Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.ufpe.br/handle/123456789/15900

Comparte esta pagina

Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorPRUDÊNCIO, Ricardo Bastos Cavalcante-
dc.contributor.authorAZUIRSON, Gabriel de Albuquerque Veloso-
dc.date.accessioned2016-03-11T15:25:20Z-
dc.date.available2016-03-11T15:25:20Z-
dc.date.issued2015-08-06-
dc.identifier.urihttps://repositorio.ufpe.br/handle/123456789/15900-
dc.description.abstractSistemas de recomendação têm desempenhado um papel importante em diferentes contextos de aplicação (e.g recomendação de produtos, filmes, músicas, livros, dentre outros). Eles automaticamente sugerem a cada usuário itens que podem ser relevantes, evitando que o usuário tenha que analisar uma quantidade gigantesca de itens para realizar sua escolha. Filtragem colaborativa (FC) é a abordagem mais popular para a construção de sistemas de recomendação, embora sofra com problemas relacionados à esparsidade dos dados (e.g., usuários ou itens com poucas avaliações). Neste trabalho, investigamos a combinação de técnicas de FC, representada pela técnica de Fatoração de Matrizes, e técnicas de recomendação baseada em confiança (RBC) em redes sociais para aliviar o problema da esparsidade dos dados. Sistemas de RBC têm se mostrado de fato efetivos para aumentar a qualidade das recomendações, em especial para usuários com poucas avaliações realizadas (e.g., usuários novos). Entretanto, o desempenho relativo entre técnicas de FC e de RBC pode depender da quantidade de informação útil presente nas bases de dados. Na arquitetura proposta nesse trabalho, as predições geradas por técnicas de FC e de RBC são combinadas de forma ponderada através de medidas de esparsidade calculadas para usuários e itens. Para isso, definimos inicialmente um conjunto de medidas de esparsidade que serão calculadas sobre a matriz de avaliações usuários-itens e matriz de confiança usuários-usuários. Através de experimentos realizados utilizando a base de dados Epinions, observamos que a proposta de combinação trouxe uma melhoria nas taxas de erro e na cobertura em comparação com as técnicas isoladamente.pt_BR
dc.language.isoporpt_BR
dc.publisherUniversidade Federal de Pernambucopt_BR
dc.rightsopenAccesspt_BR
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectSistemas de Recomendaçãopt_BR
dc.subjectFatoração de Matrizpt_BR
dc.subjectFiltragem Colaborativapt_BR
dc.subjectSistemas de Recomendação Baseados em Confiançapt_BR
dc.subjectMedidas de Esparsidadept_BR
dc.subjectRecommender Systemspt_BR
dc.subjectCollaborative Filteringpt_BR
dc.subjectMatrix Factorizationpt_BR
dc.subjectTrust-Based Recommendation Systemspt_BR
dc.subjectSparsity Measurespt_BR
dc.titleInvestigação da combinação de filtragem colaborativa e recomendação baseada em confiança através de medidas de esparsidadept_BR
dc.typemasterThesispt_BR
dc.publisher.initialsUFPEpt_BR
dc.publisher.countryBrasilpt_BR
dc.degree.levelmestradopt_BR
dc.publisher.programPrograma de Pos Graduacao em Ciencia da Computacaopt_BR
dc.description.abstractxRecommender systems have played an important role in different application contexts (e.g recommendation of products, movies, music, books, among others). They automatically suggest each user items that may be relevant, preventing the user having to analyze a huge amount of items to make your choice. Collaborative filtering (CF) is the most popular approach for building recommendation systems, although suffering with sparsity of the data-related issues (eg, users or items with few evaluations). In this study, we investigated the combination of CF techniques represented by matrix factorization technique, and trust-based recommendation techniques (TBR) on social networks to alleviate the problem of data sparseness. TBR systems have in fact proven to be effective to increase the quality of the recommendations, especially for users with few assessments already carried out (e.g., cold start users). However, the relative performance between CF and TBR techniques may depend on the amount of useful information contained in the databases. In the proposed architecture in this work, the predictions generated by CF and TBR techniques are weighted combined through sparsity measures calculated to users and items. To do this, first we define a set of sparsity measures that will be calculated on the matrix of ratings users-items and matrix of trust users-users. Through experiments using Epinions database, we note that the proposed combination brought an improvement in error rates and coverage compared to combined techniques.pt_BR
Aparece en las colecciones: Dissertações de Mestrado - Ciência da Computação

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
dissertação_gava_cin.pdf1,56 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está protegido por copyright original



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons