Please use this identifier to cite or link to this item:
https://repositorio.ufpe.br/handle/123456789/32682
Share on
Title: | Modelos híbridos de séries temporais aplicados ao sistema automotivo On-Board Diagnostics |
Authors: | ALMEIDA, Diogo Medeiros de |
Keywords: | Inteligência artificial; Análise de séries temporais |
Issue Date: | 7-Aug-2018 |
Publisher: | Universidade Federal de Pernambuco |
Abstract: | Uma característica desejada dos sistemas de diagnóstico automotivo é fazer previsões de falhas para evitar problemas inesperadas no veículo, minimizar os custos de reparo e assegurar um automóvel mais seguro aos motoristas. Para prognosticar falhas automotivas é necessário um sistema que inicialmente seja capaz de prever dados automotivos para posteriormente avaliar com um classificador se o dado do preditor é um evento anormal ou não. Com base nisso, o objetivo deste trabalho é realizar um estudo sobre o preditor desse sistema a partir da análise de modelos híbridos inteligentes de séries temporais para prever dados em tempo real de três sensores veiculares: temperatura do líquido de arrefecimento do motor, relação Ar-Combustível (A/C) na combustão interna do motor e tensão da bateria do automóvel. Os resultados mostraram que, em geral, combinar previsores da série temporal com previsores dos resíduos é uma abordagem que merece atenção e deve ser considerada no contexto dos dados automotivos. Além disso, a combinação alternativa de modelos não lineares para a série com modelos lineares para os resíduos sugere uma proposta a ser investigada em outras aplicações. |
URI: | https://repositorio.ufpe.br/handle/123456789/32682 |
Appears in Collections: | Dissertações de Mestrado - Ciência da Computação |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
DISSERTAÇÃO Diogo Medeiros de Almeida.pdf | 907,12 kB | Adobe PDF | ![]() View/Open |
This item is protected by original copyright |
This item is licensed under a Creative Commons License