Skip navigation
Use este identificador para citar ou linkar para este item: https://repositorio.ufpe.br/handle/123456789/25856

Compartilhe esta página

Título: Um classificador baseado em perturbações
Autor(es): ARAÚJO, Edson Leite
Palavras-chave: Inteligência artificial; Reconhecimento de padrão
Data do documento: 10-Abr-2017
Editor: Universidade Federal de Pernambuco
Abstract: Muitos algoritmos de reconhecimento de padrões são probabilísticos em sua construção e como tal, usam a inferência estatística para determinar o melhor rótulo para uma dada instância a ser classificada. A inferência estatística baseia-se em geral, na teoria de Bayes que por sua vez, utiliza fortemente dos vetores médios, μi, e matrizes de covariância, Σi, de classes existentes nos dados de treinamento. Estes parâmetros são desconhecidos e estimativas são realizadas seguindo vários algoritmos. Entretanto, as estimativas feitas exclusivamente a partir dos dados de treinamento são ainda as mais utilizadas. Por se tratarem de estimativas, os parâmetros μi e Σi sofrem perturbações quando se insere um novo vetor na classe à qual pertencem. Avaliando as perturbações ocorridas em todas as classes simulando uma possível inserção da instância a ser classificada nas mesmas, definimos neste trabalho uma nova regra de decisão a qual atribui a instância de teste à classe em que ocorrer a menor perturbação nos parâmetros μi e Σi ou numa combinação de ambos. Nesta área, várias abordagens são possíveis, entre elas merecem destaque as árvores de decisão, as redes neurais, o aprendizado baseado em instâncias e a máquina de vetores de suporte(SVM). Entretanto, até o momento da escrita deste texto, não foi encontrado na literatura, abordagens que utilizem as perturbações de parâmetros para a classificação de padrões. Em testes realizados inicialmente em dados sintéticos e posteriormente em 21 bancos de dados reais disponíveis no UCI Repository Learning, verificou-se que o classificador baseado em perturbações, o qual foi denominado PerC (Perturbation Classifier), apresentou performance significativamente superior às versões do SVM com kernels polinomiais de graus 2 e 3, e praticamente equivalente aos k-Nearest Neighboor com k=3 e k=5, Naïve Bayes, SVM com kernel gaussiano, CART e as redes neurais MLP, tendo o PerC o maior ranking segundo o teste estatístico de Friedman. Os resultados demonstraram que a abordagem baseada em perturbações são, portanto, úteis para a classificação de padrões.
URI: https://repositorio.ufpe.br/handle/123456789/25856
Aparece nas coleções:Teses de Doutorado - Ciência da Computação

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
TESE Edson Leite de Araújo.pdf2,4 MBAdobe PDFThumbnail
Visualizar/Abrir


Este arquivo é protegido por direitos autorais



Este item está licenciada sob uma Licença Creative Commons Creative Commons