Por favor, use este identificador para citar o enlazar este ítem:
https://repositorio.ufpe.br/handle/123456789/19518
Comparte esta pagina
Título : | Algoritmos de calibração e segmentação de trajetórias de objetos móveis com critérios não-supervisionado e semi-supervisionado |
Autor : | SOARES JÚNIOR, Amílcar |
Palabras clave : | Mineração de Dados de Trajetórias; Seleção e Calibração de Algoritmos; Segmentação de Trajetórias; Trajectory Data Mining; Selection and Tuning of Algorithms; Trajectory segmentation |
Fecha de publicación : | 10-mar-2016 |
Editorial : | Universidade Federal de Pernambuco |
Resumen : | A popularização de tecnologias de captura de dados geolocalizados aumentou a quantidade de dados de trajetórias disponível para análise. Trajetórias de objetos móveis são geradas a partir das posições de um objeto que se move durante um certo intervalo de tempo no espaço geográfico. Para diversas aplicações é necessário que as trajetórias sejam divididas em partições menores, denominadas segmentos, que representam algum comportamento relevante para a aplicação. A literatura reporta diversos trabalhos que propõem a segmentação de trajetórias. Entretanto, pouco se discute a respeito de quais algoritmos são mais adequados para um domínio ou quais valores de parâmetros de entrada fazem com que um algoritmo obtenha o melhor desempenho neste mesmo domínio. A grande maioria dos algoritmos de segmentação de trajetórias utiliza critérios pré-definidos para realizar esta tarefa. Poucos trabalhos procuram utilizar critérios nos quais não se sabe a priori que tipos de segmentos são gerados, sendo esta questão pouco explorada na literatura. Outra questão em aberto é o uso de exemplos para induzir um algoritmo de segmentação a encontrar segmentos semelhantes a estes exemplos em outras trajetórias. Esta proposta de tese objetiva resolver estas questões. Primeiro, são propostos os métodos GEnetic Algorithm based on Roc analysis (GEAR) e o Iterated F-Race for Trajectory Segmentation Algorithms (I/F-Race-TSA), que são métodos para auxiliar na escolha da melhor configuração (i.e. valores de parâmetros de entrada) de algoritmos de segmentação de trajetórias. Segundo, é proposto o Greedy Randomized Adaptive Search Procedure for Unsupervised Trajectory Segmentation (GRASP-UTS), com o objetivo de resolver o problema de segmentação de trajetórias quando o critério de segmentação não é previamente definido. Por último, propomos o GRASP for Semi-supervised Trajectory Segmentation (GRASP-SemTS). O GRASP-SemTS usa exemplos para induzir a tarefa de segmentação a encontrar segmentos semelhantes em outras trajetórias. Foram conduzidos experimentos com os métodos e algoritmos propostos para domínios distintos e para trajetórias reais de objetos móveis. Os resultados mostraram que ambos os métodos GEAR e I/F-Race-TSA foram capazes de calibrar automaticamente os parâmetros de entrada de algoritmos de segmentação de trajetórias para um dado domínio de aplicação. Os algoritmos GRASP-UTS e GRASP-SemTS obtiveram melhor desempenho quando comparados a outros algoritmos de segmentação de trajetórias da literatura contribuindo assim com importantes resultados para a área. |
URI : | https://repositorio.ufpe.br/handle/123456789/19518 |
Aparece en las colecciones: | Teses de Doutorado - Ciência da Computação |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
tese_doutorado_amilcar-07-2016_versao-cd (1).pdf | 2,05 MB | Adobe PDF | ![]() Visualizar/Abrir |
Este ítem está protegido por copyright original |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons