Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.ufpe.br/handle/123456789/25506

Comparte esta pagina

Título : Statistical analysis applied to data classification and image filtering
Autor : ALMEIDA, Marcos Antonio Martins de
Palabras clave : Electrical Eingineering; Data processing; Data classification; Image filtering
Fecha de publicación : 21-dic-2016
Editorial : Universidade Federal de Pernambuco
Resumen : Statistical analysis is a tool of wide applicability in several areas of scientific knowledge. This thesis makes use of statistical analysis in two different applications: data classification and image processing targeted at document image binarization. In the first case, this thesis presents an analysis of several aspects of the consistency of the classification of the senior researchers in computer science of the Brazilian research council, CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico. The second application of statistical analysis developed in this thesis addresses filtering-out the back to front interference which appears whenever a document is written or typed on both sides of translucent paper. In this topic, an assessment of the most important algorithms found in the literature is made, taking into account a large quantity of parameters such as the strength of the back to front interference, the diffusion of the ink in the paper, and the texture and hue of the paper due to aging. A new binarization algorithm is proposed, which is capable of removing the back-to-front noise in a wide range of documents. Additionally, this thesis proposes a new concept of “intelligent” binarization for complex documents, which besides text encompass several graphical elements such as figures, photos, diagrams, etc.
URI : https://repositorio.ufpe.br/handle/123456789/25506
Aparece en las colecciones: Teses de Doutorado - Engenharia Elétrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
TESE Marcos Antonio Martins de Almeida.pdf11,28 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está protegido por copyright original



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons