Please use this identifier to cite or link to this item:
https://repositorio.ufpe.br/handle/123456789/2683
Share on
Title: | Uma metodologia de busca por redes neurais artificiais quase-ótimas |
Authors: | ALMEIDA, Leandro Maciel |
Keywords: | Redes neurais artificiais; Algoritmos genéticos; Algoritmos meméticos; Redes quase-ótimas; Parametrização automática de redes neurais artificiais |
Issue Date: | 2007 |
Publisher: | Universidade Federal de Pernambuco |
Citation: | Maciel Almeida, Leandro; Bernarda Ludermir, Teresa. Uma metodologia de busca por redes neurais artificiais quase-ótimas. 2007. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2007. |
Abstract: | Este trabalho propõe uma metodologia de busca automática por Redes Neurais Artificiais (RNA) quase-ótimas para problemas de classificação. A metodologia tem o intuito de buscar redes com arquitetura simples, com aprendizagem rápida e com boa capacidade de classificação, ou seja, redes quase-ótimas. A motivação para o desenvolvimento do presente trabalho está centralizada nas dificuldades de encontrar manualmente RNAs quase-ótimas. Essas dificuldades são ocasionadas pelo grande número de parâmetros de RNAs que necessitam de ajustes para que haja uma correlação entre esses parâmetros, a fim de contribuir para que redes estruturalmente simples e com alto desempenho possam ser encontradas. A busca automática por redes quase-ótimas engloba informações como pesos iniciais, camadas escondidas, nodos por camada, tipos de funções de ativação e algoritmos de aprendizagem para redes Multi-Layer Perceptron (MLP), completamente conectadas. O mecanismo de busca é composto por uma combinação de Algoritmos Genéticos (AG) e de RNAs. Nessa combinação, primeiramente é executada uma busca global pelos parâmetros de RNAs, posteriormente executa-se uma busca local com RNAs por meio de seus algoritmos de aprendizagem, para refinar e avaliar a solução encontrada. Essa forma de busca é consagrada e apresentou bons resultados em outros trabalhos encontrados na literatura. O diferencial do método desenvolvido é o foco na simplificação de arquiteturas com um alto desempenho de classificação, exigindo poucas épocas de treinamento. Com o método desenvolvido foram realizados experimentos em cinco domínios de problemas conhecidos, a saber: Câncer, Vidros, Coração, Cavalos e Diabetes. Os resultados apontam uma melhor eficácia do método desenvolvido na busca por redes quase-ótimas perante o método de busca manual e também em relação a outros métodos da literatura. As redes encontradas para cada um dos domínios de problemas apresentam uma baixa complexidade e também um baixo erro de classificação. Esses resultados são extremamente importantes para mostrar a capacidade do método desenvolvido e justificar o esforço investido no desenvolvimento de métodos de busca por RNAs quase-ótimas |
URI: | https://repositorio.ufpe.br/handle/123456789/2683 |
Appears in Collections: | Dissertações de Mestrado - Ciência da Computação |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
arquivo6168_1.pdf | 967,32 kB | Adobe PDF | ![]() View/Open |
This item is protected by original copyright |
This item is licensed under a Creative Commons License