Skip navigation
Please use this identifier to cite or link to this item: https://repositorio.ufpe.br/handle/123456789/14920
Title: Reconhecimento Automático de Placas de Automóveis Utilizando Redes de Kohonen
Authors: GONÇALVES, Pedro Rodolfo da Silva
Keywords: OCR;LPR;ANPR;Identificação de Automóveis;Mapas Auto-Organizáveis;Função Kernel;Redes Neurais
Issue Date: 1-Sep-2015
Publisher: Universidade Federal de Pernambuco
Abstract: Punir infrações de trânsito, controlar tráfego em rodovias, controlar o acesso a áreas restritas, entre outras, são ações tomadas para melhorar o trânsito nas grandes cidades. Para realizar tais ações é necessário, portanto, identificar o veículo automotivo, utilizando, para isso, sua placa de licenciamento. Entretanto, com o aumento de automóveis nas vias urbanas, essa tarefa tornou-se muito difícil de ser realizada de uma forma eficiente por apenas agentes de trânsito, pois existe uma grande quantidade de dados a serem analisados e reportados aos órgãos competentes. Soma-se a isso, o fato de fatores emocionais, cansaços físico e mental, inerentes aos seres humanos, atrapalharem a eficácia da tarefa executada. Por isso, ferramentas que realizam o reconhecimento ótico de caracteres, Opitcal Character Recognition (OCR), vem sendo cada vez mais empregadas para realizar a identificação automática de caracteres existentes nas placas dos automóveis. Este trabalho visa descrever um sistema para identificação de veículos automotivos através de imagens estáticas, apresentando técnicas pesquisadas e estudadas em cada etapa do processo de identificação. As etapas que são apresentadas e detalhadas incluem: a identificação da placa, segmentação dos caracteres presentes na placa e o reconhecimento dos caracteres isolados. Técnicas envolvendo processamento digital de imagem como detectores de bordas, operações morfológicas, análise de componentes conectados e limiarização serão explicitadas. Redes neurais artificias são propostas para realizar o reconhecimento do caractere isolado, tais como Self-Organizing Maps (SOM) e Kernel Self-Organizing Map (KSOM), e serão pormenorizadas. Para avaliar o desempenho das técnicas empregadas nesse projeto, imagens presentes na base de dados MediaLab LPR Database foram utilizadas. Métricas como Recall, Precision e F-Score foram empregadas na avaliação de performance dos diferentes algoritmos estudados e implementados para realizar a detecção da placa, ajudando na escolha do extrator da placa do sistema final. No estágio de segmentação da placa e do reconhecimento dos caracteres isolados, a taxa de acerto foi utilizada para avaliar os algoritmos propostos. Para um grupo de 276 imagens pertencentes a uma base pública, as etapas de detecção, segmentação e reconhecimento alcançaram desempenhos semelhantes aos vigentes na literatura ANAGNOSTOPOULOS et al. (2006) e propiciaram, aproximadamente, uma taxa de acerto global do sistema OCR proposto de 85%.
URI: https://repositorio.ufpe.br/handle/123456789/14920
Appears in Collections:Dissertações de Mestrado - Ciência da Computação

Files in This Item:
File Description SizeFormat 
Dissertação_Pedro Gonçalves.pdf8.37 MBAdobe PDFView/Open


This item is protected by original copyright



This item is licensed under a Creative Commons License Creative Commons