Skip navigation
Please use this identifier to cite or link to this item: https://repositorio.ufpe.br/handle/123456789/17359
Title: Shifted Gradient Similarity: A perceptual video quality assessment index for adaptive streaming encoding
Authors: MONTEIRO, Estêvão Chaves
Keywords: Processamento de imagens;Qualidade visual;Compressão de vídeo.
Issue Date: 4-Mar-2016
Publisher: Universidade Federal de Pernambuco
Abstract: Cada vez mais serviços de streaming de vídeo estão migrando para o modelo adaptativo, devido à crescente diversidade de dispositivos pessoais conectados à Web e à popularidade das redes sociais. Limitações comuns na largura de banda de Internet, velocidade de decodificação e potência de baterias disponíveis em tais dispositivos desafiam a eficiência dos codificadores de conteúdo para preservar a qualidade visual em taxas de dados reduzidas e abrangendo uma ampla gama de resoluções de tela, tipicamente comprimindo para menos de 1% da massiva taxa de dados bruta. Ademais, o sistema visual humano não percebe uniformemente as perdas de informação espacial e temporal, então um modelo objetivo físico simples como a média do erro quadrático não se correlaciona bem com qualidade perceptível. Técnicas de avaliação e predição objetiva de qualidade perceptível de conteúdo visual se aprimoraram amplamente na última década, mas o problema permanece em aberto. Dentre as métricas de qualidade psicovisual mais relevantes estão muitas versões do índice de similaridade estrutural (Structural Similarity — SSIM). No presente trabalho, várias das mais eficientes métricas baseadas em SSIM, como o Multi-Scale Fast SSIM e o Gradient Magnitude Similarity Deviation (GMSD), são decompostas em suas técnicas-componentes e recombinadas para se obter medidas e entendimento sobre a contribuição de cada técnica e se desenvolver aprimoramentos à sua qualidade e eficiência. Tais métricas são aplicadas às bases de dados LIVE Mobile Video Quality e TID2008 e os resultados são correlacionados aos dados subjetivos incluídos naquelas bases na forma de escores de opinião subjetiva (mean opinion score — MOS), de modo que o grau de correlação de cada métrica indique sua capacidade de predizer qualidade perceptível. Investiga-se, ainda, a aplicabilidade das métricas à recente e relevante implementação de otimização psicovisual de distorção por taxa (psychovisual rate-distortion optimization — Psy-RDO) do codificador x264, ao qual atualmente falta uma métrica de avaliação objetiva ideal. O índice “Shifted Gradient Similarity” (SG-Sim) é proposto com uma técnica aprimorada de realce de imagem que evita uma perda não-pretendida de informação de análise, comum em índices baseados em SSIM, assim alcançando correlação consideravelmente maior com MOS comparado às métricas existentes investigadas neste trabalho. Também são propostos filtros de consolidação espacial mais eficientes: o filtro gaussiano de inteiros 1-D decomposto e limitado a dois desvios padrão e o filtro “box” subamostrado baseado na imagem integral, os quais retém, respectivamente, 99% e 98% de equivalência e obtém ganhos de velocidade de, respectivamente, 68% e 382%. O filtro subamostrado também promove escalabilidade, especialmente para conteúdo de ultra-alta definição, e define a versão do índice “Fast SG-Sim”. Ademais, verifica-se que o SG-Sim aumenta a correlação com Psy-RDO, indicando-se uma métrica de qualidade de codificação ideal para o x264. Finalmente, os algoritmos e experimentos usados neste trabalho estão implementados no software “Video Quality Assessment in Java” (jVQA), baseado nas plataformas AviSynth e FFmpeg e que é projetado para personalização e extensibilidade, suportando conteúdo ultra-alta definição “4K” e disponibilizado como código-fonte aberto e livre.
URI: https://repositorio.ufpe.br/handle/123456789/17359
Appears in Collections:Dissertações de Mestrado - Ciência da Computação



This item is protected by original copyright



This item is licensed under a Creative Commons License Creative Commons