Skip navigation
Use este identificador para citar ou linkar para este item: https://repositorio.ufpe.br/handle/123456789/15883
Título: Performance evaluation of auto scaling mechanisms in private clouds for supporting a web service application
Autor(es): CAMPOS, Eliomar Gomes
Palavras-chave: Computação em Nuvem; Nuvem Privada; Escala Automática; Avaliação de Desempenho; Modelagem Analítica; Cloud Computing; Private Cloud; Auto Scaling; Performance Evaluation; Analytical Modeling
Data do documento: 3-Ago-2015
Editor: Universidade Federal de Pernambuco
Resumo: Composite web services, also known as mashups, are useful to build added-value products in the web. Cloud computing environments have been widely used for hosting web services due to the possibility of increasing or decreasing available resources through automatic mechanisms (i.e.: auto scaling). Such elastic behavior ease the task of reaching satisfactory performance on peaks of demand without wasting resources. It is hard to determine the right components to tune such systems performance when eventually needed. This study evaluates the performance of auto scaling mechanisms for private clouds hosting an event recommendation web service. A hierarchical modeling approach is used to cope with the complexity of such a system, and represent specific details of these mechanisms. Our study applies parametric sensitivity analysis from several performance metrics of the models, such as mean execution time of the auto scaling monitoring, mean time of VMs instantiation, and the mean response time perceived by the web service user. We also have carried a General Full Factorial Experiment, in order to calculate the relevance and effects of each factor involved in the processes of auto scaling and virtual machines (VMs) instantiation. For the auto scaling monitoring, we analyze the factors: collection period of a metric, number of monitored virtual machines, and the time of monitoring of a metric. Regarding the instantiation process, the following factors have been chosen: VM type, VM image size, and VM caching. This analysis allows checking the impact of parameters on the system response time and pointing out effective ways for improvement of performance.
URI: https://repositorio.ufpe.br/handle/123456789/15883
Aparece na(s) coleção(ções):Dissertações de Mestrado - Ciência da Computação

Arquivos deste item:
Arquivo Descrição TamanhoFormato 
Dissertacao - Eliomar Gomes Campos - Mestrado Ciência da computação.pdf5,06 MBAdobe PDFVer/Abrir


Este arquivo é protegido por direitos autorais



Este item está licenciada sob uma Licença Creative Commons Creative Commons