Por favor, use este identificador para citar o enlazar este ítem:
https://repositorio.ufpe.br/handle/123456789/24737
Comparte esta pagina
Título : | Transition from integrable to chaotic domain in spectra of spin chains |
Autor : | MORENO TARQUINO, Juan Nicolas |
Palabras clave : | Matéria condensada; Transporte quântico; Caos quântico |
Fecha de publicación : | 31-ago-2016 |
Editorial : | Universidade Federal de Pernambuco |
Resumen : | In this thesis we present an approach, similar to random matrix ensembles, in order to study the integrable-chaotic transition in the Heisenberg spin model. We consider three ways to break the integrability: presence on an external field on a single spin, coupling of an external random field with each spin in the chain and next nearest neighbor interaction between spins. We propose a transition described by a power law in the spectral density, i.e. S(k) ∝ 1/kα, where α = 2 for the integrable case and α = 1 for the chaotic case, with 1 < α < 2 for systems in the crossover regime. The transition is also described by the behavior of the "burstiness" B and the Kullback–Leibler divergence DLK(PW−D(s)|Pdata(s)), where PW−D(s) and Pdata(s) are the Wigner-Dyson and the system’s spacing distribution respectively. The B coefficient is associated to a sequence of events in the system. The Kullback–Leibler divergence provides information on how two distributions differ from each other. From analyzing the behavior of these three quantities, we obtain a universal description of integrable-chaotic transition in the spin chains. |
URI : | https://repositorio.ufpe.br/handle/123456789/24737 |
Aparece en las colecciones: | Dissertações de Mestrado - Física |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
DISSERTAÇÃO Juan Nicolás Moreno Tarquino.pdf | 3,29 MB | Adobe PDF | ![]() Visualizar/Abrir |
Este ítem está protegido por copyright original |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons