Skip navigation
Use este identificador para citar ou linkar para este item: https://repositorio.ufpe.br/handle/123456789/12415
Título: Arquitetura híbrida para otimização multi-objetivo de SVMs
Autor(es): Miranda, Péricles Barbosa Cunha de
Palavras-chave: Otimização Multi-Objetivo; Otimização por Enxame de Partículas; Meta- Aprendizado; Máquinas de Vetor de Suporte; Seleção de Parâmetros
Data do documento: 22-Fev-2013
Editor: Universidade Federal de Pernambuco
Resumo: Vem sendo dada grande atenção às Máquinas de Vetores de Suporte (SVMs) devido à sua fundamentação teórica e seu bom desempenho quando comparadas a outros algoritmos de aprendizado em diferentes aplicações. Porém, seu bom desempenho depende fortemente da escolha adequada de seus parâmetros de controle. Como a abordagem de tentativa e erro se torna impraticável devido às combinações entre os possíveis valores dos parâmetros, a seleção de parâmetros passou a ser tratada como um problema de otimização, de modo que o objetivo é encontrar a combinação de valores dos parâmetros mais adequada para um determinado problema. Embora a utilização de algoritmos de otimização e busca automatizem a seleção de parâmetros de SVM, ela pode se tornar inviável caso o número de parâmetros a serem selecionados aumente consideravelmente. Uma alternativa é o uso de Meta-Aprendizado (MA), que trata a tarefa de seleção de parâmetros como uma tarefa de aprendizado supervisionado. Cada exemplo de treinamento para o MA (meta-exemplo) armazena características de problemas passados e o desempenho obtido pelas configurações de parâmetros candidatas. Este conjunto de meta-exemplos forma a meta-base, sendo esta utilizada para auxiliar no módulo de sugestão ou meta-aprendiz. O meta-aprendiz tem a função de prever as configurações de parâmetros mais adequadas para um problema novo baseado em suas características. Deste modo, MA se torna uma alternativa menos custosa comparada aos algoritmos de otimização, pois faz uso de execuções passadas no processo de sugestão. Neste trabalho, as sugestões do meta-aprendiz são utilizadas como soluções iniciais da técnica de busca, sendo esta responsável pelo refinamento das soluções sugeridas. Neste trabalho, foi criada uma arquitetura híbrida multi-objetivo, que combina MA com algoritmos de otimização, inspirados em enxames de partículas, com múltiplos objetivos aplicado ao problema de seleção de parâmetros de SVMs. Os algoritmos de otimização utilizados no experimento foram: MOPSO, MOPSO-CDR, MOPSO-CDRS, CSS-MOPSO, m-DNPSO e MOPSO-CDLS, e os objetivos levados em consideração foram: maximização da taxa de acerto na classificação e minimização do número de vetores de suporte. De acordo com os resultados alcançados, ficou comprovado o potencial do MA na sugestão de soluções para os algoritmos de otimização. O início da busca em regiões promissoras favoreceu a convergência e geração de soluções ainda melhores, quando comparada a aplicação de algoritmos de busca tradicionais. Os Pareto fronts gerados foram analisado em 4 perspectivas (spacing, max. spread, hypervolume e coverage), sendo os resultados da abordagem híbrida superiores aos das técnicas de otimização tradicionais.
URI: https://repositorio.ufpe.br/handle/123456789/12415
Aparece na(s) coleção(ções):Dissertações de Mestrado - Ciência da Computação

Arquivos deste item:
Arquivo Descrição TamanhoFormato 
Dissertaçao Péricles Miranda.pdfDissertação de mestrado2,11 MBAdobe PDFVer/Abrir


Este arquivo é protegido por direitos autorais



Este item está licenciada sob uma Licença Creative Commons Creative Commons