Skip navigation
Please use this identifier to cite or link to this item: https://repositorio.ufpe.br/handle/123456789/1476
Title: Mineração de dados baseada em árvores de decisão para análise do perfil de contribuintes
Authors: SIMÕES, Adriana Carla Araújo
Keywords: Descoberta de conhecimento em Banco de Dados (DCBD);Árvores de decisão;Mineração de Dados
Issue Date: 31-Jan-2008
Publisher: Universidade Federal de Pernambuco
Citation: Carla Araújo Simões, Adriana; Crispim Vasconcelos, Germano. Mineração de dados baseada em árvores de decisão para análise do perfil de contribuintes. 2008. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2008.
Abstract: Um dos principais problemas enfrentados por órgãos públicos atualmente está associado à ineficiência no uso de informações contidas em grandes volumes de dados para a gestão e otimização de recursos públicos nos procedimentos de tomada de decisão. Em particular, um dos problemas enfrentados por órgãos reguladores como secretarias de fazenda de Estados é como identificar comportamentos fraudulentos e de sonegação fiscal por parte de contribuintes. A Descoberta de Conhecimento em Bases de Dados (KDD) tem sido cada vez mais explorada como uma ferramenta poderosa na otimização dos procedimentos de tomada de decisão e na extração automática de informações escondidas nos dados de corporações. Em particular, técnicas baseadas em árvores de decisão têm sido investigadas e aplicadas como uma das opções de ferramental tecnológico em problemas de mineração de dados pela sua simplicidade e facilidade de interpretação do conhecimento descoberto, que é próximo da linguagem humana. Neste trabalho, árvores de decisão baseadas nos algoritmos ID3, SPRINT e SLIQ são investigadas e comparadas para a solução do problema de análise do perfil de contribuintes com respeito à sonegação fiscal em uma situação complexa em larga escala envolvendo um grande número de variáveis e dados corporativos da Secretaria da Fazenda do Estado de Pernambuco (SEFAZPE). Os resultados obtidos objetivamente com os modelos investigados quanto à precisão das árvores construídas, interpretação do conhecimento minerado e extração de novos conhecimentos ao domínio do problema mostraram desempenho satisfatório na tarefa de classificação dos contribuintes quanto a irregularidades nos compromissos de pagamentos fiscais. A solução desenvolvida foi também analisada e validada subjetivamente por especialistas do domínio (auditores fiscais), que demonstraram aceitação no trabalho realizado e comprovando a viabilidade e relevância do uso da mineração de dados no processo de análise do perfil de contribuintes
URI: https://repositorio.ufpe.br/handle/123456789/1476
Appears in Collections:Dissertações de Mestrado - Ciência da Computação

Files in This Item:
File Description SizeFormat 
acas.pdf1.29 MBAdobe PDFView/Open


This item is protected by original copyright



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.