Skip navigation
Use este identificador para citar ou linkar para este item: https://repositorio.ufpe.br/handle/123456789/2781
Título: Métodos de visualização de informações na descoberta de conhecimento em bases de dados
Autor(es): Maria Rocha de Holanda Vasconcelos, Denise
Palavras-chave: Visual Data Mining;Visualização de informações;Mineração de dados
Data do documento: 2005
Editor: Universidade Federal de Pernambuco
Citação: Maria Rocha de Holanda Vasconcelos, Denise; Crispim Vasconcelos, Germano. Métodos de visualização de informações na descoberta de conhecimento em bases de dados. 2005. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2005.
Resumo: A descoberta de conhecimento em bases de dados (Knowledge Discovery in Databases KDD) visa a apoiar os processos de tomada de decisão através da extração automática de conhecimento oculto, útil e estratégico, em grandes bases de dados. Este conhecimento precisa ser analisado e facilmente entendido por usuários e gestores para que se torne realmente relevante nas operações cotidianas ou em planejamento de ações no contexto do problema analisado. O conhecimento descoberto pode ser apresentado de diversas formas. Entretanto, estas formas muitas vezes não são compreendidas pelo usuário ou não permitem análises detalhadas e validações de novas hipóteses. Para auxiliar a interpretação de resultados obtidos na mineração de dados, técnicas gráficas de Visualização de Informações têm contribuído significativamente para a representação inteligente de grandes volumes de dados, para a aplicação de técnicas estatísticas na análise de dados e para a manipulação visual dos dados. À aplicação dessas técnicas sobre o processo de KDD dá-se o nome de Visual Data Mining. Os principais objetivos deste trabalho são a investigação de técnicas de Visualização de Informações aplicadas no processo de KDD, o desenvolvimento de uma ferramenta de software que tenha foco principal em Visual Data Mining, com a proposição e implementação de técnicas e métodos que melhor se adaptem à interpretação de resultados minerados, e a realização de um estudo de caso com um problema em larga escala para validação da ferramenta desenvolvida. A ferramenta desenvolvida, denominada VisualDATAMINER , atua sobre a interpretação de regras de indução, permite a integração com ferramentas de mineração de dados, possibilita a visualização dos resultados de mineração de dados em diversas visões e a interação com estas visualizações através de métodos de interação. Desenvolvida na linguagem Java, a VisualDATAMINER apresenta todos os benefícios do paradigma de orientação a objetos como re-usabilidade, manutenibilidade e encapsulamento. A investigação experimental realizada usando uma base de dados com um grande volume de dados, no domínio de análise de crédito ao consumidor, mostrou o refinamento do conhecimento descoberto através da aplicação das técnicas de visualização de informações e dos métodos de interação propostos na ferramenta, atestando a eficácia e a eficiência da ferramenta desenvolvida
URI: https://repositorio.ufpe.br/handle/123456789/2781
Aparece na(s) coleção(ções):Dissertações de Mestrado - Ciência da Computação

Arquivos deste item:
Arquivo Descrição TamanhoFormato 
arquivo7170_1.pdf2,15 MBAdobe PDFVer/Abrir


Este arquivo é protegido por direitos autorais



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.