Skip navigation
Use este identificador para citar ou linkar para este item: https://repositorio.ufpe.br/handle/123456789/64920

Compartilhe esta página

Título: Comparative benchmarking of retrieval-augmented generation reranker for medical domain
Autor(es): CRISTOVÃO, Charles Gabriel Carvalho
Palavras-chave: Retrieval Augmented Generation; Zero shot Question Answering; Large Language Models; Model Benchmarking; Chain of Thought
Data do documento: 3-Abr-2025
Citação: CRISTOVAO, Charles G. C.; REN, Tsang Ing. Comparative benchmarking of retrieval-augmented generation reranker for medical domain. 2025. Trabalho de Conclusão de Curso (Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2025
Abstract: The exponential growth of digital medical information poses significant challenges in delivering reliable, evidence-based responses to clinical inquiries. Traditional systems often fall short in bridging the gap between vast data repositories and the need for authoritative, contextually relevant insights. In this study, we introduce a pipeline that leverages a Retrieval-Augmented Generation reranker architecture, combined with a Chain-of-Thought (CoT) prompting strategy, to enhance the performance of Large Language Models in addressing complex medical questions. By integrating a robust retrieval mechanism that sources trustworthy evidence from established medical literature and by refining the information with reranking, our approach not only improves answer accuracy but also demonstrates that larger models can be effectively distilled into smaller, more resource-efficient variants while maintaining comparable performance. The pipeline is evaluated in zero-shot question-answering scenarios, employing a question-only retrieval strategy to simulate realistic clinical contexts where prior domain-specific fine-tuning is absent. This work underscores the potential of combining retrieval techniques with sequential reasoning to overcome the inherent challenges in medical AI, paving the way for more accurate, transparent, and accessible systems in healthcare applications.
Descrição: 9,5
URI: https://repositorio.ufpe.br/handle/123456789/64920
Aparece nas coleções:(TCC) - Ciência da Computação

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
TCC Charles Gabriel Carvalho Cristovão.pdf660,29 kBAdobe PDFThumbnail
Visualizar/Abrir


Este arquivo é protegido por direitos autorais



Este item está licenciada sob uma Licença Creative Commons Creative Commons