Skip navigation
Use este identificador para citar ou linkar para este item: https://repositorio.ufpe.br/handle/123456789/12296
Título: Métodos de regressão robusta e kernel para dados intervalares
Autor(es): FAGUNDES, Roberta Andrade de Araújo
CYSNEIROS, Francisco José de Azevêdo
Palavras-chave: Regressão robusta; Regressão Kernel; Análise de dados simbólicos; Dados simbólicos do tipo intervalo
Data do documento: 16-Dez-2013
Editor: Universidade Federal de Pernambuco
Citação: FAGUNDES, Roberta Andrade de Araújo. Métodos de regressão robusta e Kernel para dados intervalares. Recife, 2013. 116 f. Tese (doutorado) - UFPE, Centro de Informática, Programa de Pós-graduação em Ciência da Computação, 2013..
Resumo: O processo de descoberta de conhecimento tem o objetivo de extrair de informa¸c˜oes ´uteis (conhecimento) em bases de dados. As abordagens usadas na execu¸c˜ao do processo de extra¸c˜ao do conhecimento s˜ao gen´ericas e derivadas das diferentes ´areas de conhecimento, tais como da estat´ıstica, aprendizagem de m´aquina e banco de dados. A An´alise de Dados Simb´olicos (ADS) [Bock e Diday, (2000)] ´e introduzida como abordagem na ´area de descoberta autom´atica de conhecimento que visa desenvolver m´etodos para dados descritos por vari´aveis atrav´es de conjuntos de categorias, lista de valores, intervalos ou distribui¸c˜ao de probabilidade. Dentre as t´ecnicas estat´ısticas, os modelos de regress˜ao procuram prever o comportamento da vari´avel resposta (dependente) a partir de informa¸c˜oes provenientes do conjunto de vari´aveis preditoras (independentes). O objetivo deste trabalho ´e propor duas metodologias para an´alise de dados intervalares. A primeira metodologia aborda o m´etodo robusto em regress˜ao, que ´e uma alternativa para o uso do m´etodo dos m´ınimos quadrados quando os dados contˆem outliers. Enquanto a segunda aborda regress˜ao por kernel, que ´e um m´etodo que prover uma rela¸c˜ao n˜ao param´etrica entre as vari´aveis, sem utilizar um modelo com paramˆetros fixos, mas as taxas de convergˆencias dos estimadores n˜ao param´etricos s˜ao mais lentas do que a dos estimadores param´etricos. Experimentos com conjuntos de dados simulados e aplica¸c˜oes com conjuntos de dados reais intervalares indicam a funcionalidade e eficiˆencia dos m´etodos propostos.
URI: https://repositorio.ufpe.br/handle/123456789/12296
Aparece na(s) coleção(ções):Teses de Doutorado - Ciência da Computação

Arquivos deste item:
Arquivo Descrição TamanhoFormato 
Tese Roberta Fagundes.pdf7,68 MBAdobe PDFVer/Abrir


Este arquivo é protegido por direitos autorais



Este item está licenciada sob uma Licença Creative Commons Creative Commons