Skip navigation
Use este identificador para citar ou linkar para este item: https://repositorio.ufpe.br/handle/123456789/6557

Compartilhe esta página

Registro completo de metadados
Campo DCValorIdioma
dc.contributor.advisorGeorge Brady Moreira, Franciscopt_BR
dc.contributor.authorLuis da Mota Vilela, Andrépt_BR
dc.date.accessioned2014-06-12T18:06:00Z-
dc.date.available2014-06-12T18:06:00Z-
dc.date.issued2007pt_BR
dc.identifier.citationLuis da Mota Vilela, André; George Brady Moreira, Francisco. Modelo do voto da maioria para uma rede com diferentes agentes. 2007. Dissertação (Mestrado). Programa de Pós-Graduação em Física, Universidade Federal de Pernambuco, Recife, 2007.pt_BR
dc.identifier.urihttps://repositorio.ufpe.br/handle/123456789/6557-
dc.description.abstractInvestigamos o modelo do voto da maioria com ruído para uma rede de interações sociais em um sistema com duas classes de indivíduos, classe σ e classe τ. Na dinâmica deste sistema, um dado indivíduo adota o estado oposto à maioria dos seus vizinhos com probabilidade referente à sua classe, 𝑞𝑐𝑙𝑎𝑠𝑠𝑒, e o estado da maioria dos seus vizinhos com probabilidade (1−𝑞𝑐𝑙𝑎𝑠𝑠𝑒), onde 𝑞𝑐𝑙𝑎𝑠𝑠𝑒 é chamado de parâmetro de ruído para uma dada classe. Desta maneira, um indivíduo da classe σ e um indivíduo da classe τ possuem parâmetros de ruído 𝑞𝜎 e 𝑞𝜏 respectivamente. No nosso modelo cada classe de indivíduos possui uma dinâmica própria, sendo que os indivíduos da classe σ são influenciados por vizinhos das classes σ e τ, enquanto os indivíduos da classe τ são influenciados por vizinhos da classe τ somente. Em nossas simulações computacionais consideramos que os agentes, ou indivíduos, de cada classe estão distribuídos em uma rede bidimensional quadrada de lado 𝐿, de maneira que 𝑁=𝐿2 é a quantidade de sítios de uma classe, totalizando 2𝐿2 indivíduos no sistema. Usamos o método de Monte Carlo e técnicas de escalamento de tamanho finito, para obter as propriedades críticas do sistema no estado estacionário. Calculamos, para cada classe de indivíduos, a magnetização, a susceptibilidade e o cumulante de quarta ordem de Binder como funções dos ruídos 𝑞𝜎 e 𝑞𝜏, para diferentes valores do tamanho 𝑁 de uma classe. Encontramos os valores dos ruídos críticos, 𝑞𝜎∗ e 𝑞𝜏∗, e identificamos cinco regiões distintas no digrama de fases no plano 𝑞𝜎 𝑞𝜏. Os valores dos expoentes críticos de cada classe são os mesmos, ou seja, 𝛽𝜎=𝛽𝜏, γ𝜎=γ𝜏, ν𝜎=ν𝜏, e nos permitem concluir que o modelo proposto pertence à mesma classe de universalidade do modelo de Ising.pt_BR
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológicopt_BR
dc.language.isoporpt_BR
dc.publisherUniversidade Federal de Pernambucopt_BR
dc.rightsopenAccesspt_BR
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectFenômenos críticospt_BR
dc.subjectTransições de fasept_BR
dc.subjectSistemas socioeconômicospt_BR
dc.subjectSimulações computacionaispt_BR
dc.titleModelo do voto da maioria para uma rede com diferentes agentespt_BR
dc.typemasterThesispt_BR
Aparece nas coleções:Dissertações de Mestrado - Física

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
almv.pdf2,1 MBAdobe PDFThumbnail
Visualizar/Abrir


Este arquivo é protegido por direitos autorais



Este item está licenciada sob uma Licença Creative Commons Creative Commons