Skip navigation
Please use this identifier to cite or link to this item: https://repositorio.ufpe.br/handle/123456789/25506
Title: Statistical analysis applied to data classification and image filtering
Authors: ALMEIDA, Marcos Antonio Martins de
Keywords: Electrical Eingineering; Data processing; Data classification; Image filtering
Issue Date: 21-Dec-2016
Publisher: Universidade Federal de Pernambuco
Abstract: Statistical analysis is a tool of wide applicability in several areas of scientific knowledge. This thesis makes use of statistical analysis in two different applications: data classification and image processing targeted at document image binarization. In the first case, this thesis presents an analysis of several aspects of the consistency of the classification of the senior researchers in computer science of the Brazilian research council, CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico. The second application of statistical analysis developed in this thesis addresses filtering-out the back to front interference which appears whenever a document is written or typed on both sides of translucent paper. In this topic, an assessment of the most important algorithms found in the literature is made, taking into account a large quantity of parameters such as the strength of the back to front interference, the diffusion of the ink in the paper, and the texture and hue of the paper due to aging. A new binarization algorithm is proposed, which is capable of removing the back-to-front noise in a wide range of documents. Additionally, this thesis proposes a new concept of “intelligent” binarization for complex documents, which besides text encompass several graphical elements such as figures, photos, diagrams, etc.
URI: https://repositorio.ufpe.br/handle/123456789/25506
Appears in Collections:Teses de Doutorado - Engenharia Elétrica

Files in This Item:
File Description SizeFormat 
TESE Marcos Antonio Martins de Almeida.pdf11.28 MBAdobe PDFView/Open


This item is protected by original copyright



This item is licensed under a Creative Commons License Creative Commons