Skip navigation
Use este identificador para citar ou linkar para este item: https://repositorio.ufpe.br/handle/123456789/24890

Compartilhe esta página

Título: Inferência de polimorfismos de nucleotídeo único utilizando algoritmos baseados em Relevance Learning Vector Quantization
Autor(es): ARAÚJO, Flávia Roberta Barbosa de
Palavras-chave: Ciência da computação.; Interação epistática
Data do documento: 21-Fev-2017
Editor: Universidade Federal de Pernambuco
Abstract: Embora duas pessoas compartilhem mais de 99% do DNA, as variações são extremamente relevantes para determinar as variações fenotípicas. Dentre essas variações, os polimorfismos de nucleotídeo único(SNP) são alterações pontuais mais conhecidas por influenciar no aumento no risco de doenças. Os SNPs podem atuar individualmente ou através de interações com outros SNPs (interaçõe sepistáticas). A inferência das interações epistáticas é um problema que vem sendo amplamente estudado, sendo utilizados dados genômicos de estudos de associação ampla do genoma (GWAS) com pacientes casos e controles. Diversas abordagens computacionais foram propostas, utilizando diferentes estratégias para lidar com os desafios de inferir as interações mais relevantes. O primeiro desafio encontrado neste estudo, esta relacionado à grande quantidade de dados (cerca de 500 a 900 mil SNPs). O segundo desafio esta associado ao número de possíveis interações entre SNPs, o que leva a um problema combinatorial. E o terceiro desafio, relaciona-se com o baixo poder estatístico das interações, sendo mais custoso identificá-las. A combinação desses desafios, tornam este um problema difícil de ser tratado. Nesta tese, são utilizadas diferentes metodologias, selecionadas para verificar suas capacidades em lidar com o problema da inferência da interações epistáticas. Dentre estas, são avaliadas técnicas de seleção de características e abordagens computacionais na detecção das interações entre SNPs, assim como algoritmos de aprendizagem de máquina baseados em Relevance Learning Vector Quantization (RLVQ). Nos experimentos realizados, os algoritmos baseados em RLVQ apresentaram resultados satisfatórios ao identificar as interações relevantes entre SNPs em dados com até 5 interações, utilizando requisitos computacionais relativamente baixos quando comparados a outras abordagens descritas na literatura. Um estudo mais extenso foi realizado, com o objetivo de identificar um ajuste ideal dos parâmetros e verificar as capacidades e limitações de cada algoritmo. Com os resultados obtidos através desse ajuste de parâmetros, foi possível levantar hipóteses referente a influência da quantidade de interações entre SNPs e da dimensionalidade dos dados em função dos parâmetros utilizados nos algoritmos. Considerando essas análises, foi possível propor uma nova metodologia denominada iGRLVQ-SNPi, baseada em algoritmos de RLVQ, para lidar de forma mais eficiente com o problema da inferência das interações entre os SNPs. Como iGRLVQ-SNPi, foi possível avaliar interações de ordem n, sem que para isso, fosse necessário informar o número de interações que se deseja avaliar. Nos experimentos realizados, o iGRLVQ-SNPi obteve uma excelente acurácia nos diferentes conjuntos de dados testados, e sendo comparativamente melhor ou tão eficiente quanto outras abordagens de inferência epistáticas avaliadas, utilizando um menor custo computacional.
URI: https://repositorio.ufpe.br/handle/123456789/24890
Aparece nas coleções:Teses de Doutorado - Ciência da Computação

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
TESE Flávia Roberta Barbosa de Araújo.pdf2,56 MBAdobe PDFThumbnail
Visualizar/Abrir


Este arquivo é protegido por direitos autorais



Este item está licenciada sob uma Licença Creative Commons Creative Commons