Skip navigation
Use este identificador para citar ou linkar para este item: https://repositorio.ufpe.br/handle/123456789/17314
Título: Algoritmos para determinação do número de grupos em estudos de formas planas
Autor(es): OLIVEIRA, Rodrigo Alves de
Palavras-chave: Análise multivariada;Estatística aplicada;Análise de agrupamento
Data do documento: 5-Fev-2016
Editor: Universidade Federal de Pernambuco
Resumo: Análise de formas planas é uma área de conhecimento bastante útil e sólida para lidar com estudos de estruturas de objetos e informação geométrica. A fim de descrever objetos bidimensionais é necessário especificar um sistema de coordenadas a qual deve ser invariante sob locação, escala e rotação da configuração tal como as coordenadas de Kendall. E uma versão linearizada do espaço de formas são as coordenadas tangentes, esta pertence ao espaço Euclidiano, portanto, toda literatura de análise multivariada pode ser utilizada. Em diversas ocasiões é necessário agrupar conjuntos de dados de tal maneira que se tenha grupos com características mais homogêneos entre si. Para tanto Amaral et al. (2010a) desenvolveu o algoritmo K-médias para lidar com análise de formas. Devido as desvantagens deste algoritmo, Jayasumana et al. (2013) propôs o algoritmo Kernel K-médias. Estes dois algoritmos dependem da escolha do número de grupos, K. E para o segundo, deve-se estimar o parâmetro de largura de banda. Em situações em que não se conhecem os rótulos dos grupos, a escolha de um valor apropriado para K é difícil. Para resolver esse desafio, medidas de validade tentam determinar como precisamente se retratam os grupos dos dados. No entanto, diversas medidas de validade surgem, e diferentes medidas geralmente produzem resultados discrepantes. Esta dissertação introduz métodos para computar o número de grupos em um determinado conjunto de dados que lidam com a natureza das estruturas planas. Os métodos propostos são baseados nas medidas de validade Silhoueta, Davies-Bouldin e os Resíduos Procrustes. Gerou-se amostras de duas populações da distribuição Bingham complexa a qual possui suporte na esfera unitária; e também amostras de duas populações com espaço nos marcos. Considera-se vários cenários com alta e baixa concentração dos dados. Percebe-se que os índices para coordenadas tangentes encontram corretamente o número de grupos para dados de alta concentração assim como os índices modificados para coordenadas de Kendall. Já em situações com baixa concentração os índices para coordenadas tangentes não funcionam bem, portanto, não identificam o número correto de grupos, ao contrário, os índices com natureza própria de formas planas conseguem estimar o verdadeiro número de grupos para os dados simulados. Os índices mais apropriados são o Procruste Residual e o Davies-Bouldin ajustado pela segunda vez. Análise de dados reais mostra que os índices existentes para coordenadas tangentes e os índices modificados para coordenadas de Kendall estimam o número correto de grupos.
URI: https://repositorio.ufpe.br/handle/123456789/17314
Aparece na(s) coleção(ções):Dissertações de Mestrado - Estatística

Arquivos deste item:
Arquivo Descrição TamanhoFormato 
Rodrigo_CD.pdf1,91 MBAdobe PDFVer/Abrir


Este arquivo é protegido por direitos autorais



Este item está licenciada sob uma Licença Creative Commons Creative Commons