Use este identificador para citar ou linkar para este item:
https://repositorio.ufpe.br/handle/123456789/1709
Compartilhe esta página
Título: | Construção de sistemas de múltiplos classificadores por meio de hibridização e otimização de técnicas de agrupamento e classificação de dados |
Autor(es): | ALMEIDA, Leandro Maciel |
Palavras-chave: | Redes Neurais Artificiais; Comitês; Sistemas de Múltiplos Classificadores; Algoritmos Evolucionários; Evolução Diferencial; Otimização por Enxame de Partículas |
Data do documento: | 31-Jan-2011 |
Editor: | Universidade Federal de Pernambuco |
Citação: | Maciel Almeida, Leandro; Gonçalves da Silva, Teresinha. Construção de sistemas de múltiplos classificadores por meio de hibridização e otimização de técnicas de agrupamento e classificação de dados. 2011. Tese (Doutorado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2011. |
Abstract: | Os Sistemas de Múltiplos Classificadores (também conhecidos como Comitês de Classificadores) podem usar a combinação ou a seleção de hipóteses dos diferentes membros para determinar a hipótese de solução para um dado problema. O método de combinação de hipóteses é mais difundido, sendo possível encontrar diferentes estratégias que aprimoraram o seu desempenho desde a sua concepção. Por outro lado, o método de seleção não possui tantos avanços quanto o método de combinação, embora o seu potencial já tenha sido comprovado em trabalhos da literatura. A construção de sistemas de múltiplos classificadores usando o método de seleção envolve a busca pela estratégia de seleção, que pode ser através do agrupamento dos dados de treinamento e seleção de classificadores especializados nos dados de cada grupo encontrado. Os aprimoramentos realizados no método de seleção de classificadores ocorrem para a definição da estratégia de seleção, normalmente executada por um método manual. Por outro lado, os melhores aprimoramentos do método de combinação de classificadores foram obtidos com o uso de métodos evolucionários (automáticas) para o ajuste de parâametros. Devido à ausência da hibridização com métodos evolucionários para o aprimoramento do método de seleção; às dificuldades inerentes ao trabalho por tentativa e erro em atividades de busca e para avançoo do conhecimento sobre o potencial do método de seleção, faz-se necessária uma exploração do potencial do método de seleção usando métodos de busca evolucionários. Este trabalho explora a construção automática de sistemas de múltiplos classificadores usando o método de seleção. Nesta tese é proposto um novo método, que emprega a Otimização por Exame de Partículas e Evolução Diferencial acoplada ao Algoritmo Genético, utilizado para o aprimoramento da estratégia de seleção de classificadores. A combinação com métodos evolucionários tem o objetivo de explorar o potencial do método de seleção de classificadores, apresentando os benefícios de sua hibridização com métodos de busca evolucionários. A estratégia de seleção de classificadores adotada é composta por uma fase de agrupamento dos dados de treinamento e outra de busca por classificadores especializados para cada grupo de dados encontrado. Os experimentos realizados utilizaram os métodos K-médias e Mapas Auto-Organizáveis na fase de agrupamento e Redes Neurais Artificiais Lineares e Perceptrons de múltiplas camadas na fase de classificação. Algoritmos Evolucionários foram usados (Otimização por Exame de Partículas com ajuste dinâmico de parâmetros e Evolução Diferencial integrada a um Algoritmo Genético) no presente trabalho, com o propósito de otimizar os parâmetros e desempenho das diferentes técnicas empregadas nas fases de agrupamento e classificação. Os resultados experimentais mostraram que o método proposto possui um melhor desempenho quando comparado aos métodos manuais e supera de forma significativa a maioria dos métodos comumente usados para a construção de sistemas de múltiplos classificadores |
URI: | https://repositorio.ufpe.br/handle/123456789/1709 |
Aparece nas coleções: | Teses de Doutorado - Ciência da Computação |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
arquivo3006_1.pdf | 912,55 kB | Adobe PDF | ![]() Visualizar/Abrir |
Este arquivo é protegido por direitos autorais |
Este item está licenciada sob uma Licença Creative Commons