Skip navigation
Please use this identifier to cite or link to this item: https://repositorio.ufpe.br/handle/123456789/2698
Title: Seleção de modelos de previsão baseada em informações de desempenho
Authors: SANTOS, Patrícia Maforte dos
Keywords: Séries temporais;Previsão;Meta-aprendizado
Issue Date: 2006
Publisher: Universidade Federal de Pernambuco
Citation: Maforte dos Santos, Patrícia; Bernarda Ludermir, Teresa. Seleção de modelos de previsão baseada em informações de desempenho. 2006. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2006.
Abstract: Uma série temporal é definida como um conjunto de observações de um fenômeno ordenadas no tempo. Existem vários problemas reais que podem ser representados por séries temporais, como o consumo mensal de água de uma casa, registrado ao longo de um mês; ou os valores de uma determinada aplicação financeira, medidos no decorrer de uma semana. A utilização da previsão de séries temporais pode ocorrer em diversas áreas, como mercado financeiro, detecção de fraude, indústria farmacêutica, medicina, entre outras. Existem vários modelos que podem ser utilizados para prever uma série temporal. Com isso, selecionar o modelo mais adequado pode ser uma tarefa difícil, que depende de fatores como o ajuste dos parâmetros dos modelos candidatos e as características da série. Podemos encontrar na literatura diversas abordagens que são utilizadas na seleção de modelos de previsão. Em nosso trabalho foi utilizada uma abordagem de Meta-Aprendizado, desenvolvida inicialmente para a seleção de algoritmos para problemas de aprendizado e adaptada ao problema de seleção de modelos. Diferentemente das abordagens mais comuns, a abordagem utilizada indica não apenas o melhor modelo aplicável ao problema de entrada, mas um ranking dos modelos candidatos baseado em critérios de desempenho fornecidos pelo usuário. Os resultados de desempenho obtidos pelos modelos candidatos em problemas processados no passado são utilizados na sugestão de modelos para novos problemas. Desta forma, a solução aqui proposta é mais informativa, no sentido de possibilitar ao usuário uma melhor percepção da relação entre os modelos candidatos. A abordagem foi investigada em 4 estudos de caso e apresentou resultados satisfatórios
URI: https://repositorio.ufpe.br/handle/123456789/2698
Appears in Collections:Dissertações de Mestrado - Ciência da Computação

Files in This Item:
File Description SizeFormat 
arquivo6445_1.pdf675.73 kBAdobe PDFView/Open


This item is protected by original copyright



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.