Please use this identifier to cite or link to this item:
https://repositorio.ufpe.br/handle/123456789/17992
Share on
Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.advisor | LEANDRO, Eduardo Shirlippe Góes | - |
| dc.contributor.author | LOPES, Juscelino Grigório | - |
| dc.date.accessioned | 2016-10-17T12:54:09Z | - |
| dc.date.available | 2016-10-17T12:54:09Z | - |
| dc.date.issued | 2016-02-26 | - |
| dc.identifier.uri | https://repositorio.ufpe.br/handle/123456789/17992 | - |
| dc.description.abstract | Neste trabalho, estudaremos o conjunto de equil brios relativos n~ao-colineares do problema de quatro corpos no plano complexo. Veremos que esse conjunto e uma subvariedade estrati cada maximal de certa variedade alg ebrica real e provaremos a unicidade do vetor massa normalizado associado a cada ponto dessa subvariedade. Por meio de transforma c~oes de regulariza c~ao, reduziremos a teoria de bifurca c~oes de equil brios relativos ao estudo de uma correspond^encia alg ebrica entre variedades reais. Atrav es dos teoremas de nitude para variedades alg ebricas reais, provaremos que existe uma cota para o n umero de classes de equil brios relativos n~ao-colineares v alida para todas as massas positivas no complementar de um subconjunto alg ebrico pr oprio no espa co das massas. | pt_BR |
| dc.description.sponsorship | CNPq | pt_BR |
| dc.language.iso | por | pt_BR |
| dc.publisher | Universidade Federal de Pernambuco | pt_BR |
| dc.rights | openAccess | pt_BR |
| dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Brazil | * |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/br/ | * |
| dc.subject | Equilíbrio Relativo | pt_BR |
| dc.subject | Finitude de Classes | pt_BR |
| dc.subject | Correspondência Algébrica | pt_BR |
| dc.subject | Conjunto de Bifurca ções | pt_BR |
| dc.subject | Relative Equilibria | pt_BR |
| dc.subject | Finiteness of Classes | pt_BR |
| dc.subject | Algebraic Correspondence | pt_BR |
| dc.subject | Bifurcation Set | pt_BR |
| dc.title | Finitude genérica de classes de equilíbrios relativos no problema de quatro copos | pt_BR |
| dc.type | masterThesis | pt_BR |
| dc.contributor.authorLattes | http://lattes.cnpq.br/9975424142245842 | pt_BR |
| dc.publisher.initials | UFPE | pt_BR |
| dc.publisher.country | Brasil | pt_BR |
| dc.degree.level | mestrado | pt_BR |
| dc.contributor.advisorLattes | http://lattes.cnpq.br/0559184209749319 | pt_BR |
| dc.publisher.program | Programa de Pos Graduacao em Matematica | pt_BR |
| dc.description.abstractx | In this work, we study the set of non-collinear relative equilibria in the fourbody problem in the complex plane. We will see that this set is a maximal strati ed submanifold in a real algebraic variety and prove the uniqueness of the normalized vector mass associated with each point of this submanifold. By means of regularization transformations, we reduce the bifurcation theory to the study of an algebraic correspondence between real varieties. Through the theorems of niteness for real algebraic varieties, we prove that there is an upper bound for the number of a ne classes of non-collinear relative equilibria which holds for all positive masses in the complement of a proper, algebraic subset of all masses. | pt_BR |
| Appears in Collections: | Dissertações de Mestrado - Matemática | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| DISSERTAÇÃO.pdf | 730.87 kB | Adobe PDF | ![]() View/Open |
This item is protected by original copyright |
This item is licensed under a Creative Commons License

