Skip navigation
Please use this identifier to cite or link to this item: https://repositorio.ufpe.br/handle/123456789/2704
Title: Mapa auto-organizável com campo receptivo adaptativo local para segmentação de imagens
Authors: COSTA, Diogo Cavalcanti
Keywords: Mapas auto-organizáveis (SOMs);Crescer quando requerido (GWR);Função de base radial (RBF);Redes neurais;Processamento de imagens;Segmentação de imagens;Segmentação por cor;Segmentação por borda;Representação/compactação de imagens
Issue Date: 2007
Publisher: Universidade Federal de Pernambuco
Citation: Cavalcanti Costa, Diogo; Fausto Ribeiro Araújo, Aluizio. Mapa auto-organizável com campo receptivo adaptativo local para segmentação de imagens. 2007. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2007.
Abstract: Neste trabalho apresentamos um novo modelo neural para segmentação de imagens, baseado nos Mapas Auto-organizáveis SOM (Mapa Auto-organizável - Self-organizing Map) e GWR (Crescer Quando Requerido - Grow When Required) chamado de LARFSOM (Mapa Auto-organizável com Campo Receptivo Adaptativo Local - Local Adaptive Receptive Field Self-organizing Map). As características principais do modelo são: número adaptativo de nodos, topologia variável, inserção de novos nodos baseada em uma medida de similaridade dos protótipos existentes em relação ao padrão de entrada aferida por meio de campo receptivo, remoção de nodos com informações não significativas ao final do treinamento, rápida convergência e baixo custo de processamento para o treinamento. A rede LARFSOM é capaz de segmentar imagens por cor ou por borda: a primeira, é feita através do agrupamento de informações ocorrido no treinamento da rede LAFRSOM seguido de um processo de quantização de cores; já a segunda, ocorre pelo acréscimo de dois nodos RBF (Função de Base Radial - Radial Basis Function) à rede LARFSOM, criando um modelo de dois estágios chamado LARFSOM-RBF. Adicionalmente, o modelo é capaz de salvar em um formato variante do BMP indexado tanto a rede treinada como as informações espaciais dos pixels da imagem. Acrescido de compactação tipo ZIP o arquivo a ser salvo torna-se bem reduzido. Comparações com outros modelos neurais como o SOM, FS-SOM (Mapa Auto-organizável Sensível à Freqüência - Frequency Sensitive Self-organizing Map) e GNG (Gás Neural Crescente - Growing Neural Gas) são feitas mediante segmentação de imagens do mundo real com diferentes níveis de complexidade. Técnicas de processamento de imagens e o formato JPEG são usados para fins de comparação. Os resultados mostram que a rede LARFSOM atinge maior variação de cores da paleta e melhor distribuição espacial 3D RGB das cores selecionadas que os demais modelos. A qualidade das imagens geradas também figura entre os melhores resultados obtidos
URI: https://repositorio.ufpe.br/handle/123456789/2704
Appears in Collections:Dissertações de Mestrado - Ciência da Computação

Files in This Item:
File Description SizeFormat 
arquivo6557_1.pdf4.75 MBAdobe PDFView/Open


This item is protected by original copyright



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.