Skip navigation
Use este identificador para citar ou linkar para este item: https://repositorio.ufpe.br/handle/123456789/2129
Título: Agrupamento de dados simbólicos intervalares usando funções de Kenel
Autor(es): COSTA, Anderson Fabiano Batista Ferreira da
Palavras-chave: Análise de Dados Simbólicos; Agrupamento; Kernel; K-médias; Dados Simbólicos do tipo Intervalo
Data do documento: 31-Jan-2011
Editor: Universidade Federal de Pernambuco
Citação: Fabiano Batista Ferreira da Costa, Anderson; Maria Cardoso Rodrigues de Souza, Renata. Agrupamento de dados simbólicos intervalares usando funções de Kenel. 2011. Tese (Doutorado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2011.
Resumo: A Análise de dados simbólicos (ADS) ou Symbolic Data Analysis é uma nova abordagem na área de descoberta automática de conhecimentos que visa desenvolver métodos para dados descritos por variáveis onde existem conjuntos de categorias, intervalos ou distribuições de probabilidade. O objetivo deste trabalho é estender métodos de agrupamento clássicos para dados simbólicos intervalares baseados em funções de kernel. A aplicação de funções de kernel tem sido amplamente utilizado na classificação não supervisionada para dados clássicos e apresenta bons resultados quando o conjunto apresenta uma disposição não-linear dos dados. No entanto, na literatura de ADS ainda necessita de métodos para identificar grupos não lineares. Este trabalho engloba os paradigmas de agrupamento rígido (hard) e difuso (fuzzy), e realiza tais agrupamentos utilizando as funções de kernel em um espaço de alta dimensão, conhecido como espaço de características. Os métodos propostos neste trabalho consideram duas variantes comumente utilizadas em abordagens de kernel, onde uma considera que o protótipo dos grupos está definido neste espaço de características de alta dimensão e outra que considera o protótipo definido no espaço original de entradas. Os métodos propostos são comparados com variações do método K-médias existentes na literatura de ADS através de experimentos realizados com dados simulados e dados reais intervalares fazendo uso do experimento Monte Carlo e métricas estatísticas que evidenciam o desempenho superior dos métodos propostos
URI: https://repositorio.ufpe.br/handle/123456789/2129
Aparece na(s) coleção(ções):Teses de Doutorado - Ciência da Computação

Arquivos deste item:
Arquivo Descrição TamanhoFormato 
arquivo7569_1.pdf1,26 MBAdobe PDFVer/Abrir


Este arquivo é protegido por direitos autorais



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.