Skip navigation
Use este identificador para citar ou linkar para este item: https://repositorio.ufpe.br/handle/123456789/24892

Compartilhe esta página

Título: Reconhecimento de expressões faciais utilizando estimação de movimento
Autor(es): SANTIAGO, Hemir da Cunha
Palavras-chave: Inteligência artificial; Processamento de imagens
Data do documento: 7-Fev-2017
Editor: Universidade Federal de Pernambuco
Abstract: As expressões faciais fornecem informações sobre a resposta emocional e exercem um papel fundamental na interação humana e como forma de comunicação não-verbal. Contudo, o reconhecimento das expressões ainda é algo considerado complexo para o computador. Neste trabalho, propomos um novo extrator de características que utiliza a estimação de movimento para o reconhecimento de expressões faciais. Nesta abordagem, o movimento facial entre duas expressões é codificado usando uma estimação dos deslocamentos de regiões entre duas imagens, que podem ser da mesma face ou de faces similares. A imagem da expressão facial é comparada a outra imagem mais similar em cada expressão facial da base de treinamento, a maior similaridade é obtida usando a medida de Similaridade Estrutural (SSIM - Structural Similarity Index). Após a identificação das imagens mais similares na base de treinamento, são calculados os vetores de movimento entre a imagem cuja expressão facial será reconhecida e a outra mais similar em uma das expressões da base. Para calcular os vetores de movimento é proposto o algoritmo MARSA(Modified Adaptive Reduction of the Search Area). Todos os vetores de movimento são comparados às coordenadas com as maiores ocorrências dentre todos os vetores de movimento obtidos durante a fase de treinamento, a partir dessa comparação são gerados os vetores de características que servem de dados de entrada para uma SVM (Support Vector Machine),que irá realizar a classificação da expressão facial. Diversas bases de imagens e vídeos de faces, reproduzindo expressões faciais, foram utilizadas para os experimentos. O critério adotado para a escolha das bases foi a frequência com que são utilizadas em outros trabalhos do estado da arte, portanto foram escolhidas: Cohn-Kanade (CK), Extended Cohn-Kanade (CK+), Japanese Female Facial Expression (JAFFE), MMI e CMU Pose, Illumination, and Expression (CMU-PIE). Os resultados experimentais demostram taxas de reconhecimento das expressões faciais compatíveis a outros trabalhos recentes da literatura, comprovando a eficiência do método apresentado.
URI: https://repositorio.ufpe.br/handle/123456789/24892
Aparece nas coleções:Teses de Doutorado - Ciência da Computação

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
TESE Hemir da Cunha Santiago.pdf2,27 MBAdobe PDFThumbnail
Visualizar/Abrir


Este arquivo é protegido por direitos autorais



Este item está licenciada sob uma Licença Creative Commons Creative Commons