Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.ufpe.br/handle/123456789/25854

Comparte esta pagina

Título : Mineração de opiniões baseada em aspectos para revisões de medicamentos
Autor : CAVALCANTI, Diana Cabral
Palabras clave : Inteligência artificial; Mineração de opiniões; Recuperação da informação; Revisões de medicamentos
Fecha de publicación : 14-ago-2017
Editorial : Universidade Federal de Pernambuco
Resumen : Mineração de Opinião baseada em Aspectos pode ser aplicada para extrair informações relevantes expressas por pacientes em comentários textuais sobre medicamentos (por exemplo, reações adversas, eficácia quanto ao uso de um determinado remédio, sintomas e condições do paciente antes usar o medicamento). Este novo domínio de aplicação apresenta desafios, bem como oportunidades de pesquisa em Mineração de Opinião. No entanto, a literatura ainda é escassa sobre métodos para extrair múltiplos aspectos relevantes presentes em análises de fármacos. Nesta tese foi desenvolvido um novo método para extrair e classificar aspectos em comentários opinativos sobre medicamentos. A solução proposta tem duas etapas principais. Na extração de aspectos, um novo método baseado em caminhos de dependência sintática é proposto para extrair pares de opiniões em revisões de medicamento. Um par de opinião é composto por um termo de aspecto associado a um termo opinativo. Na classificação de aspectos, propõe-se um classificador supervisionado baseado em recursos de domínio e de linguística para classificar pares de opinião por tipo de aspecto (por exemplo, Condição clínica, Reação Adversa, Dosagem e Eficácia). Para avaliar o método proposto, foram realizados experimentos em conjuntos de dados relacionados a três diferentes condições clínicas: ADHD, AIDS e Ansiedade. Para o problema de extração foi realizado avaliação comparativa com outros dois métodos, onde o método proposto atingiu resultados competitivos, alcançando precisão de 78% para ADHD, 75,2% para AIDS e 78,7% para Ansiedade. Enquanto para o problema de classificação, resultados promissores foram obtidos nos experimentos e várias questões foram identificadas e discutidas.
URI : https://repositorio.ufpe.br/handle/123456789/25854
Aparece en las colecciones: Teses de Doutorado - Ciência da Computação

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
TESE Diana Cabral.pdf7,76 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está protegido por copyright original



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons