG; HASSAN, 2015). Since there is no consensus about

42

how long the warm-up phase should last, the duration is set to one minute following the
procedure in Mendes, Bizarro and Marques (2009). The event rate, in the first phase,
starts at one event per second and increases linearly to the event rates defined for each
load level. In the second (steady) phase, the test proceeds for 5 more minutes with the
same rate that the warm-up phase ended.

Table 3 – The Loads Applied to the System Under Test

Load Level Event Rate

Low 10 events/second
Medium 655 events/second
High 1,300 events/second

Source: Author

The application runs three concurrent streams, each one taking data from a different
bus line and repeatedly executing the activities identified in Figure 8. The streams utilize
two window operators, one to initially accumulate the injected events and one to store
intermediary complex events. To give the opportunity for the first pattern operator to
deal with a reasonable load, the first window has been set to close every 30 seconds. For
instance, an application receiving a high load level, every time the first window closes,
the first pattern operation would deal with 39,000 events. The second window, conversely,
was set to close more often, every 20 seconds, as complex events should be forward ideally
as soon as possible, and the second window may receive less events since it deals with
composite (complex) events.

The bus line data was retrieved from the dataset based on their completeness and the
actual locations where the buses pass by. A drawback of the dataset is that it contains
some missing data (represented by a NULL entry), and it does not include real bus line
numbers; instead, those line numbers correspond to identifiers from external tables that
were not made available along with the provided dataset5. Thus, the dataset was initially
cleaned to remove all missing data. The fact that the set does not inform the actual line
number makes it difficult to discern which line is a BRT line or not. Rather, the bus line
data was selected based on whether it attended a specific common location where BRT
buses usually travel. By convention, Caxangá Avenue was chosen given its importance not
only for the Recife city but also for the BRT corridor east/west. Three bus line data were
identified in the filtering: line 55, line 68, and line 287. For the fixed location, i.e., the
BRT station, in which the stream logic is checked against, the Forte do Arraial Station
was picked. It is located near the middle of Caxangá Avenue and close to the Cordeiro
5 A sample of the complete dataset can be found in: <https://github.com/carloszimm/dissertation/

blob/master/dataset/sample_dataset.csv>

https://github.com/carloszimm/dissertation/blob/master/dataset/sample_dataset.csv
https://github.com/carloszimm/dissertation/blob/master/dataset/sample_dataset.csv

43

Park. Figure 9, 10, and 11 show excerpts6 from the lines’ travels in different periods of
time7,8 at which point they pass by Forte do Arraial Station (close to the center of the
figures).

Figure 9 – Excerpt from Bus Line 55 Travel

Source: Author

Figure 10 – Excerpt from Bus Line 68 Travel

Source: Author

6 The excerpts were drawn on map with the help of the Geoplaner service<https://www.geoplaner.
com/>.

7 The excerpt from bus line 55: 2018-01-20 4:50:11 AM to 2018-01-20 4:51:41 AM. The excerpt from bus
line 68: 2018-01-21 6:47:03 PM to 2018-01-21 6:48:33 PM. The excerpt from bus line 287: 2017-12-20
5:23:50 AM to 2017-12-20 5:25:10 AM.

8 The buses’ movements are recorded in the dataset in a 30-second interval.

https://www.geoplaner.com/
https://www.geoplaner.com/

44

Figure 11 – Excerpt from Bus Line 287 Travel

Source: Author

Finally, every experimental run is repeated 30 times in order to produce a substantial
large sample of observations.

4.1.7 Experimental Design

The uninterested factors, identified in Section 4.1.5.4, have to be accounted for in the de-
sign of the experiment since they can influence the evaluated response variables (JURISTO;

MORENO, 2013). As stated by Juristo and Moreno (2013), a block design should be used
when there is a blocking variable, so the uninterested factor have equivalent opportunity
of affecting the levels of the factor. Table 4 shows the block design for the study where the
blocking variables are placed on the first column while the treatment’s order of appliance
are organized in a double column. To ensure randomization of both the design construc-
tion and the correct association of each variable in Table 4, we developed a custom script9.
The proper association of the design variables is shown in Table 5.

Table 4 – Block Design

Devices Treatments

Board 1 Treatment A Treatment B
Board 2 Treatment B Treatment A
Board 3 Treatment A Treatment B

Source: Author

9 <https://github.com/carloszimm/dissertation/tree/master/design-generator>

https://github.com/carloszimm/dissertation/tree/master/design-generator

45

Table 5 – Variable’s Association

Variable Value

Board 1 Raspberry Pi 3 B
Board 2 Raspberry Pi 3 B+
Board 3 Orange Pi PC Plus
Treatment A RxJS
Treatment B Most.js

Source: Author

4.1.8 Experiment Instrumentation

According to Jain (1990), a performance measurement has at least two instruments: a load
generator, also called load driver, and a monitoring tool, often referred to as monitor, to
observe and collect the results. In this experiment, FINCoS is used to generate the load
whereas the combination of InfluxDB10 and Telegraf11 is utilized for the monitoring task.
Appendix C gives more details about those tools as well the reason for their choice and
how they are set in the experiment. In addition, Appendix C also includes more detailed
information about how the application was designed, so it could interact with the load
driver and the monitor. The code for the load generator and the application are available
in Appendix D and Appendix E, respectively. The Telegraf script (used to configure the
collection of the metrics), in turn, can be accessed online12. Both the load generator and
monitor (the part responsible for storage and visualization of the results, i.e., influxDB)
were executed under the same host that corresponds to a computer with a Intel Core
i5-72000U (2.5GHz; 128 KB, 512 KB, and 3 MB of L1, L2, and L3 cache, respectively),
8 GB RAM, 1 TB SATA (HD), running Windows 10 x64 Pro Edition.

4.1.9 Data Analysis

The data analysis will comprise two phases. In the first phase, the collected data will be
presented by showing measures such as mean, standard deviation, minimum and maxi-
mum value, in order to facilitate the interpretation of the data. Afterwards, the data will
be analyzed through hypothesis testing. Since there are two treatments in the experiment
and the mean is the statistic under analysis, two statistical techniques may be used de-
pending on whether the samples follow a normal distribution. For the parametric case,
i.e., when the samples are normal distributed, the Independent (Unpaired) t test will be
10 <https://github.com/influxdata/influxdb>
11 <https://github.com/influxdata/telegraf>
12 <https://github.com/carloszimm/dissertation/blob/master/experiment%20application/procstat.

conf>

https://github.com/influxdata/influxdb
https://github.com/influxdata/telegraf
https://github.com/carloszimm/dissertation/blob/master/experiment%20application/procstat.conf
https://github.com/carloszimm/dissertation/blob/master/experiment%20application/procstat.conf

46

utilized. Conversely, the Mann-Whitney U -test will be used for a nonparametric case.
The normality, in turn, will be tested by using the Shapiro-Wilk test.

4.2 EXPERIMENT EXECUTION

The experiment runs respecting the order of treatment appliance identified in Table 4.
For this, it was divided in two rounds, with the first and second treatment columns of
Table 4 representing the rounds. In accordance to the workload, each one of them run
for one minute in the warm-up phase, followed by five minutes during the steady phase.
To be able to simulate the defined phases for the experiment, the data had to actually
be sampled from dataset and inserted in FINCoS in order to create synthetic workloads
that could be more easily manipulated, e.g., to inject them at a particular rate. For data
retrieval from the dataset, the convention adopted was to get data starting from the same
date of the excerpts in Figures 9, 10, and 11 up to 3,100. Moreover, the injection of events
was defined to be deterministic, meaning that they follow the order of items registered
to be sent (in this case, they were inserted in FINCoS following their actual order of
occurrence, i.e., the dataset was sorted before retrieval). Figure 12 shows a FINCoS event
producer, also called driver, right after being loaded, showing the phases, and before
starting execution. The event submission rate depicted in Figure 12 corresponds to a low
load level in that case. More information about the order of execution of the different
experiment instruments can be found in Appendix C.

Figure 12 – Event Producer(Driver) after Being Loaded

Source: Author

47

4.3 THREATS TO VALIDITY

Every empirical study is susceptible to threats to validity. As a general rule, the cur-
rent experiment followed the best practices of experimentation in software engineering,
including some additional steps.

Since nowadays there are many available Single-board Computers (SBCs) that can
be used as gateways, it is unfeasible for a single study to execute experiments on every
single one. Nevertheless, the experiment was run on three SBCs running three different
operating system to attempt mitigating the problem.

None of the replications were executed one after the other on the same board in order
to make sure that each board execute the experiment close to the same initial condition as
recommended by Jain (1990). Moreover, all boards’ processors were equipped with heat
sinks in order to protect them against overheating that could probably interfere in the
data collected. The use of heat sinks becomes even more needed as the Orange Pi PC is
known for presenting heat issues13; yet, the Raspberry Pi Foundation states that one may
not need a heat sink unless under certain situations like overclocking the CPU14.

4.4 ANALYSIS

This section assesses the data collected during the experiment. First, descriptive statistics
are presented in Section 4.4.1. This section is further divided in three sections, 4.4.1.1,
4.4.1.2, and 4.4.1.3, respectively, each one depicting the data collected under the pers-
pective of the different load levels applied. Next, the hypotheses are checked by means
of hypothesis testing in Section 4.4.2. Finally, Section 4.4.3 discusses some of the results
presented in Sections 4.4.1 and 4.4.2.

Before the analysis, the data was retrieved from the InfluxDB database by using the
first and last timestamps stored in the logs generated by FINCoS under the steady phase.
Also, to facilitate visualization, the data are fixed at two decimal places for the descriptive
statistics, but they were actually tested using three decimal places.

As identified in Section 4.1.5.1, the units used for memory consumption and CPU
usage are respectively: megabytes of resident memory occupied by the process and the
percentage of CPU utilized.

The analysis was conducted by using the statistical software IBM SPSS Statistics15.

4.4.1 Descriptive Statistics

This section focus on describing the data collected on the experiment. In this way, it is
subdivided in three different sections (Sections 4.4.1.1, 4.4.1.2, and 4.4.1.3), conforming
13 Available at: <https://linux-sunxi.org/Orange_Pi_PC>. Accessed on: 2019-06-07.
14 Available at: <https://www.raspberrypi.org/documentation/faqs/>. Acessed on: 2019-06-07.
15 <https://www.ibm.com/products/spss-statistics>

https://linux-sunxi.org/Orange_Pi_PC
https://www.raspberrypi.org/documentation/faqs/
https://www.ibm.com/products/spss-statistics

48

to the loads employed in the experiment. Those sections include three tables: two for
presenting the data according to the experimental design and the metrics collected, and
one that summarizes the data under the treatments’ perspective as the hypotheses will be
evaluated by considering the treatments’ application. A point to note is that the boards
used in the experiment are denoted in those tables by the association shown in Table 5.
For instance, board 1 represents the Raspberry Pi 3B.

4.4.1.1 Low Load

Table 6 and Table 7 presents some descriptive statistics for memory consumption and
CPU usage, respectively. By taking a first look at them, one can see that all boards
handled pretty well the workload submitted under this load level, with the greatest mean
memory consumption and CPU usage measuring 46.77 MB and 2.62%, respectively. From
the memory’s perspective, the application running in the Raspberry Pi 3B+ (board 2)
consumed the most memory in either case of the treatment. This contrast with the results
found in the Raspberry Pi 3B (board 1), a previous version of the Raspberry Pi, that has
consumed less. This may be related to some distinct memory management employed by
the different operating systems. On the other hand, in terms of processing usage, the
Orange Pi PC plus (board 3) presented the worst case in general and by taking either
treatment. The Raspberry Pi 3B (board 1), on the other hand, showed the best CPU
footprint on average when using RxJS, whereas the Raspberry Pi 3B+ (board 2) the best
footprint with Most.js.

Table 6 – Descriptive Statistics for Memory Consumption under Low Load

Round Board Treatment Mean Std. Dev. Min Max Sample Size

First
1 RxJS 40.48 0.22 40.23 40.98 30
2 Most.js 46.77 0.42 46.12 47.41 30
3 RxJS 40.00 0.27 39.47 40.44 30

Second
1 Most.js 40.70 0.28 40.18 41.11 30
2 RxJS 46.36 0.20 46.03 46.73 30
3 Most.js 40.54 0.19 40.12 40.89 30

Source: Author

Table 8, in turn, shows descriptive statistics for both memory and CPU usage accor-
ding to the treatments applied. Preliminarily, for the memory metric, the mean statistics
do not seem to have yielded such a great difference. In fact, the percentage difference
between the memory measures is only 0.92%. On the other hand, the means for CPU
usage appears to have produced a more noticeable variation among the measurements,
showing a difference of about 9.48%. Regardless, Most.js presented the greatest averages
and maximum resource usage in either cases, CPU or memory consumption.

49

Table 7 – Descriptive Statistics for CPU Usage under Low Load

Round Board Treatment Mean Std. Dev. Min Max Sample Size

First
1 RxJS 1.79 0.13 1.61 2.07 30
2 Most.js 1.98 0.10 1.81 2.13 30
3 RxJS 2.36 0.17 2.03 2.71 30

Second
1 Most.js 2.02 0.11 1.84 2.22 30
2 RxJS 1.88 0.04 1.79 1.93 30
3 Most.js 2.62 0.18 2.31 2.89 30

Source: Author

Table 8 – Descriptive Statistics for Memory Consumption and CPU Usage under Low
Load Grouped by Treatments

Metric Treatment Mean Std. Dev. Min Max Sample Size

Memory Most.js 42.67 2.93 40.12 47.41 90
RxJS 42.28 2.92 39.47 46.73 90

CPU Most.js 2.21 0.32 1.81 2.89 90
RxJS 2.01 0.28 1.61 2.71 90

Source: Author

4.4.1.2 Medium Load

Table 9 shows the descriptive statistics for memory consumption under the medium load
level. Compared to the low level, the results in this table present more varied differences.
For example, while the Orange Pi PC plus (board 3) produced the smallest memory
footprint on average, 75.89 MB, the Raspberry Pi 3B+ (board 2) yielded the greatest,
141.75 MB; this represents a variation of nearly 60.52%. Both board 2 and board 3
registered the maximum and minimum memory consumption, respectively. Similar to the
results in the low load level, the Raspberry Pi 3B also presented a better consumption
than the Raspberry Pi 3B+ under the perspective of the treatments.

The results concerning CPU usage under the medium load level are depicted in Ta-
ble 10. The Orange Pi PC plus (board 3) continued to present the greatest mean usage of
CPU in general and in the context of Most.js. Surprisingly, the Raspberry Pi 3B+ (board
2) started to present the greatest CPU footprint on average when only considering RxJS
as the reactive library. The Raspberry Pi 3B (board 1) with RxJS, in turn, registered
the smallest CPU footprint on average. The percentage difference between the smallest
and greatest average CPU usage in general is about 43.34%, which is slightly smaller
compared to the percentage of memory difference.

Compared to the measurements in Table 8, the means of Table 11 demonstrate a

50

more noticeable variation between the treatments under a medium load level. In the CPU
usage’s case, Most.js has lead to the greatest CPU footprint on average, which represents
a difference of approximately 28.99% when compared to the use of RxJS. In terms of
memory, on the other hand, Most.js also presented the greatest consumption on average,
measuring 27.29%. This shows a variation in averages of about 29.04%. Moreover, Most.js
also registered the maximum observed value for both metrics.

Table 9 – Descriptive Statistics for Memory Consumption under Medium Load

Round Board Treatment Mean Std. Dev. Min Max Sample Size

First
1 RxJS 78.74 1.69 75.95 82.12 30
2 Most.js 141.75 3.61 135.43 147.59 30
3 RxJS 75.89 2.14 72.34 79.39 30

Second
1 Most.js 101.25 3.35 98.67 113.14 30
2 RxJS 100.45 1.34 96.58 105.23 30
3 Most.js 98.72 1.69 94.19 103.72 30

Source: Author

Table 10 – Descriptive Statistics for CPU Usage under Medium Load

Round Board Treatment Mean Std. Dev. Min Max Sample Size

First
1 RxJS 19.16 1.62 16.71 21.91 30
2 Most.js 25.13 1.22 22.91 26.66 30
3 RxJS 20.07 0.85 18.32 21.54 30

Second
1 Most.js 26.98 1.31 25.01 29.20 30
2 RxJS 21.93 1.90 18.89 25.04 30
3 Most.js 29.76 1.51 27.71 31.95 30

Source: Author

Table 11 – Descriptive Statistics for Memory Consumption and CPU Usage under Me-
dium Load Grouped by Treatments

Metric Treatment Mean Std. Dev. Min Max Sample Size

Memory Most.js 113.90 20.04 94.19 147.59 90
RxJS 85.02 11.16 72.34 105.23 90

CPU Most.js 27.29 2.34 22.91 31.95 90
RxJS 20.38 1.90 16.71 25.04 90

Source: Author

51

4.4.1.3 High Load

Table 12 gathers the results of memory consumption measurements under the high load
level. A first inspection reveals that the differences have become even more disparate.
While the smallest average memory measure was 89.97 MB, produced by the Orange Pi
PC plus (board 3) by using RxJS, the greatest measure, yielded by the Raspberry Pi 3B+
(board 2) with Most.js, was 230.16 MB; those two boards also registered the minimum
and and maximum memory consumption, respectively. In the treatments’ perspective, the
Raspberry Pi 3B+ (board 2) using Most.js produced the greatest memory footprint on
average as well.

The descriptive statistics for CPU utilization under high load level are displayed on
Table 13. As in the previous loads, the Orange Pi PC plus (board 3) still remains the
board with the greatest CPU consumption on average, representing 45.33% of usage. This
observation also extends to both treatments, in contrast to the results under medium load
in which the Raspberry Pi 3B+ (board 2) presented the greatest average value by using
RxJS. The maximum usage value, 50.17%, was also registered in the Orange Pi PC plus
(board 3). Meanwhile, the Raspberry Pi 3B+ (board 2) produced the smallest mean CPU
usage in general and by taking either treatments. Different from memory consumption, the
variation between the smallest mean measure and the highest one was smaller, consisting
of, in terms of percentage, 32.07%.

On the other hand, Table 14 demonstrates the results, obtained through the high
load level, grouped by the treatments. Following the tendency of the medium load level,
the average memory measure for Most.js continued to show a higher value compared to
RxJS memory, with a percentage variation of approximately 64.10%. This difference is
even higher when considering the maximum values rather than the average measures.
The high consumption of memory by Most.js is also reflected on the average CPU usage,
showing a variation of 20.07%. Nevertheless, this difference was smaller than the variation
observed in the medium load results concerning the mean CPU usage.

Table 12 – Descriptive Statistics for Memory Consumption under High Load

Round Board Treatment Mean Std. Dev. Min Max Sample Size

First
1 RxJS 93.43 0.53 92.53 94.22 30
2 Most.js 230.16 34.45 174.84 287.55 30
3 RxJS 89.97 2.25 86.96 93.98 30

Second
1 Most.js 206.17 16.86 175.03 240.38 30
2 RxJS 125.97 4.13 118.89 131.29 30
3 Most.js 164.89 21.80 128.22 206.75 30

Source: Author

52

Table 13 – Descriptive Statistics for CPU Usage under High Load

Round Board Treatment Mean Std. Dev. Min Max Sample Size

First
1 RxJS 33.31 0.94 31.59 35.34 30
2 Most.js 37.85 2.51 33.61 41.58 30
3 RxJS 34.63 1.25 32.55 36.63 30

Second
1 Most.js 40.03 2.03 37.05 43.29 30
2 RxJS 32.80 3.00 28.17 37.70 30
3 Most.js 45.33 3.08 40.55 50.17 30

Source: Author

Table 14 – Descriptive Statistics for Memory Consumption and CPU Usage under High
Load Grouped by Treatments

Metric Treatment Mean Std. Dev. Min Max Sample Size

Memory Most.js 200.40 37.00 128.22 287.55 90
RxJS 103.12 16.53 86.96 131.29 90

CPU Most.js 41.07 4.06 33.61 50.17 90
RxJS 33.58 2.08 28.17 37.70 90

Source: Author

4.4.2 Hypothesis Testing

In order to verify the differences between Most.js and RxJS, it was initially performed
normality tests on all samples. The normality was checked by using the Shapiro-Wilk test,
and the results are presented in Table 15.

By inspecting Table 15, the majority of the p-values are less or equal to 0.05. Since
both samples under test, either taking Most.js or RxJS as treatments, are required to
be approximated to the normal distribution in order to run a parametric test, a non-
parametric test was used to evaluate the hypotheses. As indicated in Section 4.1.9, the
analysis proceeded with the Mann-Whitney U -test and a significance level set to 0.05.
The results of the tests are gathered in Table 16. It is important to note that the statistics
presented in this table are an approximation to the normal distribution as all the samples
are large.

The inspection of the p-values in Table 16 for both memory consumption and CPU
usage reveals values that are less than or equal to 0.05 for all cases. This indicates that
there is a statistically significant difference among the samples. Additionally, by using the
critical region method, the null hypotheses must not be rejected if the statistics are less
or equal to 1.96 or greater or equal to -1.96. Since all the statistics are less than -1.96 and
all p-values are less or equal to 0.05, the null hypotheses for both memory consumption

53

Table 15 – Shapiro-Wilk Test Results

Metric Load Treatment Statistics P-value Normal

Memory

Low Most.js 0.685 0.000 false
RxJS 0.690 0.000 false

Medium Most.js 0.705 0.000 false
RxJS 0.758 0.000 false

High Most.js 0.978 0.134 true
RxJS 0.737 0.000 false

CPU

Low Most.js 0.872 0.000 false
RxJS 0.901 0.000 false

Medium Most.js 0.971 0.042 false
RxJS 0.978 0.129 true

High Most.js 0.966 0.020 false
RxJS 0.961 0.009 false

Source: Author

and CPU usage under all load levels can be rejected with a confidence level of 95%.

Table 16 – Mann-Whitney U -test Results

Metric Load Statistics P-value Sum of Ranks Sample Size
Most.js RxJS Most.js RxJS

Memory
Low -3.988 0.000 9,539.00 6,751.00 90 90
Medium -7.993 0.000 10,939.00 5,351.00 90 90
High -11.555 0.000 12,184.00 4,106.00 90 90

CPU
Low -4.602 0.000 9,753.50 6,536.50 90 90
Medium -11.372 0.000 12,120.00 4,170.00 90 90
High -10.784 0.000 11,914.50 4,375.50 90 90

Source: Author

4.4.3 Discussion

Sections 4.4.1.1, 4.4.1.2, and 4.4.1.3 described the descriptive statistics for all load level.
Initially, under the low load, the differences did not present so disparate, specially for
memory consumption. As the loads became higher, the measures and variations became
more perceptible, and the variations of average memory consumption started to overtake
the differences in mean CPU usage. The bar chart in Figure 13 summarizes this scenario
by considering the percentage differences of the resources’ average usage along the applied

54

load levels. In all those loads, Most.js has yielded the greatest mean value for both CPU
and memory consumption.

Figure 13 – Percentage Differences along the Load Levels

Source: Author

The results provided by the hypothesis testing in Section 4.4.2 indicate that the diffe-
rences in mean memory consumption and CPU usage under the context of all load levels
are statistically significant. In other words, those are consonant with the descriptive sta-
tistics shown in Section 4.4.1, suggesting a superior usage of both resources, memory and
CPU, by Most.js. By the same token, the sum of ranks for Most.js regarding both metrics
in Table 16 also support those indications of the descriptive statistics.

Recapping the research question “When expressing CEP reactively in a Edge Analytics
context, which performance aspects are more affected by the reactive libraries?”, we can
come to a conclusion that, for both metrics analyzed, i.e., memory consumption and CPU
usage, Most.js was the reactive library that presented the worst results on average. Interes-
tingly, the results of the present study slightly contrast with the recent work (ZIMMERLE

et al., 2019) we conducted to assess energy consumption of smartphones by considering
the same reactive libraries. In that study, we concluded that energy consumption was
affected, and the results pointed toward RxJS as the less performant. Nonetheless, that
study was conducted under different circumstances, such as a different workload charac-
terization, including a distinct load level, loading generation mechanism, and number of
devices, among other factors.

55

5 CONCLUSIONS AND FUTURE WORK

Reactive applications are a vital class of systems devised to react to event occurrences
involving an area of interest in a timely fashion. Several approaches have been proposed
to support those applications, and two of them have recently drawn attention: Complex
Event Processing and Reactive Languages. Even though they have been developed by
different communities, they share some key aspects and are somewhat complementary
solutions. Furthermore, performance is an important characteristic in the context of re-
active applications, and different studies and optimization mechanisms have been devised
in the last years. Meanwhile, a trend involving the IoT environment is emerging in which
part of the data processing is migrated to the edge of the network. Reasons behind the ap-
pearance of this tendency include factors like latency requirements, bandwidth problems,
and privacy concerns. Finding the balance between the construction of applications that
quickly react to constant events and tools that better address the challenges regarding
the constrained nature of the edge is becoming an important matter.

The goal of the present study was twofold. First, we introduced the JavaScript library,
called CEP.js, that we have been developing in which allows to express CEP operations
in a reactive environment. This library works as a wrapper for other reactive libraries,
which, in turn, enables the manipulation of the reactive stream abstraction while offering
a common syntax and semantics regardless of the underlying reactive library utilized. It
was exposed how we have been approaching a more loosely couple characteristic toward
the reactive libraries, highlighting the benefits and also the challenges involved. Moreover,
the main components were presented, and demonstrated through a succinct example.

In addition to introducing CEP.js, we conducted an empirical study to evaluate which
performance aspects are more affected by the CEP.js’ reactive libraries, Most.js and RxJS.
The experiment ran in the context of Edge Analytics with data retrieved from a public
transportation dataset. Three single-board computers, often used as gateways in IoT, were
used in the experiment to execute the application. The metrics assessed, in turn, were
memory consumption, an important matter in CEP systems, and CPU usage, given the
resource-constrained environment concerning the experiment. Each application, running
in the boards, received three different load levels: low, medium, and high. In this way,
different situations could be covered, which includes a reactive library performing better
than another under a different load level. After the experiment execution, the collected
data was evaluated by statistical means.

The analysis revealed that, initially, the produced differences regarding the average
measures were not so perceptible, specially considering memory consumption. As the loads
increased, those differences started growing with Most.js showing the worst results for
both metrics under all loads. In order to check whether those differences were statistically

56

significant, we ran a non-parametric statistical test on the samples. After running the
tests, we could come to conclusion that the differences were significant, and that Most.js,
in fact, was the library that more affected the considered performance aspects, memory
consumption and CPU usage.

5.1 FUTURE WORK

5.1.1 CEP.js Development

Many features have been implemented in CEP.js already, but there are many other as-
pects to explore which includes other operations, be it stream-manipulation or pattern
operations. Etzion and Niblett (2011) define 31 pattern operations from which 26 have
been implemented in CEP.js. Nevertheless, Etzion and Niblett (2011) state that many
more pattern can be derived from the supplied material. An interesting aspect that we
are starting to look at is policies. They help to refine the semantics of some operations.
Therefore, those two aspects, operations and polices, will be the focus for future releases.
Additionally, other reactive libraries may be incorporated to CEP.js which can bring new
ideas and the possibility of new experiments.

5.1.2 Usability Test

CEP.js has been implemented as (reactive) library rather than an extension for the sup-
ported libraries. Therefore, it will be helpful to conduct usability tests in order to analyze
the intuitiveness of library, which includes its operations, data model, and other sup-
porting constructs in general. The results can provide insights about which aspects need
improvement or guidance regarding future releases.

5.1.3 Performance Analysis

Jain (1990) states that a performance test should resemble characteristics observed in a
real workload. A limitation of the present work was that it was based on a hypothetical but
feasible scenario. Therefore, as a future work, we expect to replicate the experiment taking
into consideration a real scenario in which we can work with a real workload. Furthermore,
although different single-board computers running distinct operating systems were utilized
in the experiment, the characteristics of the boards are somewhat close. It might me be
interesting to rerun the experiment considering other boards with more distinct features.
Finally, the current work focused on the performance aspects impacted by the CEP.js’
underlying reactive libraries. In the future, we plan to conduct new empirical studies to
assess the solution, CEP.js, as a whole.

57

REFERENCES

AFFETTI, L.; MARGARA, A.; CUGOLA, G. Flowdb: Integrating stream processing
and consistent state management. In: ACM. Proceedings of the 11th ACM International
Conference on Distributed and Event-based Systems. [S.l.], 2017. p. 134–145.

AI, Y.; PENG, M.; ZHANG, K. Edge computing technologies for internet of things: a
primer. Digital Communications and Networks, Elsevier, v. 4, n. 2, p. 77–86, 2018.

AKBAR, A.; CARREZ, F.; MOESSNER, K.; SANCHO, J.; RICO, J. Context-aware
stream processing for distributed iot applications. In: IEEE. 2015 IEEE 2nd World
Forum on Internet of Things (WF-IoT). [S.l.], 2015. p. 663–668.

ASSUNCAO, M. D. de; VEITH, A. da S.; BUYYA, R. Distributed data stream
processing and edge computing: A survey on resource elasticity and future directions.
Journal of Network and Computer Applications, Elsevier, v. 103, p. 1–17, 2018.

BAINOMUGISHA, E.; CARRETON, A. L.; CUTSEM, T. v.; MOSTINCKX, S.;
MEUTER, W. d. A survey on reactive programming. ACM Computing Surveys (CSUR),
ACM, v. 45, n. 4, p. 52, 2013.

BURCHETT, K.; COOPER, G. H.; KRISHNAMURTHI, S. Lowering: A static
optimization technique for transparent functional reactivity. In: ACM. Proceedings of the
2007 ACM SIGPLAN symposium on Partial evaluation and semantics-based program
manipulation. [S.l.], 2007. p. 71–80.

BUYYA, R.; DASTJERDI, A. V. Internet of Things: Principles and paradigms. [S.l.]:
Elsevier, 2016.

CHEN, C. Y.; FU, J. H.; SUNG, T.; WANG, P.-F.; JOU, E.; FENG, M.-W. Complex
event processing for the internet of things and its applications. In: IEEE. 2014 IEEE
International Conference on Automation Science and Engineering (CASE). [S.l.], 2014.
p. 1144–1149.

CHOOCHOTKAEW, S.; YAMAGUCHI, H.; HIGASHINO, T.; SHIBUYA, M.;
HASEGAWA, T. Edgecep: Fully-distributed complex event processing on iot edges. In:
IEEE. 2017 13th International Conference on Distributed Computing in Sensor Systems
(DCOSS). [S.l.], 2017. p. 121–129.

CUGOLA, G.; MARGARA, A. Processing flows of information: From data stream to
complex event processing. ACM Computing Surveys (CSUR), ACM, v. 44, n. 3, p. 15,
2012.

DANIELS, P. P.; ATENCIO, L. RxJS in Action. [S.l.]: Manning Publications Co., 2017.

DAYARATHNA, M.; PERERA, S. Recent advancements in event processing. ACM
Computing Surveys (CSUR), ACM, v. 51, n. 2, p. 33, 2018.

ECKERT, M.; BRY, F.; BRODT, S.; POPPE, O.; HAUSMANN, S. A cep babelfish:
Languages for complex event processing and querying surveyed. In: Reasoning in
Event-Based Distributed Systems. [S.l.]: Springer, 2011. p. 47–70.

58

ETZION, O.; NIBLETT, P. Event processing in action. [S.l.]: Manning Greenwich, 2011.

FARDBASTANI, M. A.; SHARIFI, M. Scalable complex event processing using adaptive
load balancing. Journal of Systems and Software, Elsevier, v. 149, p. 305–317, 2019.

FONSECA, J.; FERRAZ, C.; GAMA, K. Migrating complex event processing in the web
of things. In: ACM. Proceedings of the 24th Brazilian Symposium on Multimedia and the
Web. [S.l.], 2018. p. 323–326.

GAMMA, E. Design patterns: elements of reusable object-oriented software. [S.l.]:
Pearson Education India, 1995.

GOLDSMITH, O. The Citizen of the World; or Letters from a Chinese Philosopher,
Residing in London, to his Friends in the East. [S.l.]: Barber and Southwick, 1794.

GOODMAN, J.; LAUBE, M.; SCHWENK, J. Curitiba’s bus system is model for rapid
transit. Race, Poverty and the environment, p. 75–76, 2005.

GOVINDARAJAN, N.; SIMMHAN, Y.; JAMADAGNI, N.; MISRA, P. Event processing
across edge and the cloud for internet of things applications. In: COMPUTER SOCIETY
OF INDIA. Proceedings of the 20th International Conference on Management of Data.
[S.l.], 2014. p. 101–104.

GRADVOHL, A. L. S. Investigating metrics to build a benchmark tool for complex
event processing systems. In: IEEE. 2016 IEEE 4th International Conference on Future
Internet of Things and Cloud Workshops (FiCloudW). [S.l.], 2016. p. 143–147.

GRAUBNER, P.; THELEN, C.; KÖRBER, M.; STERZ, A.; SALVANESCHI, G.;
MEZINI, M.; SEEGER, B.; FREISLEBEN, B. Multimodal complex event processing
on mobile devices. In: ACM. Proceedings of the 12th ACM International Conference on
Distributed and Event-based Systems. [S.l.], 2018. p. 112–123.

HANIF, M.; YOON, H.; LEE, C. Benchmarking tool for modern distributed stream
processing engines. In: IEEE. 2019 International Conference on Information Networking
(ICOIN). [S.l.], 2019. p. 393–395.

INFLUXDATA. Time series database (TSDB) explained. 2019. <https://www.
influxdata.com/time-series-database/>. Accessed on: 2019-05-15.

JAIN, R. The art of computer systems performance analysis: techniques for experimental
design, measurement, simulation, and modeling. [S.l.]: John Wiley & Sons, 1990.

JIANG, Z. M.; HASSAN, A. E. A survey on load testing of large-scale software systems.
IEEE Transactions on Software Engineering, IEEE, v. 41, n. 11, p. 1091–1118, 2015.

JURISTO, N.; MORENO, A. M. Basics of software engineering experimentation. [S.l.]:
Springer Science & Business Media, 2013.

KUBOI, S.; BABA, K.; TAKANO, S.; MURAKAMI, K. An evaluation of a complex
event processing engine. In: IEEE. 2014 IIAI 3rd International Conference on Advanced
Applied Informatics. [S.l.], 2014. p. 190–193.

LI, C.; BERRY, R. Cepben: a benchmark for complex event processing systems. In:
SPRINGER. Technology Conference on Performance Evaluation and Benchmarking.
[S.l.], 2013. p. 125–142.

https://www.influxdata.com/time-series-database/
https://www.influxdata.com/time-series-database/

59

LUCKHAM, D. C. Event processing for business: organizing the real-time enterprise.
[S.l.]: John Wiley & Sons, 2011.

MARGARA, A.; SALVANESCHI, G. Ways to react: Comparing reactive languages and
complex event processing. REM, p. 14, 2013.

MARGARA, A.; SALVANESCHI, G. We have a dream: Distributed reactive
programming with consistency guarantees. In: ACM. Proceedings of the 8th ACM
International Conference on Distributed Event-Based Systems. [S.l.], 2014. p. 142–153.

MARGARA, A.; SALVANESCHI, G. On the semantics of distributed reactive
programming: the cost of consistency. IEEE Transactions on Software Engineering,
IEEE, v. 44, n. 7, p. 689–711, 2018.

MENDES, M.; BIZARRO, P.; MARQUES, P. A framework for performance evaluation
of complex event processing systems. In: ACM. Proceedings of the second international
conference on Distributed event-based systems. [S.l.], 2008. p. 313–316.

MENDES, M.; BIZARRO, P.; MARQUES, P. Fincos: benchmark tools for event
processing systems. In: ACM. Proceedings of the 4th ACM/SPEC International
Conference on Performance Engineering. [S.l.], 2013. p. 431–432.

MENDES, M.; BIZARRO, P.; MARQUES, P. Towards a standard event processing
benchmark. In: ACM. Proceedings of the 4th ACM/SPEC International Conference on
Performance Engineering. [S.l.], 2013. p. 307–310.

MENDES, M. R.; BIZARRO, P.; MARQUES, P. A performance study of event
processing systems. In: SPRINGER. Technology Conference on Performance Evaluation
and Benchmarking. [S.l.], 2009. p. 221–236.

MOGK, R.; SALVANESCHI, G.; MEZINI, M. Reactive programming experience with
rescala. In: ACM. Conference Companion of the 2nd International Conference on Art,
Science, and Engineering of Programming. [S.l.], 2018. p. 105–112.

SALVANESCHI, G.; AMANN, S.; PROKSCH, S.; MEZINI, M. An empirical study on
program comprehension with reactive programming. In: ACM. Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software Engineering.
[S.l.], 2014. p. 564–575.

SALVANESCHI, G.; DRECHSLER, J.; MEZINI, M. Towards distributed reactive
programming. In: SPRINGER. International Conference on Coordination Languages and
Models. [S.l.], 2013. p. 226–235.

SALVANESCHI, G.; HINTZ, G.; MEZINI, M. Rescala: Bridging between object-oriented
and functional style in reactive applications. In: ACM. Proceedings of the 13th
international conference on Modularity. [S.l.], 2014. p. 25–36.

SALVANESCHI, G.; MARGARA, A.; TAMBURRELLI, G. Reactive programming:
A walkthrough. In: IEEE. 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering. [S.l.], 2015. v. 2, p. 953–954.

SALVANESCHI, G.; PROKSCH, S.; AMANN, S.; NADI, S.; MEZINI, M. On the
positive effect of reactive programming on software comprehension: An empirical study.
IEEE Transactions on Software Engineering, IEEE, v. 43, n. 12, p. 1125–1143, 2017.

60

SHARON, G.; ETZION, O. Event-processing network model and implementation. IBM
Systems Journal, IBM, v. 47, n. 2, p. 321–334, 2008.

SOMMERVILLE, I. Software engineering 9th Edition. [S.l.: s.n.], 2011.

WAHL, A.; HOLLUNDER, B. Performance measurement for cep systems. In: Proceedings
of the 4th International Conferences on Advanced Service Computing. [S.l.: s.n.], 2012.
p. 116–121.

WU, E.; DIAO, Y.; RIZVI, S. High-performance complex event processing over
streams. In: ACM. Proceedings of the 2006 ACM SIGMOD international conference on
Management of data. [S.l.], 2006. p. 407–418.

ZHANG, H.; DIAO, Y.; IMMERMAN, N. On complexity and optimization of expensive
queries in complex event processing. In: ACM. Proceedings of the 2014 ACM SIGMOD
international conference on Management of data. [S.l.], 2014. p. 217–228.

ZIMMERLE, C.; OLIVEIRA, W.; GAMA, K.; CASTOR, F. Reactive-based complex
event processing: An overview and energy consumption analysis of cep.js. In: ACM.
XXXIII Brazilian Symposium on Software Engineering (SBES 2019), September 23–27,
2019, Salvador, Brazil. [S.l.], 2019.

61

APPENDIX A – IMPLEMENTED PATTERN OPERATIONS

Table 17 – Implemented CEP patterns

(Continued on the next page)

Operator Description

absence It is satisfied when there are no event instances according
to the event type identifiers informed.

all It looks for an occurrence of each event type identifier infor-
med.

always It is satisfied when all participant events match a given as-
sertion.

any It looks for an occurrence of any event type identifier infor-
med.

avgDistance It is matched when the average distance of the events’ lo-
cations from a given fixed-point location satisfies a passed
threshold assertion.

count It counts the number of participant events and tests an as-
sertion against this total.

decreasing Given a temporarily ordered set of participant event instan-
ces, this pattern checks if a specified attribute is decreasing.

increasing Given a temporarily ordered set of participant event instan-
ces, this pattern checks if a specified attribute is increasing.

maxDistance It is matched when the maximal distance of the events’ lo-
cations from a given fixed-point location satisfies a passed
threshold assertion.

minDistance It is matched when the minimal distance between the events’
locations and a given fixed-point location satisfies a passed
threshold assertion.

mixed Given a temporarily ordered set of participant event ins-
tances, this pattern checks if a specified attribute is both
increasing and decreasing.

movingToward Given an ordered set of events, this patterns is matched
when, for any pair in this set, the last event is closer to a
given location.

62

Table 17 – Implemented CEP patterns

(Conclusion)

Operator Description

nHighestValues It selects a subset of the participant events with the n
highest values of a given event attribute.

nLowestValues It selects a subset of the participant events with the n lowest
values of a given event attribute.

nonDecreasing Given a temporarily ordered set of participant event instan-
ces, this pattern checks if a specified attribute is not decre-
asing.

nonIncreasing Given a temporarily ordered set of participant event instan-
ces, this pattern checks if a specified attribute is not incre-
asing.

relativeAvgDistance It is matched when the average distance among the events’
locations satisfies a given threshold assertion.

relativeMaxDistance It is matched when the maximal distance among the events’
locations satisfies a given threshold assertion.

relativeMinDistance It is matched when the minimal distance among the events’
locations satisfies a given threshold assertion.

sometimes It is satisfied when at least one participant event matches a
given assertion.

stable Given a temporarily ordered set of participant event instan-
ces, this pattern checks if a specified attribute has the same
value.

valueAvg It selects an event attribute in every participant event and
tests that attribute average value against a threshold asser-
tion.

valueMax It selects an event attribute in every participant event and
tests that attribute maximal value against a threshold as-
sertion.

valueMin It selects an event attribute in every participant event and
tests that attribute minimal value against a threshold asser-
tion.

Source: Author, Etzion and Niblett (2011)

63

APPENDIX B – SINGLE-BOARD COMPUTERS

Table 18 lists the single-board computers utilized in the experiment along with their
characteristics. All boards in this table have the same amount of primary memory (RAM),
i.e., 1 gigabyte. Moreover, Table 19 relates the years of manufacture with the single-board
computers.

Table 18 – The Single-Board Computers Used in the Experiment along with their Featu-
res

Board HD Cache Chipset CPU
L1 L2

Orange Pi
PC Plus

32 GB
class 10

64 KB 512 KB Allwinner
H3

Quad-core 1.3 GHz
Cortex-A7 (ARMv7)

Raspberry Pi
3 B

16 GB
class 10

32 KB 512 KB Broadcom
BCM2837

Quad-core 1.2 GHz
Cortex-A53 (ARMv8)

Raspberry Pi
3 B+

32 GB
class 4

32 KB 512 KB Broadcom
BCM2837B0

Quad-core 1.4 GHz
Cortex-A53 (ARMv8)

Source: Author

Table 19 – Year of Manufacture of The Single-Board Computers

Board Year

Orange Pi PC Plus 2015
Raspberry Pi 3 B 2015
Raspberry Pi 3 B+ 2017

Source: Author

64

APPENDIX C – EXPERIMENT INSTRUMENTATION

This Appendix describes the experiment instruments utilized in the empirical study of
the present work.

C.1 LOAD GENERATOR

As exposed in Section 2.1.4, FINCoS is a benchmarking tool created by the BiCEP project
that proposes a neutral approach for load generation and measurement of CEP platform. It
has been the subject of at least two research papers (MENDES; BIZARRO; MARQUES, 2008;
MENDES; BIZARRO; MARQUES, 2013a), and it has been applied in previous performance
studies as well (MENDES; BIZARRO; MARQUES, 2009; KUBOI et al., 2014). For those reasons,
it was chosen as the load driver for the current study. Figure 14 depicts a FINCoS general
overview. The framework enables to define flexible workloads, allowing one to determine,
for example, the injection rate of events, the respective duration, and either a synthetic
workload or a workload derived from a given dataset. It also introduces two components
to simulate event producers and consumers, namely drivers and sinks. The performance
tester thus is able to set how many drivers or sinks the analysis will have, and each
one of the drivers with specific workload characterizations. Moreover, FINCoS allows
to customize the workload in phases which is very important to studies that take into
consideration different load stages.

Figure 14 – FINCoS Overview

Source: Mendes, Bizarro and Marques (2013a)

To communicate with the CEP platforms, FINCoS adopts the idea of adapters1, so
1 A procedure routinely adopted by CEP engines as well.

65

events generated by the drivers and received by the sinks can be modified according to
the specific target. By the time of writing, it offers only two adapters out-of-box, one
for solutions that uses JMS framework and one for Esper2. Additionally, users can create
custom adapters which allow the support of distinct engines with different communication
protocols. Unfortunately, the creation of the adapter is not straight forward, requiring
one to touch the source code (developed in Java). For the present study, an adapter was
implemented by using the socket.io3 project. Socket.io is a event-based library that aims
to provide real-time communication. Hence, it has its own protocol and provides a reliable
bidirectional connection between client and server. The library is composed of two sub-
libraries, a client and a server, and, in spite of the fact that they were developed primarily
in JavaScript/Node.js, the client currently offers support for other languages like Java and
Swift. In short, the reliable connection and support for both Java and JavaScript were
among the reasons of its adoption. Also, the adapter is used to both raise drivers and sinks
instances, so the adapter has to account for a bidirectional communication. Moreover, by
structuring the interaction in the adapter and the application through events, it is easy
to encapsulate those in CEP.js streams. The adapter code is included in Appendix D.

C.2 MONITOR

Despite having some monitoring capabilities, FINCoS is not suitable for the metrics looked
for in the study. Instead, two artifacts are used: InfluxDB4 and Telegraf5. InfluxDB is a
time-series database, specifically designed for optimized storage of timestamped data (IN-

FLUXDATA, 2019). It integrates a series of other open-source tools such as Telegraf, Ch-
ronograf, and Kapacitor, all together named the TICK stack. Within this stack, Telegraf
acts as a lightweight metric collector for InfluxDB that offers a myriad of plugins, each
targeting a specific set of metrics within the system. In compliance with the study goal,
the plugin called procstat6 is used. It can be configured to drive Telegraf to track data of
a particular process. So, while FINCoS submits load on the application, InfluxDB records
the metrics collected by Telegraf. Afterwards, the timestamps found in the logs generated
by FINCoS can be utilized to query InfluxDB, together with the host name of leveraged
devices.

C.3 APPLICATION DESIGN

The application is architected according to the logic depicted in Figure 8 and the bu-
ses’ lines to be processed. Socket.io, the mechanism used for communication, makes use
2 <http://www.espertech.com/esper>
3 <https://socket.io/>
4 <https://github.com/influxdata/influxdb>
5 <https://github.com/influxdata/telegraf>
6 <https://github.com/influxdata/telegraf/tree/master/plugins/inputs/procstat>

http://www.espertech.com/esper
https://socket.io/
https://github.com/influxdata/influxdb
https://github.com/influxdata/telegraf
https://github.com/influxdata/telegraf/tree/master/plugins/inputs/procstat

66

of event-based model, in which client and server can both send event data and register
listeners (callbacks) to handle events. In this way, the application is set to handle events
coming through the given identifiers: line55, line68, and line287. Furthermore, those iden-
tifiers are stored in an array to facilitate the inclusion of new supported events in future
studies. Figure 15 shows the stream logic of the application, i.e., the main part of it. It
is basically a translation of the activities depicted in Figure 8. Once a complex event
is generated, it is broadcast to those listening on events coming through the “Bus Arri-
ving” identifier. Inside FINCoS, the sink is set to receive events from this output stream,
“Bus Arriving”. That sink could represent any consumer in the context of the hypotheti-
cal scenario of the experiment, be it another board or any other device configured with
Socket.io.

Figure 15 – General Stream Logic

Source: Author

The choice of which underlying library that should be loaded with CEP.js is done by
passing an argument in the application initialization. Thus, when starting the execution
of the application, one can pass either “rx” or “most”, and the application automatically
loads the correct library. Moreover, to inform that an user (driver or sink in that case)
has successfully connected to the server (application), a message is displayed through the
console of the environment at which the application is running. This ensures that the
drivers and sinks loaded through FINCoS in fact established a connection and are ready
to start the test execution.

As a mean to support future scenarios and studies, the events are internally recast to
new event identifiers in order to accommodate cases when there are more than one event
producer sending events through the same identifier, which it is not the actual situation
of the present work.

67

The code for the experiment application can be found in Appendix E.

C.4 EXPERIMENT ORDER OF EXECUTION

The correct order of execution can be summarized as: Given that the InfluxDB is alre-
ady running, start the application first, followed by Telegraf and, finally, FINCoS. The
application must run previously Telegraf, since their interaction is based on a pid file
that, in turn, is written right after the application startup. Moreover, once FINCoS (the
controller component) is in execution, one must first load the driver and sinks before
execution takes place. Once the load has finished, the injection logs produced by FINCoS
are stored for posterior database querying. To facilitate posterior analysis, each log entry
was set to have a field specifically denoting whether that entry belongs to the warm-up
phase, not considered for the analysis, or the steady phase. All the logs as well as FINCoS
configuration file (XML) were made publicly available7 for external replication purposes.

7 <https://github.com/carloszimm/dissertation/tree/master/FINCoS>

https://github.com/carloszimm/dissertation/tree/master/FINCoS

68

APPENDIX D – FINCOS ADAPTER

Listing D.1 – Code that Implements the Basic Logic of the FINCoS Adapter

2 package pt.uc.dei.fincos.adapters.cep;

4 import java.util.Properties;

6 import io.socket.client.IO;

import io.socket.client.Socket;

8 import io.socket.emitter.Emitter;

import io.socket.engineio.client.transports.WebSocket;

10
import org.json.JSONObject;

12
import pt.uc.dei.fincos.basic.Attribute;

14 import pt.uc.dei.fincos.basic.CSV_Event;

import pt.uc.dei.fincos.basic.Event;

16 import pt.uc.dei.fincos.basic.Status;

import pt.uc.dei.fincos.basic.Step;

18 import pt.uc.dei.fincos.sink.Sink;

20 public class CepjsInterface extends CEP_EngineInterface{

22 private Socket socket;

24 private static CepjsInterface instance = null;

26 public static synchronized CepjsInterface getInstance(Properties connProps ,

int rtMode , int rtResolution) {

28 if (instance == null) {

instance = new CepjsInterface(connProps , rtMode , rtResolution);

30 }

return instance;

32 }

34 private static synchronized void destroyInstance () {

instance = null;

36 }

38 public CepjsInterface(Properties connProps , int rtMode , int rtResolution) {

super(rtMode , rtResolution);

40 this.status = new Status(Step.DISCONNECTED , 0);

this.setConnProperties(connProps);

42 }

44 @Override

public synchronized void send(Event e) throws Exception {

46 if (this.status.getStep () == Step.READY || this.status.getStep () == Step.

CONNECTED) {

48 // constructs JSON object to be sent

JSONObject obj = new JSONObject ();

69

50
// populates the object

52 for(Attribute att: e.getAttributes ()) {

obj.put(att.getName (), e.getAttributeValue(att.getName ()));

54 }

obj.put("timestamp", e.getTimestamp ());

56
this.socket.emit(e.getType ().getName (), obj);

58 }

}

60
@Override

62 public void send(CSV_Event event) throws Exception {

64 }

66 @Override

public synchronized boolean connect () throws Exception {

68 // informed through the GUI

String address = this.retrieveConnectionProperty("address");

70
// sets websocket as the default protocol

72 IO.Options options = new IO.Options ();

options.transports = new String [] { WebSocket.NAME };

74
this.socket = IO.socket("http ://" + address , options);

76 this.socket.on(Socket.EVENT_CONNECT , new Emitter.Listener () {

@Override

78 public void call(Object ... args) {

status.setStep(Step.CONNECTED);

80 }

});

82
this.socket.connect ();

84
// the above operation is asynchronous

86 Thread.sleep (5000);

88 if(!this.socket.connected ()) {

this.status.setStep(Step.ERROR);

90 return false;

}

92
return true;

94 }

96 @Override

public synchronized boolean load(String [] outputStreams , Sink sinkInstance)

throws Exception {

98 // This interface instance has already been loaded

if (this.status.getStep () == Step.READY) {

100 return true;

} else { // If it is not connected yet , try to connect

102 if (!this.socket.connected ()) {

this.connect ();

104 }

}

70

106
if (this.socket.connected ()) {

108 this.status.setStep(Step.LOADING);

110 if (outputStreams != null) {

112 this.outputListeners = new CepjsListener[outputStreams.length];

114 for(int i = 0; i < outputStreams.length; i++) {

this.outputListeners[i] =

116 new CepjsListener("lsnr -0", rtMode , rtResolution ,

sinkInstance , socket , outputStreams[i]);

118 }

120 try {

this.startAllListeners ();

122 } catch (Exception e) {

throw new Exception("Could not load event listener (" + e.

getMessage () + ").");

124 }

}

126
this.status.setStep(Step.READY);

128 return true;

}else {

130 return false;

}

132
}

134
@Override

136 public synchronized void disconnect () {

this.status.setStep(Step.DISCONNECTED);

138
//Stops all listeners attached

140 stopAllListeners ();

142 this.socket.close();

144 destroyInstance ();

}

146
// optional method

148 public String [] getInputStreamList () throws Exception{

return new String [0];

150 }

152 // optional method

public String [] getOutputStreamList () throws Exception{

154 return new String [0];

}

156
}

71

Listing D.2 – Code that Implements the Logic for Sink Listeners

2 package pt.uc.dei.fincos.adapters.cep;

4 import org.json.JSONObject;

6 import io.socket.client.Socket;

import io.socket.emitter.Emitter;

8 import pt.uc.dei.fincos.adapters.OutputListener;

import pt.uc.dei.fincos.sink.Sink;

10
abstract class CepjsOutputListener extends OutputListener {

12
public CepjsOutputListener(String lsnrID , int rtMode , int rtResolution , Sink

sinkInstance) {

14 super(lsnrID , rtMode , rtResolution , sinkInstance);

}

16
}

18
public class CepjsListener extends CepjsOutputListener implements Emitter.Listener {

20
private Socket socket;

22 private String outputStream;

24 public CepjsListener(String lsnrID , int rtMode , int rtResolution , Sink

sinkInstance ,

Socket socket , String outputStream) {

26 super(lsnrID , rtMode , rtResolution , sinkInstance);

this.socket = socket;

28 this.outputStream = outputStream;

}

30
@Override

32 public void run() {

this.socket.on(outputStream , this);

34 }

36 @Override

public void load() throws Exception {

38 }

40 @Override

public synchronized void disconnect () {

42 this.socket.off(this.outputStream);

}

44
@Override

46 public void call(Object ... args) {

48 JSONObject obj = (JSONObject)args [0];

50 onOutput(new Object [] {

obj.get("_eventTypeId"), obj.get("_occurrenceTime"), obj.get("

72

_detectionTime")

52 });

54 }

56 }

73

APPENDIX E – EXPERIMENT APPLICATION

Listing E.1 – Code of the Application utilized for Running the Experiment
1 const events = require('events ');

const eventEmitter = new events.EventEmitter ();

3 const fs = require('fs');

5 const io = require('socket.io')(80);

// sets websocket as the default protocol

7 io.set('transports ', ['websocket ']);

9 const cepjsRx = require('cepjs -rx');

const cepjsMost = require('cepjs -most');

11 let cepjs;

13 const chosenLib = process.argv [2];

15 if(chosenLib == 'most'){

cepjs = require('cepjs -core')(cepjsMost);

17 }else if(chosenLib == 'rx'){

cepjs = require('cepjs -core')(cepjsRx);

19 }else{

throw new Error('You must choose a library!');

21 }

23 const { all , EventType , fromEvent , merge , minDistance ,

movingToward , patternPolicies , Point , tumblingTimeWindow } = cepjs;

25 const { order } = patternPolicies;

27 // writes the pid file

fs.writeFileSync('./ pidfile ', process.pid);

29

31 const inputStreams = ['line55 ', 'line68 ', 'line287 '];

33

35 io.on('connection ', socket => {

console.log('user connected at', Date.now());

37
inputStreams.forEach(inputStream => {

39 socket.on(inputStream , data => {

eventEmitter.emit(`${inputStream}_stream `, data);

41 });

});

43
socket.on('disconnect ', () => {

45 console.log('user disconnected at', Date.now());

});

47
});

49
// An EventType subclass to store bus travel updates

74

51 class GpsLocation extends EventType {

constructor(eventTypeId , eventSource , occcurrenceTime , latitude , longitude){

53 super(eventTypeId , eventSource , occcurrenceTime);

this.location = new Point(latitude , longitude);

55 }

}

57 // Adapts the external event representation to a format accepted in CEP.js

const adaptor = event =>

59 new GpsLocation('Bus Movement ', 'FINCoS ', event.timestamp , event.latitude ,

event.longitude);

// Sets the order that the movingToward operation should consider

61 const policies = {

order: order.OCCURRENCE_TIME

63 };

65 // inputStreams: array representing the supported input streams

inputStreams.forEach(inputStream => {

67
// Creates a stream from the event identifier provided in the inputStreams array

69 // Events are gathered in time windows of 30 seconds

let stream = fromEvent(eventEmitter , `${inputStream}_stream `, adaptor)

71 .pipe(tumblingTimeWindow (30000));

// Applies both minDistance and movingToward opertion to the same stream

73 // The results of each operator are merged into a single stream

// Afterwards , a second time window is used to allow further checking

75 // in the all operator

merge(

77 stream.pipe(minDistance (['Bus Movement '], new Point (-8.048256 , -34.925041) ,

'location ', minDistance => minDistance <= 500, 'Bus Within Radius '))

,

79 stream.pipe(movingToward (['Bus Movement '], new Point (-8.048256 , -34.925041) ,

'location ', 'Bus Approaching ', policies))

81).pipe(tumblingTimeWindow (20000) , all(['Bus Within Radius ', 'Bus Approaching '],

'Bus Arriving '))

.subscribe ({

83 // Subscribe to the stream

// Complex events are cast under the 'Bus Arriving ' event (output stream

)

85 next: complexEvent => {

io.emit(complexEvent.eventTypeId , complexEvent);

87 }, error: err => {

console.error(err);

89 }

});

91 });

	Title page
	
	Acknowledgements
	Epigraph
	Abstract
	Resumo
	List of Figures
	List of Tables
	Contents
	Introduction
	Motivation
	Objective
	Contributions
	Outline

	Background
	Reactive Applications
	Complex Event Processing
	Reactive Languages
	Integration of CEP and RLs
	Performance in CEP and RLs

	Edge Analytics and Event Processing

	CEP.js
	RxJS and Most.js Programming Model
	Design
	Loosely Coupled Characteristic
	Components Overview
	Event Type and Operations
	Example

	Concluding Remarks

	Experiment
	Experiment Planning
	Goal Definition
	Performance Evaluation Technique
	The Context of the Experiment
	Hypotheses
	Variables
	Response Variables or Dependent Variables
	Factor levels or Treatments
	Experimental Unit
	Blocking Variables

	Workload Characterization
	Experimental Design
	Experiment Instrumentation
	Data Analysis

	Experiment Execution
	Threats to Validity
	Analysis
	Descriptive Statistics
	Low Load
	Medium Load
	High Load

	Hypothesis Testing
	Discussion

	Conclusions and Future Work
	Future Work
	CEP.js Development
	Usability Test
	Performance Analysis

	References
	Implemented Pattern Operations
	Single-board Computers
	Experiment Instrumentation
	Load Generator
	Monitor
	Application Design
	Experiment Order of Execution

	FINCoS Adapter
	Experiment Application

