Skip navigation
Use este identificador para citar ou linkar para este item: https://repositorio.ufpe.br/handle/123456789/2841
Título: Classificação de tráfego baseado em mineração de fluxos de dados
Autor(es): Lopes Junior, Petrônio Gomes
Palavras-chave: Mineração de fluxos de dados; Classificação de tráfego; Aprendizagem de máquina; Unidade de Processamento Gráfico
Data do documento: 31-Jan-2012
Editor: Universidade Federal de Pernambuco
Citação: Gomes Lopes Junior, Petrônio; Fawzi Hadj Sadok, Djamel. Classificação de tráfego baseado em mineração de fluxos de dados. 2012. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2012.
Resumo: Existem diversos tipos de aplicações de redes de computadores que produzem diferentes perfis de tráfego. Para aperfeiçoar o desempenho destas aplicações ou da rede em que elas estão incluídas, é interessante fazer medições e caracterizações do tráfego gerado por elas. Nesse contexto, existem várias formas para classificação de tráfego como técnicas baseadas em portas, técnicas baseadas em inspeção de pacotes e técnicas baseadas em fluxos. De acordo com o cenário em que será aplicada, cada uma das técnicas apresenta vantagens e desvantagens. Adicionalmente, a classificação tem que lidar com restrições de tempo, sendo capaz de tratar os dados em tempo real. Um possível método a ser utilizado é a classificação de tráfego baseada em fluxos utilizando aprendizagem de máquina. No entanto, é notório que, quando se fala na classificação de fluxos usando aprendizagem de máquina, a caracterização de tráfego ainda necessita de uma abordagem que seja capaz de fornecer uma forma adaptativa de treinamento além de equilibrar precisão e desempenho em um cenário de fluxo contínuo de dados. Este trabalho apresenta um algoritmo voltado para classificação do tráfego baseado em técnicas de mineração de fluxos de dados aplicado a redes de alta velocidade, denominado GSDT (GPU-based Streaming Decision Tree), além de um arcabouço para sua aplicação. Esse algoritmo visa combinar a precisão das árvores de decisão tradicionais com as características da mineração de fluxos de dados. O GSDT também explora o potencial computacional fornecido por uma unidade de processamento gráfico. O arcabouço proposto alia treinamento e classificação, a fim de obter ganhos no desempenho da utilização do algoritmo em um ambiente real. Os experimentos realizados avaliam a precisão do GSDT em relação às técnicas tradicionais e o desempenho das abordagens propostas, demonstrando a viabilidade da aplicação do GSDT nos cenários considerados e a alta performance obtida através da unidade de processamento gráfico
URI: https://repositorio.ufpe.br/handle/123456789/2841
Aparece na(s) coleção(ções):Dissertações de Mestrado - Ciência da Computação

Arquivos deste item:
Arquivo Descrição TamanhoFormato 
arquivo9422_1.pdf1,25 MBAdobe PDFVer/Abrir


Este arquivo é protegido por direitos autorais



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.