Use este identificador para citar ou linkar para este item:
https://repositorio.ufpe.br/handle/123456789/32902
Compartilhe esta página
Título: | Explicit computational paths in type theory |
Autor(es): | RAMOS, Arthur Freitas |
Palavras-chave: | Ciência da computação; Teoria da computação |
Data do documento: | 17-Ago-2018 |
Editor: | Universidade Federal de Pernambuco |
Abstract: | The current work has three main objectives. The first one is the proposal of computational paths as a new entity of type theory. In this proposal, we point out the fact that computational paths should be seen as the syntax counterpart of the homotopical paths between terms of a type. We also propose a formalization of the identity type using computational paths. The second objective is the proposal of a mathematical structure fora type using computational paths. We show that using categorical semantics it is possible to induce a groupoid structure for a type and also a higher groupoid structure, using computational paths and a rewrite system. We use this groupoid structure to prove that computational paths also refutes the uniqueness of identity proofs. The last objective is to formulate and prove the main concepts and building blocks of homotopy type theory. We end this last objective with a proof of the isomorphism between the fundamental group of the circle and the group of the integers. |
URI: | https://repositorio.ufpe.br/handle/123456789/32902 |
Aparece nas coleções: | Teses de Doutorado - Ciência da Computação |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
TESE Arthur Freitas Ramos.pdf | 1,1 MB | Adobe PDF | ![]() Visualizar/Abrir |
Este arquivo é protegido por direitos autorais |
Este item está licenciada sob uma Licença Creative Commons